5. Real-Time Programming

5.2 Real-Time Java

Roadmap of Section 5.2

© Real Time Specification for Java
© RTSJ Features

RealtimeThreads

o

© Memory Management
© RawMemoryAccess
© Asynchronous Transfer of Control
© Asynchronous Event Handling
© Reference Implementation / Available Impl.
© Status of RTSJ

© J Consortium

History

© Dec. 1998 java specification request for real time
extension for java

© Expert group — SUN, IBM, QNX Software Lab, Nortel,
Rockwell, Timesys ..

© Greg Borella (IBM) first specification lead
© Sept. 1999 first public review of specification

© Late in 2001 Timesys volunteered to create the
reference implementation

© Final Specification 12/11/2001

© 2003 Sun announced Mackinac project: first
commercial implementation of RTSJ

II Embedded
erating Systems

o

Motivation

© Usage of advantages of Java
© Cross-platform capabilities
© Object orientation, Type Safety

© Developers and Tools available, Rapid Application
Development

© Improve real-time properties of java
© Deterministic execution times

© Specify real-time scheduling / known start / stop times of
threads

© Specify sufficient memory management
© Direct access to hardware / memory

Real Time Specification for Java
(RTSJ)

Java Architecture Real-time Java
Java Java Java Java+ .
Sourcecode Libraries Sourcecode Java_uRea!Tnme
Libraries
JVM RTJVM
(013 RTOS

® Standard Java API + Real-time
Extensions :

® javax.realtime.”

II Embedded
erating Systems

o

RTSJ: Major Specification Features

© Real-time threads with precise defined scheduling

© Mechanisms that support writing code that is not
influenced by garbage collection

© Asynchronous event handlers to handle events from
outside the virtual machine

© Asynchronous transfer of control

© Mechanisms that allow to control where objects will be
allocated in memory

© Direct memory access

RTSJ Scheduling

© Scheduling manages scheduling / dispatching of

schedulable objects

© Schedulable object - implements Schedulable

© RTSJ specifies default scheduling algorithm
© Fixed-priority preemptive scheduling

© FIFO
© At least 28 scheduling priorities
© Highest priority thread always runs

© Custom scheduler can be implemented

Lﬁl Embedded

Operating Systems

Threads

© NoHeapRealtime Threads

© Hard real-time

© Higher priority that gc

© No references to heap memory
© Realtime Thread

© Soft real-time

© Can be interrupted by gc

© References to heap allowed

Operating Systems

Priority

NoHeap
Realtime

)
Realtime

Thread
————

Thread <

Garbage

Collector

Realtime

)
Java
Thread

~—

No Realtime

RealTimeThread

<<Interface>>

— java.lang.Runnable

A

|

<<Interface>>
Schedulable

SchedulingParameters

EA

| RealtimeThread | .1 N o |
1- - cheauler

ProcessingGroupParameters [TN o~ T
) / -
/ / ~
/ ,/ <<Interface>>
ReleaseParameters | | MemoryArea MemoryParameters java.lang.Runnable

Lﬁl Embedded

Operating Systems

Periodic Threads

int pri = PriorityScheduler.instance ().getMinPriority()+10;
PriorityParameters prip = new PriorityParameters (pri);
RelativeTime period = new RelativeTime (20 /* ms */,0 /* ns */);

PeriodicParameters perp = new
(null,period,null,null,null,null);

PeriodicParameters

RealtimeThread rt= new RealtimeThread (prip,perp) {

public void run() {
int n=1;
while (waitForNextPeriod() && (n<100)) {
System.out.println("Hello "+n);
n++;

}
}i
rt.start();

Operating Systems

Scheduler

© Default Scheduler : PriorityScheduler

© No change of priority during runtime
Performs feasibility analysis for sets of schedulable objects
Cost overrun handler / missed deadline handler per process
Controlled via SchedulingParameter

Additional Scheduler must implement abstract base class
Scheduler

Can be installed via : Realtime Thread.
public void setScheduler(Scheduler scheduler)

o 0 0 O

Q

Ty, Ty, o, Ty~ Tasks to be performed in the real time system
C1, Cy, ..., Cy= Cost of each task (how long it takes to run each task)

Ry, Ry, ... , Ry~ Release time for each task (time that task becomes available to run)

D1, Dy, ..., Dy- Deadline for each task (when each task needs to be complete)

Lﬁl Embedded

Operating Systems

Asynchronous Event Handling

© Real-time and embedded systems are coupled
to the real world

© Events in the real world are asynchronous

© RTSJ specifies a mechanism to bind a
schedulable object to the occurrence of an event

© When the event occurs the object’s run state
changes to ready-to-run and is scheduled
according its parameters

© Implementation should support hundreds of ev.

Operating Systems

Asynchronous Event Handling

© An instance of AsyncEvent represents something that
can happen

© AsyncEventHandler implements Schedulable
© RealTimeThread / NoHeapRTThread
© Default Constructor : All properties inherited from current
thread

© An instance of AsyncEventHandler has a method
handleAsyncEvent() which contains the logic that should
execute when the event occurs

© Method run() invokes handleAsynchEvent()

Lﬁl Embedded

Operating Systems

AynchEvent Class

© public synchronized void addHandler
(AsynchronousEventHandler handler)

© Adds a handler to the set defined for this AsynchEvent
© public void bindTo (String happening)
© Binds this AsynchEvent to an external event (a happening)

© Happening is an implementation dependent value that binds
this AsynchEvent to some external event

© public synchronized void fire ()

© Schedules the run() method of each handler associated with
this event

Operating Systems

Interrupt Handling Example

import java.realtime.*;

public class HardwarelnterruptExample extends AsyncEvent{
private int interruptNum;
public HardwareEventExample (int num) {

interruptNum = num;

}

public void setHandler (AsyncEventHandler h) {
super.addHandler (h) ;
super.bindTo (interruptNumn) ;

}

class HardwareEventHandler extends AsyncEventHandler({
private int interruptCount = 0;
public void handleAsyncEvent () {
interruptCount++;
// Driver code follows}

}

Lﬁl Embedded

Operating Systems

Time

© ,Allow description of a point in time with up to
nanosecond accuracy and precision (actual accuracy
and precision is dependent on the precision of the
underlying system).”

© ,Allow distinctions between absolute points in time,
times relative to some starting point, and a new
construct, rational time, which allows the efficient
expression of occurrences per some interval of relative
time.*

© Abstract HighResolutionTime implements
Comparable

© RelativeTime, AbsoluteTime, RationalTime

Operating Systems

Timers

© Triggers behaviour at a particular point in time
© Special form of asynchronous events

© OneShotTimer
© Fires off once at the specified time

© PeriodicTimer
© Fires off at the specified time and then
© periodically with a specified interval

© Clock : interface to the system’s real-time clock

Lﬁl Embedded

Operating Systems

Timer Example

PeriodicTimer pt = new PeriodicTimer (
new RelativeTime (200,0),
new RelativeTime (200,0),null);

ReleaseParameters rp = pt.createReleaseParameters():;

pt.addHandler (new AsyncEventHandler
(null, rp,null,null,null) {

public void handleAsyncEvent () {
System.out.println(“Timer went off “);
}
1)
pt.start(); // start the timer

Operating Systems

Asynchronous Transfer of Control

© Allows interrupting a thread by raising interrupted
exceptions

© One thread can throw an exception into another thread

© Better way of notifying the application about the
occurrence of a significant event

© Behaves like Thread.stop(deprecated) but is safer
© Can be used as a time-out mechanism

© Asynchronous exception deferred if thread is in
synchronized block or uninterruptible method

© Methods can be made interruptible if

AsynchronouslylnterruptedException is added to throw
clause

dddddddd
erating S

Asynchronously Interrupted Exception

© A thread that wants to be interrupted when
significant events occur, should mark its
methods as throwing

AsynchronouslylinterruptedException

© The thread would not be interrupted if it is
executing a method that is not marked as
throwing AsynchronouslylinterruptedException

© Triggered when Realtime Thread.interrupt() is
called

eeeeeeee

20

10

Memory Management

© Definition of memory areas for object allocation
© Heap memory — no real-time

© Standard Java Heap (one per Virtual Machine)
© Immortal memory - real-time capable

© Allocated objects exist until the end of the application
© Scoped memory — real-time capable

© Manual memory management (defined scope)
© Physical memory areas

Lﬁl Embedded

Operating Systems

21

Scoped Memory

© Activated using the method enter
© public void enter(Runnable r)

© All allocation in run-method of runnable are done in
ScopedMemory

© All objects in Scoped memory will be finalized and
collected if :

© Last real-time thread referencing the scoped exits
© Reference counting of real-time thread using the scope
© Single Parent rule for Scope Stacks

© No cycles in scope dependencies

Operating Systems

22

11

Memory Management
Scoped Memory - Types

© VTMemory

© Allocation may take a variable amount of time
© Not subject to garbage collection

© LTMemory
© Not subject to garbage collection

© Guarantees linear execution time for object allocations from
the area

© (CTMemory) in jRate
© Allocation in constant time

Lﬁl Embedded

Operating Systems

23

ScopedMemory Example

Final ScopedMemory myScope = new VTMemory () :;
myScope.enter (new Runnable ()
{
public void run()
{
// all new calls here are

// allocated to myScope

} // end of run
) // end of enter
o:;“ri’ﬁt'.:“s“mm

24

12

ScopedMemory Example 2

final ScopedMemory s = new LTMemory (16,1024);

RealtimeThread t = new RealtimeThread (null,
null,
new MemoryParameter (s),
null,
new Runnable ()
{
public void run ()
{
AT

Lﬁl Embedded

Operating Systems 25

Nested Scoped Memory

Runnable nestedLogic = new Runnable() {

—_~—

public void run()

MemoryArea ma2 new LTMemory(..);
Runnable moreNestedLogic = new Runnable () {
public void run() {A a = new A();}
ma2.enter (moreNestedLogic) ;
Prid
}i
MemoryArea mal = ..

mal.enter (nestedLogic) ;

Operating Systems 26

13

Immortal Memory

© Shared among all threads

© Objects allocated within ImmortalMemory live
until the end of the application

© Objects still exist without any reference to it

© Can be scanned by garbage collector, but not
collected itself

© Singleton class
© ImmortalPhysicalMemory

dddddddd
erating S

27

Budgeted allocation

© RTJS provides limited support for memory
allocation budgets

© Maximum memory area consumption and
maximum allocation rates for real-time
threads

© Definition in MemoryParameter of
RealTimeThread constructor

eeeeeeee

28

14

Assignment
restrictions

Taner scope

]

Reference to Heap Reference to Immortal | Reference to Scoped

Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Yes, if same, outer,

or shared scope
Local Variable Yes Yes Yes, if same, outer,

or shared scope

Lﬁl Embedded
29

Operating Systems

Memory Area - Classes

[ImmortalMemory | |ScopedMemory| | ImmortalPhysicalMemory | [HeapMemory|

7

[VTMemory| [LTMemory| | LTPhysicalMemory | | VTPhysicalMemory |

Operating Systems

15

Garbage Collection

© Reference Counting
© Mark-and-Sweep

© Distinguish live objects from garbage
© Start in local variable array, operand stack
© Mark all referenced objects alive

© Remove all unmarked objects
© Mark-and-Compact

© Adds de-fragmentation to mark-and-sweep
algorithm

Lﬁl Embedded

Operating Systems 31

Real-time garbage collection

© Fine-grained incremental garbage collection

© Garbage collection should run interleaved with normal
threads — not atomic !
© Incremental tracing collectors
© Objects traversed through as a graph

© Marking like mark-and-sweep, but using 3 colours (white,
grey,black)

© Generational garbage collectors

© Objects that have been alive for a long time will probably stay
for some time more

© Objects grouped as generations based on creation times

Operating Systems 32

16

Incremental Collector

Tri-Color Marking
Fe e
Step 0 Step 1
l N
Step 2 Step 3 Step 4
.E;",:::‘.Zz",s.ms

33

Automatic garbage collection in
RTSJ

© “Garbage collector is independent and can be
changed”

© RTSJ does not specify any GC, but gives 2
examples of how GC should be implemented

© “Allow the program to precisely characterize an
implemented GC algorithm’s effect on the
execution time, preemption, and dispatching of
real-time Java threads.”

© GC algorithm should be configurable (scanning
rates, CPU usage, priorities ..)

eeeeeeee

34

17

Physical Memory Access

© Embedded applications often require direct memory
access for

© Device drivers

© Memory-mapped I/O

© Battery-backed RAM

© Flash memory

© RawMemoryAccess contains methods to create/
access a range of physical memory
© Read-/Write Methods
© Access based on byte,short, long, float

II Embedded
erating Systems

o

35

Synchronization

© Java : synchronized keyword

© Communication between NHRT and regular
threads needed

© NHRT can not wait for full queues
© Wait free queues

© Wait-Free-Write-Queue

© Wait-Free-Read-Queue

© Wait-Free-Double-Ended-Queue

36

18

Priority Inversion

© Default behaviour of synchronized must be:
priority inheritance

© RTSJ defines priority ceiling emulation protocol

© Synchronized segment has a allocated a priority
level that indicates the highest possible priority for
any thread trying to enter the segment

© Atfter entering into the segment, the thread’s
priority is raised to the ceiling value

Lﬁl Embedded

Operating Systems

37

Handling Posix-Signals

public final class POSIXSignalHandler
{
public static final int SIGABRT;
public static final int SIGTERM;
public static final int SIGCANCEL;

public static void addHandler (int signal,
AsyncEventHandler handler);

public static void setHandler (int signal,

AsyncEventHandler handler);

Operating Systems

38

19

Realtime Security

0

“System and Options”

© Primarily to check physical memory access

© Check if the application is allowed to set the

scheduler

Lﬁl Embedded

Operating Systems

39

Realtime System

public final class RealtimeSystem

{

public static final byte BIG_ENDIAN
public static final byte BYTE_ORDER
public static final byte LITTLE_ ENDIAN

public static GarbageCollector currentGC
()

public static void setSecurityManager
(RealtimeSecurity manager)

Operating Systems

40

20

© http://www.rtj.org

© Esmertec Jbed

® alile Systems aj-100

- 256 kByte including RTOS

- Hardware implementation

RTSJ Implementations

© Reference Implementation by TimeSys

© Based on Timesys Real-Time Linux / x86
© Mackinac: Sparc/x86 running Solaris 10
© Open source implementation, jRate

© http://tao.doc.wustl.edu/~corsaro/jRate/
© PhD thesis of Angelo Corsaro

© JamaicaVM - aicas GmbH (Karlsruhe)

O::::::_’f;’,s.m 41
jRate — Overview
Precompilation
| RT-Java Rat E
i | Application JRate |, RT-Java Application
| GCJ Runtime ! RT-JVM
Host Host
(x86, PPC, ARMS) (x86, PPC, ARMS)
(a) (b)
Lﬁ Embedded

Operating Systems

42

21

JamaicaVM — aicas GmbH * somaicavm
© Java bytecode interpreter —\|

Java Application |

© 128 Kbyte minimal E———
fOOtpfint M;, =0 "". ‘° ot 9'.' e '2:3;;
© Real-time garbage oy [[t] "
collector —/ e ot
© Implements RTSJ exept
© PriorityCeilingEmulation — —
© VTPhysicalMemory |
© LTPhysicalMemory P
© ImmortalPhysicalMemory - ~ =L

Targets: Sun Solaris, VxWorks, Windows, RTEMS,
INTEGRITY

II Embedded
erating Sys!

Op tems 43

J Consortium

© HP, Aonix, Ericsson, Microsoft, Mitre and
NewMonics

© Real-Time Java Working Group

© Core Real-Time Extensions for Java

© Specifies performance like C++

© http:/iwww j-consortium.org/rtjwg/index.shtml

ing Systems 44

RTJWG View of the Core

Real-Time Core
Execution Engine
Baseline Java /
Virtual
Machine

Generic off-the-shelf
Java Virtual Machine

m 45
The Core Registry
CoreRegistry.publish(‘deviceXYZ", x)
\
\
\\
\?‘Q
\ Core Registry
|] -

46

23

Core Deployment

Static Core
Execution
Engine

N Dynamic Core
Execution Engine

Core Stati
olr?nke? ¢ / Baseline
/ Ja_va 1.1
™~ Standard Virtual

Executable Core Machine

Load Libraries

Image
.
Distributed RTSJ

O State : Java Specification Request

© RMI for Real-Time application communication
© Predictable end-to-end timeliness
© Other trans-node properties

© Specification of flow control mechanisms

© “The Distributed Specification for Java — An
Initial Proposal”, E. Douglas Jensen

© Following : OMG Dynamic Real-Time CORBA

48

Literature

© Real-Time Specification for Java
© http://www.rtj.org/
© The Real-Time Java Platform : Mackinac White Paper
© Seminar on Real Time Linux and Java - Spring 2001
© http://www.cs.helsinki.fi/u/kraatika/Courses/rt-sem01s.html

© “Real-Time Java Platform Programming”, Peter
Dribble, Prentice Hall PTR

© Sun Java Real-Time System (Java RTS)

© http://java.sun.com/javase/technologies/realtime

II Embedded
erating Systems

o

49

25

