3. Memory Management for
Embedded Systems

Roadmap for Section 3

© Classical Memory Management Approaches
© Segmentation
© Paging / Paging
© Virtual Memory

© Problems of Classical MM-Approaches

© Memory and Real-Time Programming

© Dynamic Memory Allocation
© Bitmap based, Linked lists, Buddy algorithm

© Memory Management in selected RTOSes
© Memory Types/Access in RT-Systems

eeeeeeee

Operating Systems

Motivation

© One major responsibility of an operating
system is memory management

© Memory allocation - give each tasks memory it
needs

© Memory mapping - map addresses used in tasks
to real memory

© Memory protection - Take appropriate actions
when a task uses memory that it has not allocated
© Memory allocation and access has impact on
execution time

Background

© CPU utilization can be improved by using
multiple parallel processes

© Parallel processes provide high abstraction to
handle complex problems

© Several processes have to be kept in memory

© Programs are executed by fetching instructions
from memory using addresses generated by
compilers

© Translation Logical vs. Virtual vs. Physical
Addresses

Segmentation

© System memory divided into variable-sized
segments

© Each segment has name (address) and length

© Mapping off two-dimensional user-defined
addresses into one-dimensional physical
addresses using segment table

© Logical address consist of segment number
and offset (two dimensions)

© Segments limited by segment limit in segment
table

Operating Systems

Segmentation cont.

Addressing error

. No
logical address

Yes

CPU—P_5 < + Physical
memory

base | limit

Segment table

Operating Systems

Segment Table

1400
segment 0
2400
Segment table
base limit 3200
0 1400 1000 segment 3 | Physical memory
1 6300 400
12 3
2 4300 400 4-_0“ segment 2
3| 3200 | 1100 4700
1700 1000
al segment 4
5700
3
i:_t:: segment |

Operating Systems

Paging
© Physical memory divided into fixed size blocks called

frames

© Logical memory divided into blocks of same size -
called pages

© Users have contiguous memory space

© Permits physical-address space of a process to be
noncontiguous

© Memory scattered through physical memory

© Mapping of logical to physical memory kept in frame
table data structure

© Lot of hardware support available

d
Operating Systems

Paging
Paging Hardware

logical address | j
CPU—{p [d [[d F—
physical address Physical

Memory

- modified by OS

- implemented as fast hardware

page table

dddddddd

Virtual Memory

© Separates user logical memory from physical
memory

© Virtual Memory allows the execution of
processes that may not be completely in
memory

© Each program has large virtual address space
not limited by physical memory

© Implemented using demand paging,
segmentation or hybrid techniques

Embedded

Virtual Memory with Swapping/Paging

page 0
page 1 /—\
bage 2 \‘_/

=g Sk
\

AN
NN

NN

memory
map

page n
virtual memory

physical memory

Problems of classical approaches
used in Embedded Systems

© Not deterministic !

© Most embedded systems miss a lot of
hardware support (MMU,TLB)

© No secondary storages available (for
swapping)
© Classical approaches require overhead for

page-/segmentation tables but we have only
small memories

© High-end embedded system use classical
approaches, but not for real-time tasks

Real Time with Virtual Memory
Memory Locking / Pinning

© Controls demand paging of operating system
© Swapping is non-deterministic and has to be
deactivated
© Real-Time POSIX compliant systems provide:
© milockall() locks all pages of a task

© miock() locks a specified preallocated region of address
space

© munlock() unlocks a specified region
© miockall() unlocks all pages of a process
© Superuser privileges required
© Windows NT - All pages of a thread can be pinned in

memory by specifying a Flag in the CreateThread()
system call

Real-Time Programming with
Virtual Memory

) Perform non-realtime tasks, such as
opening files or allocating memory

S Lock the address space of the
process calling mlockall() function

&) Perform real time tasks
) Release resources and exit
S Don’t ever increase memory usage!

Real-Time Memory Management

© Fast and deterministic memory management

© “The fastest and most deterministic approach to memory
management is no memory management at all”

© Only an option for very small embedded systems

© At least memory allocation and deletion through
system calls supported by most RTOS

© Often allocation and deallocation of memory
performed before time critical operation

© (future) Real-Time Systems require predictable
memory allocation / deallocation / garbage collection
mechanisms

© Real-Time Java, J2ME ...

Memory Mapping

© POSIX system call mmap()

© Peripheral devices often mapped into
address space of memory

© Memory mapping is no real time activity

© Shared memory :
© used for inter process communication

© Mapping of identical physical memory into
user process address space

© Typical real-time communication pattern

Memory Allocation

© static allocation

© linked list

© bitmap allocator

© buddy systems

© segregated free lists

dddddddd

Static Memory Allocation

© Segmentation — each tasks gets fixed static
region of memory

© No dynamic increase during runtime
© Very predictable, but inflexible
© Number of possible tasks restricted

© Size of all data structures must be known before
runtime

© Suitable for deeply embedded systems

eeeeeeee

Dynamic Memory Allocation in
Embedded Systems

© Task’s memory needs change during lifetime

© Memory allocators keep track of which parts of
memory are used and which are free

© Memory allocated from a global heap memory

© Most RTOS support no timely bounded online
allocation of memory

© Predictable memory allocators needed for
online allocation

Memory Management with Linked
Lists

© Each allocated and free block referenced in a linked
list

© Allocating a new block goes through the list and finds
a free block (First-fit, Best-fit ...)

© Each allocated block has a header containing list
pointers and block length

FTo e el Il [Tl

E-FEE - FEE EEE
VBRI e

Hole Starts Length Process
puasi at18 2

Operati ing Systems 20

10

Implementing malloc() using a
static allocation array

1] a (3}

0 12 9 7 3
3

free -4

))|)

7 0
2 -2
9 0 0
-3 -3 -3
allocated {
11 12 0 0 0
Allocation for 3 units 2 units 4 units

start address = offset + unit_size*index

e
eeeeeeeeeeeeeeee 21
Finding Free Blocks Quickly
1 2 3 4 5 [
Implementing the Heap | 20 ‘ 12 | 18 | 4 ‘ 9 | 1 | ‘ |
using a static array
The left child of a node k is at position 2k.
The right child of a node k is at position 2k+1.
T
ssssssssssssssss 22

11

Free Operation

1
[1] 1 2]
1
1
0 3 7 | 3 3 9
1
1
1
3 1 3 3
1
-4 : -4 -4
1
1
=) | =))
0 7 : 0 0
-2 -2 : 2 2
0 0 : 0 2
-3 -3 : 3 -3
1
1
11 0 0 : 0 0 0
1

Operating Systems 23

Memory Management with Bit
Maps
© Memory divided into allocation units
© Each allocation unit corresponds to a bit in a
Bitmap
© Oif unitis free
© 1 if unit is occupied
= T N

P

11111000
11111
jiloo1111

11111’°°°f

Operating Systems 24

Memory Management with Bitmaps

loJoJo]o]o o o]o]| 2s6bytes

1] | 1 I 1 I 1 I 1 I 0 I 0 | 0 | 0 | A=malloc (120) 1 free block = 128 bytes
2] | 1 I 1 | 1 I 1 | 1 I 0 I 0 | 0 | B =malloc (20) 1 free block = 96 bytes
3] | 1 I 1 I 1 I 1 | 1 | 1 | 1 | 0 | C=malloc (50) 1 free block = 32 bytes
[4] | 1 I 1 I 1 I 1 | 1 | 1 | 1 | 1 | D =malloc (32) No free blocks left
B [1[1]1]1]o[1]1]1] tree® 1 free block = 32 bytes
[6 | | 1 I 1 I 1 I 1 | 0 | 1 | 1 | 0 | free(D) 2 free blocks, 32 bytes each
| 1 I 1 | 1 | 1 I 0 I 0 I 0 | 0 | free(C) 1 free blocks = 128 bytes
0 — the block is free
1 —the block is in use
oﬁéﬁﬁéﬁzes"ys.m e
L]
Fragmentation
0x20 0x40 0x80 0xEO0
\ 2 4 \4 A
0x10000 1011101] 1] 1| 256bytes
0x10100 1 1 1 1 1 11011
0x10200 1 1 1 1 1 1 1 1 |
0x10300 1lolofofofo]o]o g:gs;iqt:elﬁtation
o|jojo]|1 11]0(0]0
ojojo|1 ojojo}|o
171]0|1]J]0|]0]JO0]JO]O
X100 f0fo]o]o]o]o]o
0 — the block is free
1 — the block is in use
o,fé?:ﬁ‘.’.‘;es"ystems o

13

Fragmentation

© Internal Fragmentation : unused space within
a partition (e.g. if there are 32 Byte blocks of
memory and 20 Bytes allocated : 12 Bytes are
lost

© External Fragmentation : memory that is
unused and available but too small for
requested memory size

© Memory Compaction : allocated regions
moved and put together to a contiguous free
memory area

Operating Systems 27

Dynamic Memory Allocation

Buddy Systems
© Knuth 1973, Knowlton 1965

© Each memory request is resolved to a block size
of 2% for some positive, integral value of k

© The buddy algorithm has high fragmentation, but
is bounded in time (allocation and deallocation)

© Also called binary allocator / binary buddy

© Relatively high fragmentation (max. 50 %
external)

© Add a factor of 1.5 to memory size and internal
fragmentation doesn’t matter

Operating Systems 28

14

Buddy System Algorithm

© Translate request of size s into %56

size of 2k-x, k=[log2s] Sy O
© Consult free-list at index k for kK g W
an available block £

© If no block of 2k is available, S

two blocks can be obtained
through bisection of 2k+1

© Recursively apply this strategy
to increasingly larger block until
a block to bisect is found

dddddddd

Operating Systems 29

Buddy System Allocation
0 128k 256k 512k 1024k

start 1024k
A=TOK | A 128 256 512
B=33K B |64 256 512
C=80K B || € 128 512
Aends | 128 |B |6 | € 128 s12
D=60K | 128 |[B c 128 512
Bends | 128 |64 |D c 128 512
D ends 256 c 128 512
C ends 512 512

end 1024k

ofé'lﬁfi‘f.‘;e sssssss 30

15

Buddy System
Allocation in bounded time

© Steps to allocate a block of size 2K

1.Starting at index k, search upwards for an
available block (takes log n steps)

2.Recursively bisect the discovered block
unit a block of size 2K is obtained (takes log
n steps)

3.Return the address of the block

© Size of allocation list (memory) is known
a priori

31

Buddy System Deallocation

© Coalescing of free blocks is a common
problem for most memory management
algorithms

© Bisected blocks of allocation generates 2
“buddies”

© Buddy's can easily be computed by change of
one bit in the address

© When blocks are returned, buddies are joined
in order to create larger blocks

Operating Systems

32

16

Fixed-size Memory Managent
Segregated Free Lists

© Fixed-size memory pools

© Embedded networking code, embedded protocol
stacks

© Allocated entry removed from memory pool

© Reduced internal fragmen- i
tation I

© Used in predictable s [=
environments T /

© Initially known required block W
sizes

dddddddd

Operati ing Systems 33

Blocking vs. Non-Blocking Memory
Functions

© malloc() and free() normally not allow the calling
task to block and wait for memory to become
available

© Some tasks can tolerate allocation delay instead
of complicated exception handling in case of
allocation failure

© Allocation functions should permit blocking
forever, blocking for a timeout period, or no
blocking at all

eeeeeeee

Operati ing Systems 34

17

Implementation of a blocking
malloc()

counting
semaphore

Allocation Deallocation
Acquire (Counting_Semaphore)
Lock (mutex)

Retrieve the memory block
from the pool

Unlock (mutex)

Operating Systems 35

Lock (mutex)

Release the memory block
back to into the pool
Unlock (mutex)

Release (Counting_ Semaphore)

Real Time Automatic Garbage
Collection

© Lots of work around Real Time Java

© Reference counting problematic because
deallocation of an object can cause a lot of
referenced objects to be deallocated

© Real time implementations of mark-and-sweep
available

© Bounded times for allocation and garbage
collection

© Fragmentation can not be prevented

d
Operating Systems 36

18

Literature

© “Dynamic Storage Allocation a Survey and Critical
Review”, Paul R. Wilson et al., University of Texas

© “Storage Allocation for Real-Time, Embedded
System®, Steven M. Donahue et al., Washington
University

© “Guide to Realtime Programming”

http://www.uccs.edu/~compsves/doc-cdrom/DOCS/
HTML/APS33DTE/TOC.HTM

© “Real-Time and Embedded Guide”, Herman
Bruynickx, K.U.Leuven, Mechanical Engineering
Leuven Belgium

Operating Systems 37

QNX

© Microkernel real time operating system
© Smallest configuration 12 kByte

© Provides full POSIX compliant memory
management functions

© Full memory protection if MMU present

© Dynamic memory allocation support, but no real
time algorithms implemented

© No virtual memory, paging with 4 Kbyte pages

Operating Systems 38

19

Windows Ce

© Windows Ce 3.0 350 KByte minimal footprint

© Supports paged virtual memory (requires CPU
to support TLB)

© No page file support (read/write to backing
store)

© 32 MB usable memory per task — for private
data

© XIP - execution-in-place used for dynamic

libraries (separate address space outside 32
MB)

Operating Systems

39

Windows CE VirtualAlloc()

© Minimal allocation unit : 1 Page (1024 / 4096 Byte
depending on CPU)

© Reserve and commit phase
© Reserved regions are 64 KByte aligned

LPVOID VirtualAlloc (LPVOID lpAddress,

DWORD dwSize,
DWORD flAllocationType,

DWORD flProtect);

© MEM_COMMIT, MEM_AUTO_COMMIT and
MEM_RESERVE

Operating Systems

40

20

Windows CE - VirtualAlloc() cont.

INT i;

PVOID pMem[512];

for (i = 0; i < 512; i++)
{

pMem[i] = VirtualAlloc (0, PAGE_SIZE, MEM_RESERVE |
MEM_COMMIT, PAGE_READWRITE) ;

}

INT i;
PVOID pBase, pMem[512];

pBase = VirtualAlloc (0, 512*PAGE_SIZE, MEM RESERVE,
PAGE_READWRITE) ;

for (i = 0; i < 512; i++)
{

pMem[i] = VirtualAlloc (pBase + (i * PAGE_SIZE), PAGE_SIZE,
MEM COMMIT, PAGE_READWRITE);

Operati ing Systems 41

RTLinux

© Uses standard POSIX memory
management functions: mmap(), mlock(),
malloc()

© No support for online memory allocation

© No memory protection between threads
and the kernel

© “allocate all the memory that each thread
will require before the threads are
created”

Operating Systems 42

21

Palm OS

© 32-bit addressing, no virtual memory
© Memory cards 256 MB

© Card 0 stars at $1000000, card 1 starts at $2000000
and so on

© Dynamic RAM / storage RAM

© Dynamic RAM used as one single heap for dynamic
memory allocations

© Memory managed in chunks of variable size (1Byte -
64 Kbyte) by a Palm OS memory manager

© Execution-in-place

dddddddd

Operating Systems 43

Memory Access

© Harvard / von Neumann architecture
© Types / characteristics of memory

© Synchronous / asynchronous memory
interfaces

© Memory functional testing

eeeeeeee

Operati ing Systems 44

22

address

Program
Memory data | PC |

Harvard vs. von Neumann

* separate bus for program and data

« parallel acess to program and data

...

ded
Operating Systems

* memo rotection
address CPU e
Data ot
Memory |—=
Program address
« common data/program bus +
. . CPU
* simple programming Data e
. . Memor
« technical simpler y
Lﬁ Embedded
Operating Systems 45
Cache in the memory system
== Data
a
g
Cach .
CPU 5 ache Main
E Memory
% Address
[=] Data
Two-level Cache
L1 L2 Main
CrPU Cache Cache Memory

46

23

Memory Devices
Random Access Memory

© Static RAM (SRAM), dynamic RAM (DRAM)

© SRAM is faster than DRAM

© SRAM consumes more power than DRAM

© DRAM values must be periodically refreshed
© Charge of capacitors leaks away

© Typical lifetime : about a millisecond
© Refreshed influence transfer time to CPU

Operati ing Systems 47

Timing of a SRAM Chip el

— R/W'

—A ! Adrs
n
\ <7Z> Data

CE' \ / \
R/W' \
Adrs —< >>

N v J N > / Time

Read Write

SRAM

Operati ing Systems 48

Synchronous DRAM

© DRAM/SRAM are asynchronous because
they react on asynchronous events from
CPU

© Introduction of a clock allows faster
internal circuitry

© Refresh cycles integrated into clock
frequency

Operati ing Systems 49

Memory Device Characteristics

Memory Erase Erase Relative Relative
Type Volatile? | Writeable? Size Cycles Cost Speed
SRAM yes yes byte unlimited expensive fast
DRAM yes yes byte unlimited moderate moderate
Masked | no no n/a n/a inexpensive | fast
ROM
PROM no once, with n/a n/a moderate fast
programmer
EPROM no yes, with entire limited (see | moderate fast
programmer | chip specs)
EEPROM | no yes byte limited (see | expensive fast to
specs) read, slow
to write
Flash no yes sector limited (see | moderate . | fast to
specs) read, slow
to write
NVRAM | no yes byte none expensive fast

50

25

Mapping Executable Images to
Target Systems

Schematic Target System

Processor

Data Bus
——C

RAM

Address Bus

I

Flash

8

ROM

Operating Systems

RS

EEPROM

Memory Map

ROM

Flash

EEPROM

0x00000000h

0x10000000h

0x20000000h

0x30000000h

51

Mapping Executables

...

ded
Operating Systems

ROM 0x00000h
.rodata } 0x000FFh
0x00110h
_loader \l FLASH
_wflash ,(0x0410Fh
_monitor 0x05000h
.sbss EE— R
0x24FFFh
.sdata 0x25000h
} |—> RAMB1
0x224FFFh

MEMORY {

ROM: origin = 0x00000h,
FLASH: origin = 0x00110h,
RAMBO: origin = 0x05000h,
RAMB1: origin = 0x25000h,

]
SECTION {
.rodata : > ROM

_loader : > FLASH
_wflash : > FLASH
_monitor : > RAMBO

.sbss (ALIGN 4)
.sdata (ALIGN 4)

.text : > RAMB1
.bss (ALIGN 4) :
.data (ALIGN 4) :

: > RAMBO
: > RAMBO

> RAMB1
> RAMB1

length = 0x000100h|
length = 0x004000h
length = 0x020000h
length = 0x200000h

52

26

Memory Functional Testing

© In order to guarantee stable functioning of
embedded devices memory must be checked

© Online Tests integrated into hardware
© Parity checker, Berger Codes
© Hamming Codes, Error Correcting Codes
© Offline Memory Tests at system startup

© Several algorithm available
© Problem: Bigger memories, More complex faults

© Test theory based on memory fault models

oﬁe'?:a‘:‘;es"y sssss 53
\IIM\HII HIM[IHI_]

Memory Faults i ol
© Memory cell faults :E ’ ;—E

© Stuck-at fault (SAF): cell or line s-a-0 or s-a-1

© Stuck-open fault (SOF): open cell or broken line
© Transition fault (TF): cell fails to transit
0

Data retention fault (DRF): cell fails to retain its logic value after
some specified time due to, e.g., leakage, resistor opens, or
feedback path opens.

© Coupling fault (CF), Bridging Fault
© Neighborhood Pattern Sensitive Fault (NPSF)

© Address decoder faults (AFs)

© Open decoders cells not truly addressed.
© Multiple writes more than one cell addressed.
© Cell accessed by more than one address.

d
Operating Systems 54

27

March Memory Testing

© March test : set of finite sequences of march elements

© March element : finite sequence of operations applied
applied to every cell in a memory array

© Operation : write 0/1 into a cell,

read expected 0/1
Size Complexity
M p 372 Z
© Many test pattern published n_ [n Tnlgn] n n
IK | 0.0001s | 0.001s | 0.0033s | 0.105s
® Coverage vs. Complexity IK | 0.0004s | 0.0048s | 0.0262s | 1.7s
: 16K | 0.0016s | 0.0224s | 0.21s | 27s
64K | 0.0064s | 0.1s | 1.678s | 7.17m
256K | 0.0256s | 0.46s | 13.4s | 1.9h
| SCAN[I] n (1 (0% Oy (w0} lii 0.102s | 2.04s | 1.83m 12ﬂu
1) 0.41s | 9.02s | 14.3m |20.39¢
I 5 0): 1 (0. wi): AL (r1. wi
2 MATS+[l6] 3n (@ O3 (O, whs b L w0} yene |y 6as | 30.36s | 1.9h | 326d
3 MATS++ [6] 6n (€ @Ot (0, wl) U (r1, w0, 7O} | 6aM | 6.56s | 2.843m | 15.25h | 14.3y
256M | 26.24s | 12.25m | 5.1d | 229y
1G 1.75m | 52.48m | 40.8d | 3659y
Lﬂ Embedded
Operating Systems 55

Zero-One Test Pattern

Procedure ZERO-ONE

{
1: write 0 in all cells;
2: read all cells;
3: write 1 in all cells;
4: read all cells;

}

© The minimal test O(4n).
© Not all TFs are covered; not all CFs are covered.

© SAFs are covered if the address decoder is
correct (not all AFs are covered).

© Also known as MSCAN

d
Operating Systems 56

Checkerboard Pattern

© Writes 1's and 0's into alternate memory locations in a
checkerboard pattern. Wait for several seconds and
read. Repeat for complementary patterns.

Procedure Checkerboard
{
while(i is odd && j is even)
{
write 0 in cell[i]; write 1 in cell[j];
pause; read all cells;
complement all cells;
pause; read all cells;

dddddddd
Operating Systems

57

Checkerboard

© Time complexity is O(4n).
© For shorts between cells, data retention of SRAMSs,
SAFs, and half of the TFs.

© The starting point for pattern sensitivity test, but some
CFs cannot be detected.

© Not good for AFs.

© Must create true physical checkerboard, not logical
checkerboard (the engineer must obtain design
information about the actual layout and then modify the
test addressing accordingly).

Embedded

58

29

Galloping (ping-pong) pattern (GALPAT)

© The base cell (BC) is read alternately with every other
cell in its set
Procedure GALPAT
{
write 0 in all cells;
2: for BC =0to N-1
{
complement cell[BC);
for OC =1 ton, BC = OC { read BC; read OC;}
complement cell[BC];

}

3: write 1 in all cells;
4: replay Step 2;

Operati ing Systems 59

GALPAT

© 0O(4n?), very long sequence (for characterization,
not for production tests).

© A strong test for most faults.

© All AFs, TFs, CFs, and SAFs are detected and
located.

© Set may be a column, a row, a diagonal, or all
cells.

Operating Systems 60

30

=

Functional Memory Tests

Embedded
Operating Systems

Test Pattern AF | SAF | TF | CF Others Complexity
Zero-One N L N N 4n
Checkerboard N L N | N Refresh 4n
WALPAT L L L L | Sense amp. rec. 2n?
GALPAT L L L | L Write rec. 4n?
Galloping Diagonal | LS | L L | N ants
Butterfly L L N | N 5nlogn
MATS DS| D N | N 4n
MATS+ D D N | N 5n
Marching 1/0 D D D | N 14n
MATS++ D D D | N 6n
March X D D D | D Unlinked CFin 6n
March C- D D D | D Unlinked CFin 10n
March A D D D | D Unlinked CF 15n
March Y D D D | D Linked TF 8n
March B D D D | D Linked CF 17n
MOVI D D D | D | Read access time | 12nlogn

N='no"; L="locate’; D="'detect’; LS=‘locate some’; DS="detect some’

61

31

