4. Real-Time Communication

Roadmap for Section 4

- Characteristics of RT Communication
- Communication Media
- Network Topologies
- Protocols

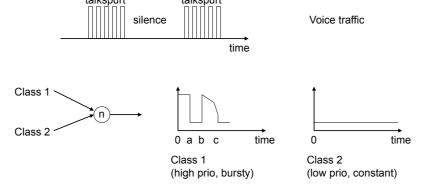
Introduction

- Effective communication among various devices is vital for functioning of a real-time system
 - Sensors, control panels, processors, actuators, output displays
- Hard RT:
 - Communication overhead must be bounded
- Soft RT
 - occasional failure to meet deadlines is not fatal
 - multimedia, teleconferencing
- Goal of RT communication:
 - Maximize probability of in-time delivery
 - Lost message: infinite delivery time

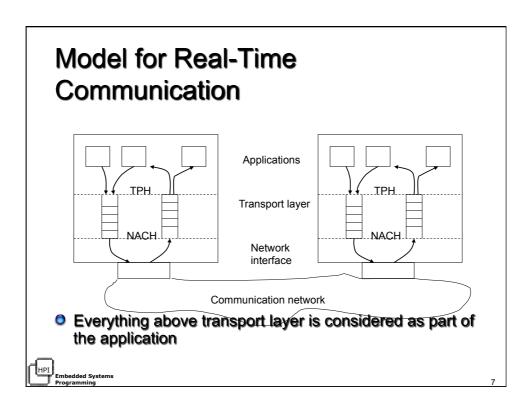
3

Characteristics of RT Comm.

- Overheads:
 - Formatting/packetizing the message
 - Queueing the message; waiting for access to comm. medium
 - Sending the message from source to destination
 - Deformatting the message
- RT traffic uses multiple message classes
- Characterized by:
 - Deadline
 - Arrival pattern
 - priority


Categories of RT communication

- Constant rate traffic:
 - Fixed sized packets periodically created
 - Not bursty; easy to handle
- Variable rate traffic:
 - Fixed sized packets irregularly created
 - Variable sized packets
 - Voice + video
- Traffic characteristics can change as packets flow through multiple hops of a network
 - Traffic classes compete for bandwidth at intermediate nodes


5

Example: multi hop network

No class 2 output in [0,a] and [b,c] at node n Class 2 output becomes bursty at node n

Model for RT Comm. (contd.)

- Queues for incoming and outgoing messages
- TPH Transport Protocol Handler
 - Interface to local applications
 - Implements transport service
- NACH Network Access Control Handler
 - Interface to network
 - Implements network access and transport service for TPH
- Packet
 - Messages are divided into fixed-sized packets
 - Transmission of a packet cannot be interrupted
 - Frames, segments, cells

RT Traffic Model

- Messages typically are part of a typed data stream
- Periodic messages:
 - Transmission of periodic messages is a periodic task
 - Characterized by period p, duration of transmission e, and deadline D
- Aperiodic messages:
 - No knowledge about deadlines and inter-arrival rates
 - Best effort delivery
- Sporadic messages:
 - Aperiodic messages with known deadlines and inter-arrival rates
 - Characterized by average inter-arrival rate, average period, and minimal inter-arrival rate

_

Performance Metrics for RT Comm.

- Rates:
 - lost messages, missed deadlines, corrupted messages
 - Certain minimum values need to be guaranteed
- Throughput:
 - Number of messages per time unit
 - Scheduling and flow control algorithms are based on a assumed minimal throughput value
- End-to-end delay:
 - Duration of a transmission from sending to receiving task
 - Essential for control systems; tolerable for multimedia systems
- Delay jitter:
 - Variation in end-to-end delay
 - Can be minimized through buffering thus increasing the delay

Communications media

Electrical medium:

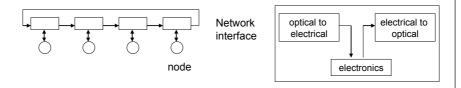
- Twisted pair several kHz frequency
- Coaxial cable up to 450 MHz frequency
- T-connections, vampire tap

Optical fibers:

- Laser diodes, light pulses 10 GHz frequency
- Pulse amplitude decreases (attenuation) and pulse width increases (dispersion) when light pulse travels
- Required power at receiver determines size of network

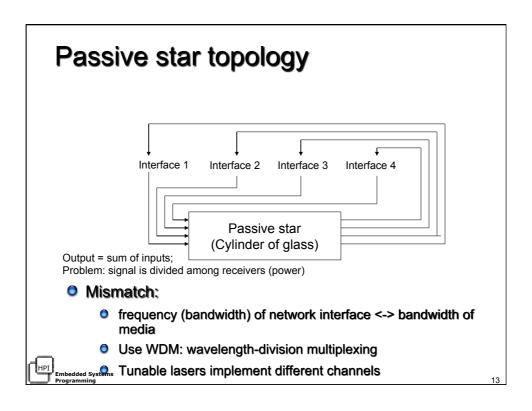
Advantages of optical fibers:

- High bandwidth
- Optical signals are immune to electromagnetic interference

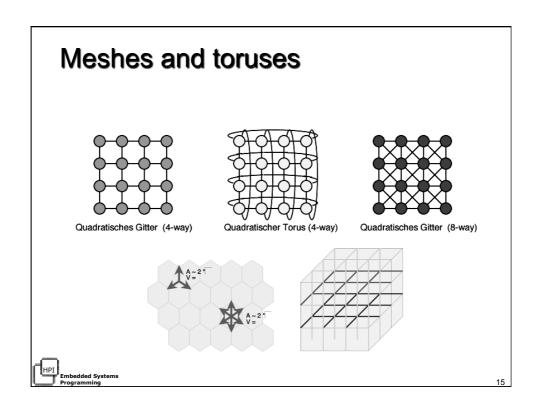

HPI Embedded Systems

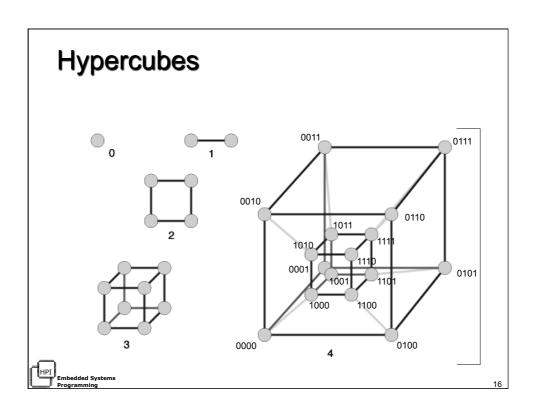
11

Optical fibers (contd.)


Disadvantages:

- Difficult to tap
- Only two topologies work well: point-to-point, passive star




Optical signal is re-created at every non-receiver node

Embedding a hypercube in a passive star - wavelength allocation

From	То	Wavelength	From	То	Wavelength
000	001	λ_1	100	000	λ_{13}
000	010	λ_2	100	101	λ_{14}
000	100	λ_3	100	110	λ_{15}
001	000	λ_4	101	001	λ_{16}
001	011	λ_5	101	100	λ_{17}
001	101	λ_6	101	111	λ_{18}
010	000	λ_7	110	010	λ_{19}
010	011	λ_8	110	100	λ_{20}
010	110	λ_9	110	111	λ_{21}
011	001	λ_{10}	111	011	λ_{22}
011		λ_{11}	111	101	λ_{23}
011	111	λ_{12}	111	110	λ_{24}

Sending Messages

- Packet switching:
 - Message is broken down into packets
 - Standard or variable length
 - Packet headers specify source and destination information
- Circuit switching:
 - Circuit between source and destination is set up for whole transmission time
- Wormhole routing:
 - Pipelining packet transmission in a multihop network
 - Each packet is broken down into train of flits (flow control digits)
 - Only header flit has destination address
 - Problem: danger of deadlocks

19

Media access

- Protocol required for access of a broadcast medium
- CSMA/CD
 - Carrier Sense Multiple Access / Collision Detection
 - No priorities
 - Possibly unbounded communication delay
 - Not a good choice for real-time systems

Media Access - physical problems

- Physical transmission has limited speed
- "Happens simultaneously" depends on
 - physical distance between sender and receiver
 - clock resolution
- This problem can be ignored if latency << transmission time for a single bit
- Propagation delay might be important
 - 100 MBit/s, 200m distance
 - Transmission of a single bit: 10 ns
 - Propagation delay: 1000ns (transmission speed 2/3 c)
 - Ochannel "stores" 100 bits

Collisions can be detected only after propagation delay

_

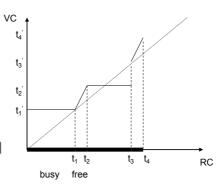
Protocols

	Deadline guarantee	Network topology
VTCSMA	no	broadcast
Window	no	broadcast
Timed token	yes	ring
IEEE 802.5	yes	ring
Stop and go	yes	Point-to-point
Polled bus	no	bus
Hierarchical round robin	yes	Point-to-point
Deadline-based	no	Point-to-point

HPI Embedded Systems
Programming

VTCSMA

- Virtual-Time Carrier Sensed Multiple Access
 - Variation of standard CSMA (Ethernet)
 - All nodes monitor channel
 - With synchronized clocks, CSMA can be used to implement priority algorithm
- Suppose a node has ha set of packets to transmit
- Locally known:
 - State of channel
 - Priorities of waiting packets (local priorities)
 - Time according to synchronized clock
- VTCSMA uses time to establish global priorities

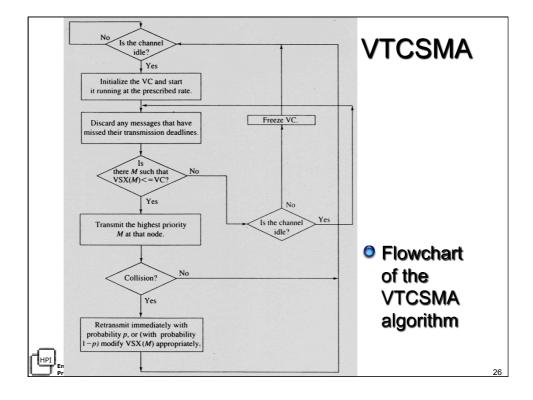


23

Operation of VTCSMA

- Real-time clock RC
- Virtual clock VC
 - Stopped when channel is busy
 - Reset when channel free
 - Runs faster than RC (rate η > 1)
- Virtual times are equal on all nodes
- VSX(M): start time for transmission of M
 - VC >= VSX(M) -> transmit M

Collision? -> modify VSX(M)

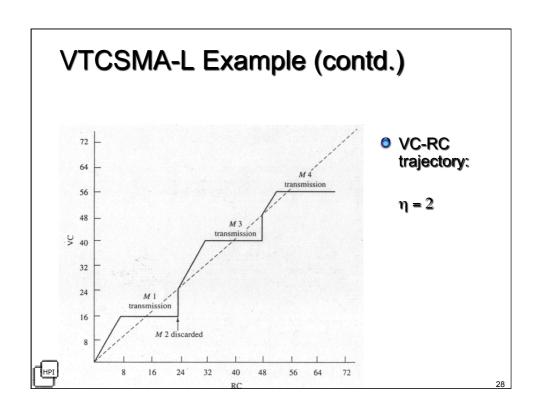

VC freezes when channel becomes busy and is reset to RC when channel becomes free

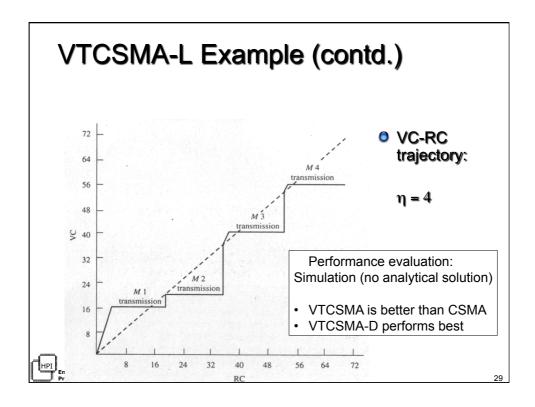
Variations of VTCSMA

- VSX(M) =
 - A_M: Arrival time of message (or packet) M VTCSMA-A
 - T_M: Time required to transmit message M VTCSMA-T
 - L_M: Latest time for send to meet deadline of M VTCSMA-L
 - D_M: Deadline for delivery of M at destination VTCSMA-D
- Collision: VSX(M) randomly chosen from interval I =
 - (current VC, L_M) VTCSMA-A
 - **○** (0, TM) VTCSMA-T
 - (current RC, L_M) VTCSMA-L
 - (current RC, D_M) VTCSMA-D
- Channel changes from busy to idle; VC =
 - No change
 - VTCSMA-A
 - 0
- VTCSMA-T

HPI Embedded Systems

- VTCSMA-L and VTCSMA-D


VTCSMA Example


Example 6.9. As an example of how these algorithms work, consider the VTCSMA-L algorithm. Let $\eta=2$ (i.e., the VC runs twice as fast as the RC when the channel is idle). Let us assume that the transmission time for each packet is $T_M=15$, and that the propagation time is $\tau=1$. Suppose the packets arrive according to the following table:

Node	M	RC at arrival	D_M	L_M
1	1	0	32	16
2	2	10	36	20
3	3	20	56	40
4	4	20	72	. 56

~~

Window protocol

- Also based on collision sensing
- Window:
 - Time interval, identical at all nodes
 - If LTTT (latest time to transmit) falls into window
 - > packet becomes eligible for transmission
- Slot:
 - Time for end-to-end network propagation
 - > transmission only at beginning of a slot
- Window size is changed based on history on media
 - O Collision: decrease window size
 - No traffic: increase window size
- (Window size == 1) && collision:
 - Random retransmission within next slot

Algorithm maintains a stack of two-tuples (u, i) in each node;

- u upper bound of a window in which collision occurred
- i zero, unless node has a message involved in collision

Window protocol - algorithm

```
Initialization:
   up := t + \delta;
   empty the stack;
   If one or more messages have LTTT in the interval [t,up), transmit
        the one with minimum LTTT.
At the beginning of each slot:
   Find out if there is any message with (LTTT < t),
        and drop it, since it has missed its deadline.
   Discard any stack contents whose u field is less than t;
   If the channel is busy due to a collision, then
        abort any ongoing transmission by this node;
   else if the channel is idle following a collision
        contract_window_and_send(up, t);
   else if the channel is occupied by a message transmission
        continue the transmission, if any;
   else if the channel is idle after a successful transmission, then
        pop_and_send(up, t);
   else if the channel continues idle, then
        expand_window_and_send(up, t);
   end if:
```

Window protocol - discussion

Performance:

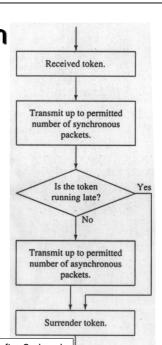
- Comparable to centralized media access control algorithms
- Initial window size is relatively unimportant
- Deadline anomaly: loose deadlines may result in worse transmission characteristics

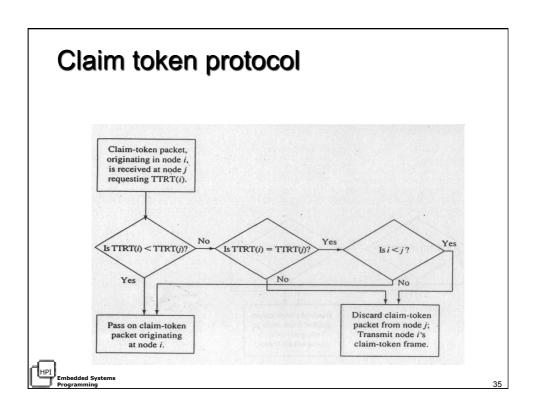
Discussion contention protocols:

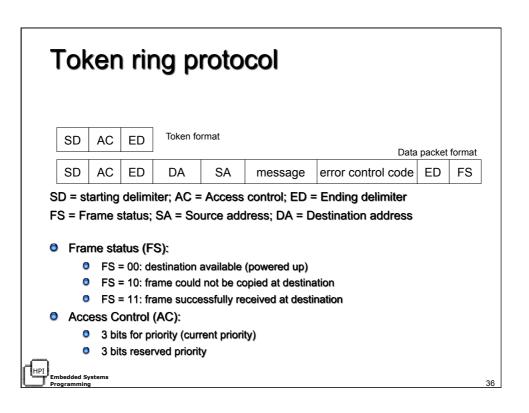
- Work best when traffic is light and end-to-end delay is small in comparison to bit transmission time
- Heavy traffic: probability of collision increases; bandwidth wasted
- If end-to-end delay is high -> collisions are detected late

Token-based protocols

- Timed token protocol
 - Synchronous traffic: real-time traffic
 - Asynchronous traffic: non real-time traffic; takes up unused bandwidth
- Key: target token-rotation time TTRT
- Protocols attempts to keep rotation time < TTRT</p>
 - > not always possible
 - Rotation time <= 2* TTRT is guaranteed</p>
- Node may transmit pre-assigned quota at every token visit


33


Operation of timed token protocol


- First round:
 - Broadcast to determine TTRT
 - Smallest requested value is used
- How does a node decide how much asynchronous traffic to transmit per cycle
 - > problem: asynchronous overrun
- Token loss / fault:
 - Token late in two consecutive cycles: indication of failure
 - > start renegotiation of TTRT
 - Claim token protocol

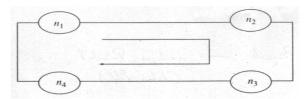
Flowchart of timed token protocol after 2nd cycle

Operation of token ring protocol

- Node n_i checks reserved priority (reservation bits)
- If (res.prio) >= p_i:
 - Do nothing
 - Network is in use with same / higher priority
- If (res.prio) < p_i:
 - N_i writes res.prio = p_i
 - When current transmission has completed, sender issues token with priority indicated by reservation bits
- Implementation problem:
 - IEEE 802.5 allows only for 8 priority levels

0.7

Schedulability Criterion for token ring protocol

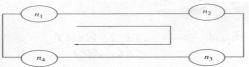

Theorem 6.4. The task set T_1, T_2, \ldots, T_n is schedulable iff for all $i = 1, \ldots, n$, there is some $t, 0 < t \le d_i$ such that

$$\sum_{j=1}^{i} e_j \left[\frac{t}{P_j} \right] + \text{System overhead} + b_i \le t$$

- e_i: execution time associated with sending a message
 - Time to capture the token when node has high priority message
 - Time to transmit the message
 - Time to transmit the token when packet transmission is over
- b_i: maximum time for which a T_i packet can be blocked
- P_i: defined by application (perio) P_i >= d_i
- 🚅 di: deadline associated with task Ti

Embedded Systems
Programming

Token ring protocol - example


Example 6.17. Consider the token ring shown in Figure 6.35. Node n_1 has traffic generated at periods of 5, 6, and 10, respectively; n₂ periods of 5, 9, and 11, n₃ periods of 4 and 6, and n_4 of period 10. Table 6.3 shows the priorities of the packets⁶ awaiting transmission on each node along with their arrival time.

	Node	(Period, arrival time)
	n_1	(5, 5), (6, 6), (10, 10)
	n_2	(5, 5), (9, 9), (11, 11)
ority number, the higher the priority.	n_3	(5, 5), (4, 10)
	n_4	(10, 10)

⁶The lower the pric

Token ring - example (contd.)

Consider what happens when the token flows past the four nodes at times 6, 7, 9, and 10, respectively. At time 6, node n_1 writes the priority of its most important packet on the reservation field. At time 7, n_2 's highest priority is the same, so it does not overwrite the reservation field. At time 9, when the token goes past it,

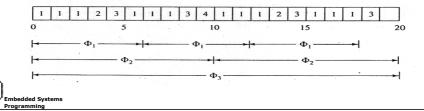
n₃'s highest priority is also the same, and so again the token reservation bits are not changed. The reservation bits are also unchanged by n_4 . Suppose the token returns to n_1 at time 12. The reservation bits allow transmission of a packet with period 5. Since n_1 has a packet of this period, it is allowed to transmit. At this time, though, it is not n_1 but n_3 that has the highest-priority packet (of period 4). However, n_3 will not have a chance to update the reservation bits until the next transit of the token, and so the decision to allow n_1 to transmit is based on outdated information.

Hierarchical round robin protocol

- Bound delay encountered by a packet at each intermediate node
 - > have bound for total network delay
- Traffic is classified into classes
- Each traffic class has own transmission frame (n_i, b_i, Φ_i)
 - n_i: maximum number of class_i packets that may be transmitted during a frame; if exhausted: transmit class_(i+1) packets
 - b_i: maximum overall number of packets during class-i frame Φ_i
- Messages that must be delivered quickly must have particularly short frames
- Non-mode conserving:
 - sender may be idle with high priority packets waiting

..

Hierarchical round robin - example


Consider a system of three classes with the following allocations:

i	ni	bi	8;
1.	3	3:	6
2	3	-1	10
3	1	0	20

Source	Class	Allocation
s ₁	1	3
s ₂	1	1
S3	2	2
S4	3	1

In each frame Φ_1 of duration 6, class₁ traffic takes up three slots; the rest is reserved for classes 2 and 3

In each frame Φ_2 of duration 10, class₂ traffic takes up three slots; with one being reserved for class₃

