1. Embedded Systems Overview

1.1 Developing Embedded Software

Roadmap for Section 1.1

© Cross-Platform Development

© Microcontroller Development Cycle

© Software Architecture & Control Loop
© The GNU Compiler Collection

.- Embedded
Operating Systems

Cross-Platform Development

Development Host <———> Embedded Device

Connections

*Ethernet
+Serial
*BDM/JTAG
Linker Simulator
Debugger File System

ITNENRENNEY]
Services E E
— - 1 E
Compiler 5 E

Network TITTTTITIT

Integrated Development Environment Loader / Monitor

mbedded
Operating Systems

Embedded “Hello, World”

#include <avr/io.h>
oharShelo|[22] 8=8 {1 Ao 8 S e S L S 3 I S 8 3 3l 5
void wait (int msec)

int i,3;

for (i=0;i<10000; i++) for (j=0;j<l*msec;j++);
void blink(int time)

int i

outp (0, PORTB) ;

wait (time) ;

outp (1, PORTE) ;

wait (1)
void main(void)

int i

outp (255, DDRB) ;

while (1)

for (i=0;i<22;i++) blink{hello[i]):

mbedded
Operating Systems

Microcontroller Development Cycle

Integrated Development Environment (IDE)

1. Write code 2. Translate code 3. Debug code
with Text Editor into machine op- i
codes Emulator Base Controller Specific
Probecard (plugs into |
f 19 | / target system) |
ﬁi“"l'—' Assembler WP—— 75 & o }
| [argel em |
Source _-m Code | »$ PO |
Code Editor c Debugger [™
(ASCII Text) Compiler 3

Emulation Hardware

4. Program Flashor 5. Functional prototype

oTpP versnon of verification with "real”
I Chlp
In-symm Programmer

sy
Emb hadea
Operating Systems

Embedded System Development
Development Techniques

© In-System-Programming
© Programming in target system
© Live updates via UART, SPI

© Starter Kits, Evaluation Boards
© Typically contain In-System-Programmer
© Sample Processor
© Assembler, Compiler, Linker, Debugger, IDE
© Sample Board with simple I/O facilities, connectors
© AVR: 115€, Arm9 3000%

Embedded
Operating Systems

Embedded System Development
Emulation, Simulation

© In-Circuit Emulation (ICE)

© Replace CPU of target system

© Real-Time Tracing

© Very, very expensive (powerful host needed)
© Simulation
Simulation of complete instruction set
Interprets each instruction of target image

o

Mostly no real-time simulation
Simulation of external source by “stimulus files”

o 0 0 O

Very cheap, difficult to simulate timing, external hardware

i
2 Embedded
Operating Systems

Download and Debugging

© Program ROM and insert into target system
© (Re-) Program Flash Memory on development boards
© Embedded Loader
© Typically in ROM, small footprint
© Downloads image from host system and executes it
© Embedded Monitor
© Includes all Loader Functions

© Debugging Facilities (read register, memory, single stepping,
breakpoints)

© On-Chip Debugging / Hardware Debug
© JTAG - Joint Test Action Group
© BDM - background debug mode

.- Embedded
Operating Systems

" C/C++ Assembler
Makefile ©]
Source file Source file
| Compiler | | Assembler |

Library
Files .lib

Linker / Locator

Binary
Executable

i
2 Embedded
Operating Systems

Building Executable Image Files

Object Common Object File Format
Files .o Extended Linker Format

Link
Map File

Target Systems

Schematic Target System

Processor

Data Bus Address Bus
—C

RAM 2
i Flash

EEPROM

ROM

.- Embedded
Operating Systems

Mapping Executable Images to

Memory Map
0x00000000h
ROM
0x10000000h
Flash
0x20000000h
RAM
—srow——| 0x30000000h

Mapping Executables

ROM 0x00000h MEMORY {
} — ROM: origin = 0x00000h, length = 0x000100h
0x00110h FLASH: origin = 0x00110h, Tength = 0x004000h
RAMBO: origin = 0x05000h, length = 0x020000h(
Sloader 1 FLASH RAMBI: origin = 0x25000h, length = 0x200000h
Ewfissh I 0x0410Fh |
SECTION {
_monitor 0x05000h .rodata : > ROM
RAMBO _loader : > FLASH
_—
jshes OXRAFEFh _wflash : > FLASH
-sdata 0x25000h _monitor : > RAMBO
RAMB1 .sbss (ALIGN 4) : > RAMBO
text .sdata (ALIGN 4) : > RAMBO
.text @ > RAMBI
s .bss (ALIGN 4) : > RAWBL
data .data (ALIGN 4) : > RAMBL
O0x224FFFh)
Embedded
Operating Systems
POWER/RESET Fetch & Execute
Memory Map
<
::::‘"6:;:':’ reset vector is at 0x0000h ROM
0x0001Fh
l 0x00040h
<
Execute -
Loader
l code comes from FLASH 0x0103Fh
Initialize | g-----!
Hardware <
0x10000h
No Download Image
image/n ——»| from Host Into RAM

m

Embedded
Operating Systems

ROM/FLASH

Copy image from
ROM/FLASH to RAM
Initialize code durig

copy

Initialize the Image in
RAM - Reuse RAM
space

;

0x103FFh

Hardware Initialization

© Start execution at reset vector

© Put processor into a known state
© Set all registers to initial values

© Disable interrupts and caches

© Initialize memory system
© Type, Controller, Size, Cache, Tests, Stack

© Load / Decompress code sections from ROM to RAM
© Set up initial interrupt and exception handler

© Initialize internal bus interfaces, peripherals

© Initialize software (RTQOS, application)

Embedded
perating Systes

Software Architectures
Simple Control Loop

void main(void)

{
// read switch - in or out position
switchPosition = // Read switch value
while (TRUE)

{
switch (switchPosition) \

{

case IN_POS:
temperature = // read int. sensor
break;
case OUT_POS:
temperature = // read int. sensor
break;
}
UpdateDisplay() ;

Embedded
Dperatinge;vstems

Software Architectures
Round Robin

void main (void)
{
while (TRUE)
{
if (device A needs service)
// Handle A -> S5ms
if (device B needs service)
// Handle B -> 5ms
if (device C needs service)
// Handle C -> 2ms
must be serviced all 8 ms

}
© Advantage : Simplicity

© Problem No priorities, I/O overhead

i
2 Embedded
Operating Systems

Software Architectures
Round Robin with Interrupts

bool handleA,handleB;
void interrupt HandleDeviceA() {
handleA = true;
}
void interrupt HandleDeviceB() {
handleB = true;
}
void main (void)
{
while (true)
{
if (handleA) {
handleA = false;
// handle A }
if (handleB) {
handleB = false;
// handle B }
}
}

.- Embedded
Operating Systems

Software Architectures
Real-Time Operating System

void interrupt HandleDeviceA() {
// set signal X

}

void interrupt HandleDeviceB() {
// set signal Y

}

void Task2 () {

void Taskl () { while (true) {

while (true) { // wait for signal Y

// wait for signal X // handle device B

// handle device A }

}

i
2 Embedded
Operating Systems

Software Architectures
Priorities

Round Robin Round Robin RTOS
with Interrupts

high priority

[device AISR |
[device BISR]
[Taskt |

| device A ISR |

[allcode | [device B ISR |

| all other code |

low priority

.- Embedded
Operating Systems

I

GNU Compiler Collection

© Multiple language frontends, for parsing many
languages (C,C++,Ada, some Ecma-IL)

© Compile / Cross-compile for many architectures (x86,
Sparc, Itanium, AVR, ...)
© Cross Compiler Gee binary : TARGETNAME-gcc

© Gcc invocation stages
© preprocessing (to expand macros)
© compilation (from source code to assembly language)
© assembly (from assembly language to machine code)
© linking (to create the final executable)

Embedded
Operating Systes

