6. Real-Time Operating Systems

6.2 Real-Time Systems with Windows CE

Roadmap of Section 6.2

© Windows CE overview

© Windows CE scheduling + memory management
© Windows CE interrupt architecture

© Deterministic real-time systems with Windows CE

Definition of a Real-Time System

© From comp.realtime:

"A real-time system is one in which the correctness of the
computations not only depends on the logical correctness of the
computation, but also on the time at which the result is produced. If
the timing constraints of the system are not met, system failure is
said to have occurred.*

© The RT OS is just one element of the complete real-time system and
must provide sufficient functionality to enable the overall real-time
system to meet its requirements.

© Distinguish between a fast operating system and an RTOS

B Embedded Systems
Programming

Requirements for a RT OS

The OS (operating system) must be multithreaded and preemptive
The OS must support thread priority

A system of priority inheritance must exist

The OS must support predictable thread synchronization mechanisms

o 0 0 O

In addition, the OS behavior must be predictable. This means real-time system
developers must have detailed information about the system interrupt levels,
system calls, and timing:

© The maximum time during which interrupts are masked by the OS and by device drivers must
be known.

© The maximum time that device drivers use to process an interrupt, and specific IRQ
information relating to those device drivers, must be known.

© The interrupt latency (the time from interrupt to task run) must be predictable and compatible
with application requirements.

B Embedded Systems
Programming

Real-Time Systems with Windows CE

© High-performance embedded applications must often manage
time-critical responses.

© manufacturing process controls, .

high-speed data acquisition devices, Q MWEMOWSCE
medical monitoring equipment,

laboratory experiment control,

automobile engine control,

© robotics systems.

© Validating such an application means examining not only its
computational accuracy, but also the timeliness of its results.

© The application must deliver its responses within specified time
parameters in real-time.

B Embedded Systems
Programming

0
8]
&)
0

Windows CE Characteristics

CE kernel design meets the minimum requirements of an RTOS:
© multithreaded and preemptive.
© supports 256 levels of thread priority.
© supports a system of priority inheritance (to correct priority inversion)
© predictable thread synchronization mechanisms,
© including such wait objects as mutex, critical section,

© named and unnamed event objects, which are queued based on thread
priority.
© Windows CE supports access to system timers.

© Interrupt latency is predictable and bounded.

© The time for every system call (KCALL) is predictable and
independent of the number of objects in the system.

© The system call time can be validated using the instrumented kernel

B Embedded Systems
Programming

Windows CE Modules

Windows CE has four primary modules or groups of modules.
© The kernel supports basic services
© process and thread handling
© memory management.
© The file system supports persistent storage of information.
© The Graphics, Windowing, and Events Subsystem (GWE)
© controls graphics and window-related features.

© The communications interface supports the exchange of information
with other devices.

© Additional modules
© managing installable device drivers
© supporting COM/OLE

B Embedded Systems
Programming

Windows CE System Architecture
(5.0 & earlier)

Windows CE-based applications

Shells ‘ ’ Internet Explorer ‘ ’ Remote connectivity ‘
Microsoft programming interfaces | Communication interfaces
Win32, COM, MFC, ATL, ... i (winsock, RAS, TAPI, network)

| DA ||TCP/IP||Unimodem|

Kernel .
GWE Object Store PPP/

(file systems)
NDid| R Ethemet| SLIP
miniportiminiport

ffffffffffffffffffffffff Native and stream || Other Serial

interface drivers ||drivers
=
B Embedded Systems
Programming

Kernel

© Core of the operating system,; file: Nk.exe

© Windows CE kernel implements:
© Scheduling, thread synchronization
© Processing of exceptions and interrupts
© Virtual memory management
© Supports execution in place (XIP) from ROM
© Demand paging into program memory
© Portable
© 32-bit, little endian processors

© Support of translation look-aside buffer (TLB) for virtual to
physical address mapping

B Embedded Systems

Programming

Scheduling

© Win32 process and thread model

(6]

0 000

(&)

Round-robin, priority-based scheduler

32 processes, unlimited number of threads

8 priorities (256 in Win CE 3.0); circular run queue per priority
Scheduler operates on 25 ms quantum; adjustable

Thread priorities are fixed, no aging

Priority inheritance protocol for critical sections

© Synchronization:

(5]
(¢)
(6]
o

B Embedded Systems

Programming

Wait functions (WaitForSingleObject()...)
Mutex objects

Event objects

Semaphores to be supported in future releases

B Embedded Systems

Programming

Threads and Thread Priority

© 32 simultaneous processes; one primary thread.
© unspecified number of additional threads.

© actual number of threads is limited only by available system resources.

© priority-based time-slice algorithm

© schedule the execution of threads Windows CE 3.0
. . - and later
© eight discrete priority levels, from 0 through 7, .
. g .ty o g . provide 256
© 0 represents the highest priority (header file winbase.h) priority levels
Priority level Constant and Description
0 (highest) THREAD_PRIORITY_TIME_CRITICAL (highest priority)

1

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

als|lw N

THREAD_PRIORITY_LOWEST

6

THREAD_PRIORITY_ABOVE_IDLE

7 (lowest) THREAD_PRIORITY_IDLE (lowest priority)

Priority Assignment

o 0 0 O

(&)
(]

(5]

(¢}

(]

Levels 0 and 1: real-time processing and device drivers;
Levels 2-4: kernel threads and normal applications;

Levels 5-7: apps that can always be preempted by other apps.
Preemption is based solely on the thread's priority.

Threads with a higher priority are scheduled to run first.

Threads at the same priority level run in a round-robin fashion with each thread receiving a
quantum or slice of execution time.

The quantum has a default value of 25 milliseconds
(CE version 3.0 and later supports changes to the quantum value).

Threads at a lower priority do not run until all threads with a higher priority have finished,
that is, until they either yield or are blocked.

Exception: threads at the highest priority level (level 0) do not share the time slice with
other threads at the highest priority level. These threads continue executing until they have
finished.

© Thread priorities are fixed and do not change.

(]

Windows CE does not age priorities and does not mask interrupts based on these levels

B Embedded Systems

Programming

Priority Inheritance — circumvent
priority inversion problems

Priority level

Ty, starts, Ty

ABOVE_NORMAL| request | _ _ .. _._ .| continues
1
! TM startg resource : to TM runs as

NORMAL _T____J___+completion scheduled

T, locks Lis poosted T_runs as
resource until it frees scheduled
resource

TIME_CRITICAL T

© Thread priorities are fixed and do not change. L)

© Windows CE does not age priorities and does not mask interrupts based on
these levels.

© Only kernel modifies priorities temporarily to avoid
"priority inversion."

B Embedded Systems
Programming 13

Thread Synchronization

© CE offers a rich set of "wait objects" for thread synchronization.
© critical section, event, and mutex objects.

© wait objects allow a thread to block its own execution and wait until the specified object
changes.

© Windows CE queues mutex, critical section, and event requests in "FIFO-by-priority"
order

© a different FIFO queue is defined for each of the eight discrete priority levels.
© A new request from a thread at a given priority is placed at the end of that priority's list.
© The scheduler adjusts these queues when priority inversions occur.
© Windows CE supports standard Windows timer API functions
© Obtain time intervals from the kernel through software interrupts.

© Threads can use the system's interval timer by calling GetTickCount, which returns a count of
milliseconds.

© Use QueryPerformanceCounter and QueryPerformanceFrequency for more detailed timing
information.
(OEM must provide higher-resolution timer and OAL interfaces to the timer.)

B Embedded Systems
Programming 14

Applications

User N
Space < SHELL SERVICES . EXE | Services | UDEVICE . EXE

Lu COREDLL { WINSOCK ﬁ COMMCTRL { WININET ﬁ COMMDLG M

—_— =

DEVICE DLL

KERNEL . DLL || ruesvs | Gwes NETWORK

Kernel

Drivers
Space <

OAL. DLL
Boot Loader | KCOREDLL DLL

Hardware

-

Windows Embedded CE 6.0 Architecture.

B Embedded Systems

Programming

CE 6.0 User Processes

© Shell - Standard or custom interface for device
© Services.exe hosts n number of services

© UDevice.exe hosts n number of user mode
drivers

B Embedded Systems

Programming

CE 6.0 Kernel

© FilesSys.dll provides file system support and
communicates with file system drivers (FSD)

© GWES.dIl is the Graphics, Windowing, and Events
Subsystems

© Networking DLLs Networking services
© Device.dll provides device driver services
© Kernel provides basic OS services

© API calls use KCOREDLL.dII to get to other kernel
services

B Embedded Systems

Programming

Application Programs in CE

© CE Supports C/C++/C# & Threads

© Uses a critical subset of the Desktop Windows APIs —
around 2,000 vs. 20,000

© Means CE application source code can be recompiled
and run on the Desktop Windows OS, but the reverse is
not true

© Sample browser, Media player, WordPad applications
included with OS.

B Embedded Systems

Programming

Application

Kernel Service

CE 6.0 System Calls

B Embedded Systems

Programming

Kernel (CE 6.0 & later)

© New Kernel (NK.bin) module
© Core of the operating system

© Base level functions in kernel: process, thread, and
memory management

© Includes some file management functions

© Kernel services allow applications to use the core
functions

B Embedded Systems

Programming

Application

DLL Interface
Function call
Coredil.dll
Local Process
V‘-f.?‘ﬁﬁ':f L | Services
Heap
Processinterface
Traps
Nk.exe
NE_lib
Virtual Memory
ProcessiThread Process ¥ ¥ ¥ L]
E xception Handling Switching
Scheduling File System ‘ GWES | | Device ‘ Services.exe
Loader
Synchronization
el
g‘r’t‘:: gelgastgcmching L”;?.’J.‘.‘ﬁ; ————| Hardvare
Memory-Mapped File Interrupts
t$
Hardware]
Interrupt
mg:"zgyep Handling
BusMap

Hallib

Windows CE 6.0 Kernel Architecture

B Embedded Systems
Programming

Virtual Memory: Slot Model
(CE 5.0 & earlier)

© 32 MB per process virtual memory
© Target devices: < 4Mb RAM, < 4Mb ROM
© 2 GB address space sliced into 32 Mb slots
© One slot per process:
© Silot is broken into 512 64kb blocks
© Blocks are broken into 1kb/4kb pages (— depending on system)
© Assignment of slots:
© Slot 0: active process
© Slot 1: kernel
© Slot 2: GWE (Graphics, Window Manager, Event Manager)
© Slot 3: Filesys...
© Slot 4: Shell
© New processes get lowest available slot

B Embedded Systems
Programming

22

11

£

Virtual Memory (contd.)

32 slots + active slot (0)

Slot 32 32

scalar scalar

Slot 4 pointer (Shell) 4 |[pointer [string]
array array

Slot 3 GWE \ 3 GWE

Slot 2 Filesys \ 32 MB per slot 2 Filesys

Slot 1 Kernel \ 1 Kernel
scalar

Slot 0 pointer Slot 0 GWE
array

© Kernel manipulates pointer on context change
© GWE may access Shell data at correct location without copy

Embedded Systems
Programming

23

Virtual Memory & Real-Time

© Paging I/0 occurs at a lower priority level than the real-time priority
process levels.

© Paging within the real-time process is still free to occur

© Background virtual memory management won't interfere with
processing at real-time priorities.

© Real-time threads should be locked into memory to prevent
nondeterministic paging delays resulting from VM system.

© Windows CE allows memory mapping
© Multiple processes may share the same physical memory.
© Very fast data transfers between processes / driver / app.

© Memory mapping can be used to dramatically enhance real-time
performance

B Embedded Systems
Programming

24

12

Persistent Storage

The file system supports persistent storage of information.

It includes:

© Support for file allocation table (FAT) file systems with up to nine
FAT volumes.

© Transactioned file handling to protect against data loss.
© Demand paging for devices that support paging.

© FAT file system mirroring to allow preservation of the file system if
power is lost or cold reset is needed.

© Installable block device drivers.

B Embedded Systems

Programming

CE Kernel
2GB "
Kemel File system
Space GWES

Drivers

User VM
Memory Mapped files
2GB
per User DLLs
Process

Process Code e Upto 32K
User VM - Processes

The Windows Embedded CE 6.0 Virtual Memory Space Model.

B Embedded Systems

Programming

Memory Setup In CE 6.0

© 4GB 32-bit Virtual Memory Address Space
© 2GB User Space in Virtual Memory Address Space
© 2GB Kernel Space in Virtual Memory Address Space

NOTE: Remember that Physical memory size is independent of
the Virtual Memory Address Space!

B Embedded Systems
Programming

O0xXFFFFFFFF
System Trap Area

Kernel Virtual Memory
Shared by all kernel
Servers and drivers

Kernel Space
2 Gigabytes
Fixed mapping
independent of
user space

All XIP DLLs in kernel

Uncached access to
physical memory

== 0x80000000

Layout of kernel space virtual memory

B Embedded Systems
Programming

e 080000000

R/W for OS components
Read only for user process

w RAM Backed Map files
Mapped at fixed location for better
backwards compatibility
All DLLs - code and data
Same mapping across all processes
Data pages are unique physical pages

User Space Code pages are shared

2 Gigabytes
Each process has
its own mapping

— (40000000

Jer process

0x00000000

Layout of user space virtual memory

B Embedded Systems

Programming

B Embedded Systems

Programming

Table 6.1 CE 6.0 Virtual Memory Map.

Mode Range Size | Description C

Kernel | 0xF0000000 - | 256 | CPU System call trap area. Kernel data
OxFFFFFFFF MB | specific VM | page.

Kernel | 0xE0000000 - | 256 | Kernel VM, | Kernel space virtual memory, unless

OXEFFFFFFF MB | CPU disallowed by the CPU, such as SHx.
dependent
Kernel | 0xD0000000 - | 256 | Kernel VM | Kernel space virtual memory, shared
OxDFFFFFFF | MB by all servers and drivers loaded in
kernel.
Kernel | 0xC8000000 - | 128 | Object store | RAM based storage for RAM file
O0xCFFFFFFF MB system, CEDB databases, and RAM-

based registry. Legacy data store.
Kernel | 0xC0000000 - | 128 | Kernel XIP | XIP DLLs for the kernel and all

0xC7FFFFFF MB | DLLs servers and drivers loaded in the
kernel.
Kernel | 0xA0000000 - | 512 | Statically Direct access to physical memory
O0xBFFFFFFF | MB | mapped bypassing the CPU cache.
Uncached
Kernel | 0x80000000 - | 512 | Statically Direct access to physical memory
O0x9FFFFFFF MB | mapped accessed through the CPU cache.
Cached
User 0x7FF00000 - |1 Unmapped | Buffer between user and kernel
Ox7FFFFFFF MB | for spaces.
protection
User 0x70000000 - | 255 | Shared Shared heap between the kernel and

O0x7FEFFFFF MB | system heap | the process.

Kernel and kernel servers can
allocate memory in it and write to it.
Read only for user processes

It is a system optimization that
allows a process to get data from a
server without having to make a
kernel call.

15

User 0x60000000 - 256 | RAM RAM backed mapfiles are mapped at
0x6FFFFFFF MB | backed map | fixed location for backward

files compatibility. RAM backed map files are
memory mapped file objects that do not
have an actual file underneath them. They
are acquired by calling
CreateFileMappingwith hFile equal to
INVALID_HANDLE_VALUE. This
region provides backward compatibility
for applications that used RAM-backed
map files for cross-process
communication, expecting all processes
to map views at the same virtual address.
User 0x40000000 - 512 | User mode DLLs loaded at bottom and grow up:

0xSFFFFFFF MB | DLLs « Based starting at 0x40000000.
Code and * Code and data are intermixed.
data * A DLL loaded in multiple

processes will load at the same
address in all processes.

« Code pages share same physical
pages.

« Data pages have unique physical
pages for each process.

User 0x00010000 - 1 Process Executable code and data
0x3FFFFFFF GB | User User VM (heap) virtual allocations:
allocatable 1 VM allocations start above the exe
VM and grow up.
User 0x00000000 - 64 | CPU User kernel data is always r/o for user.

0x00010000 KB | dependent Depending on CPU, it can be kernel r/w
user kernel (ARM), or kernel r/o (all others).
data

Embedded Systems

Programming

Physical Memory Virtual Memory

FFFF FFFF
Kernel
Space
€000 0000
s a
(32MBFlash[/8 ™
E3 =
2 o)
L e A000 0000
S oo,
. e~
82000000 y A J2MBFlash P & =
32 MB Flash o @
04000000 ,/’ PP f“ L 8000 0000
L .- . N
64 MB RAM Address User 2 ®
i Space -~ @
00000000 Translation P 0000 0000

Virtual to physical memory mapping on a device (example)

Embedded Systems

Programming

What is in Memory?

© OS Kernel
© Application Code & Data
© Object Store - File System, Registry, Built-in

Compact Data Base

© Memory Mapped Files

B Embedded Systems

Programming

Communications Interface

© Support for serial communications, including infrared links.
© Support for Internet client applications,

© including Hypertext Transfer Protocol (HTTP) and
© File Transfer Protocol (FTP) protocols.

© A Common Internet File System (CIFS) redirector for access to remote file

systems by means of the Internet.

© A subset of Windows Sockets (Winsock) version 1.1

© support for Secure Sockets.

© A TCP/IP transport layer configurable for wireless networking.

© An Infrared Data Association (IrDA) transport layer for robust infrared comm.

© Point-to-Point Protocol (PPP) and Serial Line Internet Protocol (SLIP) for serial-
link networking.

© Networking through network driver interface specification (NDIS).

© Support for managing phone connections with the Telephony API (TAPI).

© Remote Access Service client for connections to remote file systems by modem.

B Embedded Systems

Programming

34

17

Graphics, Windowing, and
Events Subsystem (GWE)

The GWE module supports the graphics and windowing functionality.
It includes:

© Support for a broad range of window styles, including overlapping
windows.

© A large selection of customizable controls.
© Support for keyboard and stylus input.

© A command bar combining the functionality of a toolbar and a menu
bar.

© An Out of Memory dialog box that requests user action when the
system is low on memory.

© Full UNICODE support.

B Embedded Systems

Programming 35

Graphics Device Interface (GDI)

© A multiplatform graphics device interface (GDI) that
supports the following features:

© Both color and grayscale displays, with color depths of
up to 32 bits per pixel.

© Palette management.
© TrueType and raster fonts.
© Printer, memory, and display device contexts.

© Advanced shape drawing and bit block transfer
capabilities.

B Embedded Systems

Programming 36

o

B Embedded Systems
Programming 37

Device Drivers

© Device drivers in user-mode processes

© Only small part of driver is linked with kernel

© Keep interrupt service routines short

© No nestable interrupts

© All interrupts masked in service routine

© Drivers can be layered

o

Interrupt Handling:
IRQs, ISRs, and ISTs

o

Windows CE balances performance and ease of implementation by splitting
interrupt processing into two steps: an interrupt service routine (ISR) and an
interrupt service thread (IST).

Hardware interrupt request lines (IRQ) are associated with ISRs.

© When interrupts are enabled and an interrupt occurs, the kernel calls the registered
ISR for that interrupt.

© ltis ISR's responsibility to direct the kernel to launch the appropriate IST.
ISR performs minimal processing and returns an interrupt ID to the kernel.
The kernel examines interrupt ID and sets the associated event.
The interrupt service thread is waiting on that event.

© When the kernel sets the event, the IST starts its additional interrupt processing.

© Most of the interrupt handling actually occurs within the IST.

© The two highest thread priority levels (levels 0 and 1) are usually assigned to ISTs.

B Embedded Systems
Programming 38

19

Windows CE Interrupt Architecture
- Nested interrupts

© Full support for nested interrupts

© Based on support by the CPU and/or additional
hardware

© Nested in order of priority

© Kernel will save and restore all
required registers

B Embedded Systems

Programming

39

Interrupt Architecture

© ISR runs as part of the kernel

© Multiple interrupt priorities dependent on CPU and available
hardware

© Can't make system calls while in ISR

© No memory allocation, file system access,
load module, etc.

© IST runs as part of a user mode DLL
© Full access to system services
© Can still access hardware if necessary
© Utilizes normal thread priorities and scheduler
6]

ISR and IST priorities independent for
maximum flexibility

B Embedded Systems

Programming

40

20

ISR and IST Model

© Interrupt Service Routine
© Typically very short, fast, assembly code
© Job is to return logical Interrupt ID to the Kernel.

© For Example... Serial Interrupt may be identified as
SYSINTR_SERIAL

// ISR

// Interrupts are Disabled

Identify the Interrupt, Mask or Dismiss the Interrupt

Return the Interrupt ID

// Interrupts are on again.

B Embedded Systems
Programming

41

ISR and IST Model

© Interrupt Service Thread
© Part of a device driver (DLL)
© Built in or loaded by Device.exe

// Serial Device Driver (IST)
// Setup Hardware

hEvent=CreateEvent (..);
InterruptInitialize (hEvent, SYSINTR SERIAL);
CreateThread(..);

() Semme e e Thread Code —--—--———--—-—-——-

While(TRUE) {
WaitForSingleObject (hEvent, timeout) ;
{ DosStuff(); }
InterruptDone (SYSINTR SERIAL);

}

B Embedded Systems
Programming

42

21

Interrupt Block Diagram
Drivers for built-in devices

Kernel Components Device Driver
Exception Interrupt Igteer';:i‘égt
‘ Handler S‘thpport Handler Thread
Interrupt OAL PDD
Service Routine Routines Routines
Hardware
et 2

Windows CE: Architectural Remarks

© Windows CE runs all device drivers inside a
user-space process: Devices.exe

© Resembles microkernel architecture
© Programmer has full control on priority of
Interrupt Service Threads (IST)

© Kernel-mode Interrupt Service Routine (ISR) is short
and mainly signals an event to IST

© Windows CE can be configured to run everything in
kernel mode (minimize context switching
overheads)

B Embedded Systems

Programming 44

Bounded Interrupt Latency
(for threads locked in memory)

ISR latency:
© start of ISR = Kernel, + disg current + SUM(jsr Higher)

1. Kernel, = latency value due to processing within the kernel.

2. disg current = duration of ISR in progress at interrupt arrival.
(0 =~ max(Teyec(ISR))).

3. sum(djsg 1ighe) = SUM of the durations of all higher priority ISRs that
arrive before this ISR starts;

(for interrupts that arrive during the time Kernel, + dISR_Current)
IST latency:
© start of IST = Kernel, + sum(d;g;) + sum(d;gg)
1. Kernel, = latency value due to processing within the kernel.

2. sum(d,g7) = sum of the durations of all higher priority ISTs and thread
context switch times that occur between this ISR and its start of IST.

3. sum(d,ggz) = The sum of the durations of all other ISRs that run
between this interrupt's ISR and its IST.

B Embedded Systems
Programming

Example

© Embedded system with only one critical-priority ISR.
© ISR is set to the highest priority (no higher priority ISRs)
-> disg Higher = 0-
O latency,,, = Kernel,.
© latency,,,, = Kernel, plus the duration of the longest ISR.
© No other ISTs can intervene between ISR and its IST.

© However, it is possible that other ISRs can be processed between the
time-critical ISR and the start of its associated IST.

© Pathological case:

© A constant stream of ISRs, postpones the start of IST indefinitely.
© Unlikely, OEM has control over the number of interrupts in the system.

© To minimize latency times, the OEM can control the processing
times of the ISR and IST, interrupt priorities, and thread priorities.

B Embedded Systems

Programming

Validating the Real-time Performance
of Windows CE

© In-house inspection and analysis of the kernel code by the Windows
CE development team, and

© OEM and ISV (independent software vendor) timing validation of
specific configurations using tools that will be provided in future
versions of the Windows CE Embedded Toolkit for Visual C++.

The Windows CE Embedded Toolkit for Visual C++ includes:
© An instrumented version of the kernel for timing studies, and

© The Intrtime.exe utility for observing minimum, maximum, and
average time to interrupt processing.

B Embedded Systems

Programming 47

Performance Tools

© Provided in Platform Builder to measure real-
time performance of your system

© ISR/IST Latency
© Scheduling performance

© Event logging tool useful for debugging and
performance tuning

© More information on these tools available in the
Platform Builder Online Help

B Embedded Systems

Programming 48

24

Measurements —
varying number of system objects

© Start of ISR times are independent of #system objects

Start of ISRy, Numbers of background threads Background thread
(with one event per thread) priority
8.4 uS 0 7
8.6 uS 5 (Note: represents only 100 tests) 7
9.0 uS 10 (Note: represents only 100 tests) 5
14.8 uS 10 5
19.2 uS 10 5
17.0 uS 10 7
12.8 uS 20 5
11.0 uS 20 (Note: represents only 100 tests) 7
10.0 uS 50 7
15.0 uS 100 5
15.6 uS 100 7
Embedded Systems
Programming

49

Windows CE Has Deterministic
Performance!

ILTiming and OSBench tools running on
development versions show that latencies are

bounded
© For a Pentium 166 MHz class system

(Remember: embedded systems are small and with limited
resources - CPU, Memory, Power)

@ ISR<10uS
@ IST <100 uS

B Embedded Systems

Programming

50

25

Getting Real-Time Performance

© Don't:
© Spend inordinate amounts of time in ISRs

© Spin in your highest priority thread, you'll starve the
system

© Use APIs that are not real-time and expect real-time
performance

© SetTimer, file system calls, process or
thread creation,...

© Allow priority inversions to occur

B Embedded Systems

Programming 51

Getting Real-Time Performance

© Do:
© Pre-allocate all your resources
© Memory, threads, processes, mutexes, semaphores, events, etc...

© Buffer data in ISR if passing it directly to the IST isn't fast
enough

© Use ISR to do all work if...
© ...No system services are required
© ...No extensive processing (long ISR time) required

© Set priorities and quantums correctly

© Use LoadDriver() to instead of LoadLibrary() to avoid page faults
© Or turn the demand-pager off

B Embedded Systems

Programming 52

26

References

© msdn.microsoft.com/embedded/usewinemb/ce/techno/
realtme/default.aspx

© msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcemaind/html/cmconreal-
timeperformancefunctionality.asp

© msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnce30/html/realtimecapabilities.asp

© msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/windowsce.asp

o
B Embedded Systems

Programming 53

Further Reading

© Douglas Boling, Programming Microsoft Windows
CE .NET, Third Edition, MS Press, 2003.

© msdn.microsoft.com/embedded/windowsce/default.aspx

B Embedded Systems

Programming 54

