1. Embedded Systems Overview

1.2 Introduction and Performance Measures

Roadmap for Section 1.2

© Introduction and Vocabulary

© Performance Measures

© General Structure of a Real-Time System
© Misconceptions about Real-Time Systems
© Incidents




Introduction and Vocabulary

What is a Real-time System?

“A real-time system is one in which the correctness of
the computations not only depends on the logical
correctness of the computation, but also on the time at
which the result is produced. If the timing constraints of
the system are not met, system failure is said to have
occurred.”

Confusion:
© Not a clear definition!
© What are timing constraints ? (tasks have deadlines)

E" Embedded Systems
Programming

More confusion

© What is the meaning of a “deadline"?

© Do all tasks have to be executed before their deadline? (not
necessarily)

© Sometimes “yes”: flight control in an aircraft
© Sometimes “no”™: Multimedia-App.
© What is the meaning of “executed“?
© How to decide whether a task has been (completely) executed?
© Relatively simple: bank transaction
© Impossible: Computation of
© How to deal with tasks that missed their deadlines?
© Terminate or run to completion?
© Aircraft accident vs. Videoconference

E" Embedded Systems
Programming




Task Value Functions

Value -—————————-j Value
deadline deadline
Value -———————————\\\\\\5\‘
deadline

E" Embedded Systems
= Programming

Hard vs. Soft Real-time Systems

© Hard real-time systems

© Embedded systems: aircraft control, nuclear power plants,
chemical reactors, jet engines

© Missing a deadline has life-threatening results.

© Soft real-time systems
© Multimedia, airline reservation system

© Missing a deadline is undesirable and impacts system
performance but has not destroy lives or equipment.

E" Embedded Systems
= Programming




Vocabulary

© Example: Car & Driver

© Well-known example for human control:
© Comparable to a real-time computer system in many respects
© Driver: real-time controller
© Car: controlled process
© Road and additional cars: operating environment
© Actuators:
© Wheels, engine, brakes

© Controls:
© Steering wheel, brake pedal, switches

E" Embedded Systems
= Programming

Mission Statement

© Drive within the allowed speed range from start A to
destination B without collisions with other cars or
stationary objects.

© How can driver‘s performance be measured?

© Departs from A and reaches destination B

© Total driving time
© But: road conditions have to be taken into account
© What, if driver leaves the road?

© Success: collision could be avoided

© Failure: control over vehicle was lost

E" Embedded Systems
= Programming




The Mission — a closer look

© Performance is no absolute measure.

© Performance measures quality of a result in terms of the
best possible result under the current environmental
conditions.

© A closer look onto the mission:
© Mission critical: steering, brakes
© Non-critical: radio, lights

© Deadlines are not constants (rush hour vs. Sunday drive)
© How to measure the drivers physical condition?

E" Embedded Systems
- Programming 9

Performance Measures

© Average values say very little about the
performance of a real-time controller.

© In our scenario:

© How to value abrupt acceleration/deceleration
maneuvers ?

© How to measure for unnecessarily increased fuel
usage?

© What about extra slow driving?

E" Embedded Systems
- _Programming 10




Problems of RT Computing

© Reliability, Fault-tolerance

© Harsh environments, electromagnetic noise, rapidly changing
computation loads

© Task Scheduling

© Traditional Approach: fairness / round robin scheduling / time
slicing

© RT System: fixed priority scheduling / generalized rate
monotonic scheduling / earliest deadline first
© Memory Management
© Swapping / paging
© Static pre-allocation (mpin(), vm_wire())

E" Embedded Systems
= Programming

Problems of RT Computing (contd.)

© Cache Allocation Policy

© Preemption may cause cache invalidation -> missed deadline
© Does t, =ty +ty, hold?

A B A

N A preempted Aresumed t,, A completed

E" Embedded Systems
= Programming




Structure of a Real-time System

Environment C Ied
el g Sensors Job list Clock
process
¥
Trigger ‘—‘
generator
¥
Actuators Execution
|
© Controller: RT-Computer/ Display | Operator
Uni- vs. Multiprocessor

© Input data rates: typically < 1 KB/sec
© Fixed set of processes; software is "pre-loaded"
© Scheduler (offline vs. online schedules)

™ © Output data rates: typically < 1 command/25 ms

E" Embedded Systems
= Programming

Data Rates

© Sensors/Actuators/Display/Input
Panels: low

© Data conversion/formatting:
medium
(peripheral area)

© Control algorithm: high
(central cluster)

© Controlled process often moves
through different phases

© Varying sets of priorities,
control tasks, deadlines

Sensor and actuator layer

Peripheral area

Central
cluster

E" Embedded Systems
= Programming




Task Classes

© Periodic, sporadic and aperiodic tasks
© Critical and non-critical tasks
© Non-critical real-time (soft real-time tasks):

© Objective: maximize percentage of jobs
successfully executed

E" Embedded Systems
= Programming

Areas of Interest

© Architecture
© Processor Architecture
© Network Architecture
© Architectures for Clock Synchronization
© Fault-tolerance and Reliability Evaluation
© Operating System
© Task Assignment and Scheduling
© Communication Protocols
© Failure Management and Recovery
© Clock Synchronization Algorithms
© Others
© Programming Languages
© Databases
© Performance Measures

E" Embedded Systems
= Programming




Misconceptions

(John A. Stankovic, Krithi Ramamritham; “Hard Real-
Time Systems"; IEEE Computer Society Press, ISBN
0-8186-0819-6)

© There is no science in real-time system design
© state-of-the-art is mostly ad hoc

© scientific approach badly needed: example Space
Shuttle, timing bug, transient overload during
initialization

© formal description techniques; verification needed

E" Embedded Systems
g Programming

Real-time vs. Parallel Computing

© Advances in supercomputer hardware will take
care of real-time requirements

© parallel processing to improve throughput: timing
constraints not automatically met

© the more hardware, the harder task and
communication scheduling problems

© no substitute for intelligent deployment of finite
resources

E" Embedded Systems
g Programming




Misleading Performance Measures

© Real-time computing is equivalent to fast
computing

© fast computing: minimize average response time

© real-time computing: meet individual timing
requirement for each of the tasks

© real-time systems need predictability

© Given a set of demanding real-time requirements
and an implementation using the fastest hardware
and software possible: how can one show that the
specified timing behavior is indeed being achieved?
testing is not an answer!

E” Embedded Systems
e Programming 10

The Art of Real-Time Programming

© Real-time programming is assembly coding,
priority interrupt programming and writing device
drivers

© current practice relies heavily on machine-level
optimization techniques

© reliance on clever hand-coding and difficult-to-trace
timing assumptions is major source of bugs

© research objective: synthesis of highly efficient code
and schedulers from timing constraint specifications

E” Embedded Systems
e Programming 2

10



RT Systems Engineering

© Real-time systems research is performance
engineering
© important: resource allocation strategies; but also:
© specification/verification of timing behavior
© programming language semantics

© which role does time play as a synchronization
mechanisms?

© is there a least restrictive set of timing constraints
that is sufficient for the purpose?

E" Embedded Systems
¥ Programming 21

Nothing new?

© The problems in real-time system design have all been
solved in other areas of computer science of operations
research

© there are unique problems which are not investigated in other
areas of computer science

© average performance parameters versus meeting stringent
deadlines

© queuing models usually make assumptions based on stable
operating conditions/large populations which may be
unrealistic for real-time systems

© scheduling: one shot versus periodic tasks; communication,
synchronization

E" Embedded Systems
¥ Programming 22

11



Guarantees are incomplete?

© Rtis not meaningful to talk about guaranteeing real-
time performance because we cannot guarantee that
the hardware will not fail and the software is bug-
free or that the actual operating conditions will not
violate the specified design limits
© It’s true: one can only hope to minimize the probability of
failure in the system one builds

© how is a system to be build in a way that we can have as
much confidence as possible that it will meet specifications at
acceptable costs

© odditities of external world do not give designer a license to
INCREASE odds of failure

E" Embedded Systems
= Programming

23

The Environment

© Real-time systems function in a static
environment

© different sets of timing constraints at different times
© design of hierarchical schedulers important

© objective: re-configuration and minimal disruption to
ongoing operation

© long-lived systems

E" Embedded Systems
= Programming

24

12



The Ariane 5 Failure
(4 June 1996)

On 4 June 1996 the maiden flight of the Ariane 5 launcher ended in a failure, about 40
seconds after initiation of the flight sequence. At an altitude of about 3700 m, the
launcher veered off its flight path, broke up and exploded. The failure was caused by
"complete loss of guidance and attitude information" 30 seconds after liftoff.

To quote the synopsis of the official report:

© "This loss of information was due to specification and design errors in the
software of the inertial reference system. The extensive reviews and tests carried
out during the Ariane 5 development programme did not include adequate analysis
and testing of the inertial reference system or of the complete flight control system,
which could have detected the potential failure." Because of this conclusion, the
accident has generated considerable public and private discussion amongst experts
and lay persons. Code was reused from the Ariane 4 guidance system. The Ariane
4 has different flight characteristics in the first 30 seconds of flight and exception
conditions were generated on both IGS channels of the Ariane 5.

© Failures often came not from the first, careful, conservative implementation of a
design, but from its extension.

E" Embedded Systems

Programming 25

A Space Shuttle Control Incident

(19817)

© After a delay in a space shuttle mission in 1981, the crew
put in some time in the simulator in Houston. They tested
a "Transatlantic abort" sequence, which dumps fuel
and leads to a landing in Spain. The flight control
computers “locked up and went catatonic".

© It turns out that an exception condition was generated by
a “computed GOTO” (but remember this is assembly,
not FORTRAN).

© The incident was recounted by Tony Macina and Jack
Clemons to Alfred Spector and David Gifford for the
Case Stuady: The Space Shuttle Primary
System, in Communications of the ACM27(9),
September 1984, pp874-900.

E" Embedded Systems

Programming 26

13



Further Reading

© Jane W.S. Liu, Real Time Systems, Prentice Hall, ISBN
0-13-099651-3, 2000.

© C.M. Krishna and Kang G. Shin, Aea*7ime Systems,
McGraw-Hill, ISBN: 0-07-057043-4, 1997.

© Hermann Kopetz, Real-Time Systems: Design Principles
for Distributed Embedded Applications, Kluwer
Academic Publishers, ISBN 0-79-239894-7, 1997.

© John A. Stankovic, Krithi Ramamritham; "Hard Real-
Time Systems"; IEEE Computer Society Press, ISBN
0-8186-0819-6.

E" Embedded Systems
27

g Programming

14



