1. Embedded Systems Overview

1.1 Developing Embedded Software

Roadmap for Section 1.1

© Cross-Platform Development

© Microcontroller Development Cycle

© Software Architecture & Control Loop
© The GNU Compiler Collection
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Cross-Platform Development

Development Host <———>  Embedded Device

Connections

*Ethernet
+Serial
*BDM/JTAG
Linker  Simulator
Debugger File System

ITNENRENNEY]
Services E E
— - 1 E
Compiler 5 E

Network TITTTTITIT

Integrated Development Environment Loader / Monitor

mbedded
Operating Systems

Embedded “Hello, World”

#include <avr/io.h>
oharShelo|[22 ] 8=8 {1 Ao 8 S e S L S 3 I S 8 3 3l 5
void wait (int msec)

int i,3;

for (i=0;i<10000; i++) for (j=0;j<l*msec;j++);
void blink(int time)

int i

outp (0, PORTB) ;

wait (time) ;

outp (1, PORTE) ;

wait (1)
void main(void)

int i

outp (255, DDRB) ;

while (1)

for (i=0;i<22;i++) blink{hello[i]):
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Microcontroller Development Cycle

Integrated Development Environment (IDE)

1. Write code 2. Translate code 3. Debug code
with Text Editor into machine op- i
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Embedded System Development
Development Techniques

© In-System-Programming
© Programming in target system
© Live updates via UART, SPI

© Starter Kits, Evaluation Boards
© Typically contain In-System-Programmer
© Sample Processor
© Assembler, Compiler, Linker, Debugger, IDE
© Sample Board with simple I/O facilities, connectors
© AVR: 115€, Arm9 3000%
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Embedded System Development
Emulation, Simulation

© In-Circuit Emulation (ICE)

© Replace CPU of target system

© Real-Time Tracing

© Very, very expensive (powerful host needed)
© Simulation
Simulation of complete instruction set
Interprets each instruction of target image

o

Mostly no real-time simulation
Simulation of external source by “stimulus files”

o 0 0 O

Very cheap, difficult to simulate timing, external hardware

i
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Download and Debugging

© Program ROM and insert into target system
© (Re-) Program Flash Memory on development boards
© Embedded Loader
© Typically in ROM, small footprint
© Downloads image from host system and executes it
© Embedded Monitor
© Includes all Loader Functions

© Debugging Facilities (read register, memory, single stepping,
breakpoints)

© On-Chip Debugging / Hardware Debug
© JTAG - Joint Test Action Group
© BDM - background debug mode
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" C/C++ Assembler
Makefile © ]
Source file Source file
| Compiler | | Assembler |

Library
Files .lib

Linker / Locator

Binary
Executable
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Building Executable Image Files

Object Common Object File Format
Files .o Extended Linker Format

Link
Map File

Target Systems

Schematic Target System

Processor

Data Bus Address Bus
—C

RAM 2
i Flash

EEPROM

ROM
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Mapping Executable Images to

Memory Map
0x00000000h
ROM
0x10000000h
Flash
0x20000000h
RAM
—srow——| 0x30000000h




Mapping Executables

ROM 0x00000h MEMORY {
} — ROM:  origin = 0x00000h, length = 0x000100h
0x00110h FLASH: origin = 0x00110h,  Tength = 0x004000h
RAMBO: origin = 0x05000h, length = 0x020000h(
Sloader 1 FLASH RAMBI: origin = 0x25000h,  length = 0x200000h
Ewfissh I 0x0410Fh |
SECTION {
_monitor 0x05000h .rodata : > ROM
RAMBO _loader : > FLASH
_—
jshes OXRAFEFh _wflash : > FLASH
-sdata 0x25000h _monitor : > RAMBO
RAMB1 .sbss (ALIGN 4) : > RAMBO
text .sdata (ALIGN 4) : > RAMBO
.text @ > RAMBI
s .bss (ALIGN 4) : > RAWBL
data .data (ALIGN 4) : > RAMBL
O0x224FFFh )
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POWER/RESET Fetch & Execute
Memory Map
<
::::‘"6:;:':’ reset vector is at 0x0000h ROM
0x0001Fh
l 0x00040h
<
Execute -
Loader
l code comes from FLASH 0x0103Fh
Initialize |  g-----!
Hardware <
0x10000h
No Download Image
image/n ——»| from Host Into RAM

m
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ROM/FLASH

Copy image from
ROM/FLASH to RAM
Initialize code durig

copy

Initialize the Image in
RAM - Reuse RAM
space

;

0x103FFh




Hardware Initialization

© Start execution at reset vector

© Put processor into a known state
© Set all registers to initial values

© Disable interrupts and caches

© Initialize memory system
© Type, Controller, Size, Cache, Tests, Stack

© Load / Decompress code sections from ROM to RAM
© Set up initial interrupt and exception handler

© Initialize internal bus interfaces, peripherals

© Initialize software (RTQOS, application)
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Software Architectures
Simple Control Loop

void main(void)

{
// read switch - in or out position
switchPosition = // Read switch value
while (TRUE)

{
switch (switchPosition) \

{

case IN_POS:
temperature = // read int. sensor
break;
case OUT_POS:
temperature = // read int. sensor
break;
}
UpdateDisplay() ;
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Software Architectures
Round Robin

void main (void)
{
while (TRUE)
{
if (device A needs service)
// Handle A -> S5ms
if (device B needs service)
// Handle B -> 5ms
if (device C needs service)
// Handle C -> 2ms
must be serviced all 8 ms

}
© Advantage : Simplicity

© Problem No priorities, I/O overhead
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Software Architectures
Round Robin with Interrupts

bool handleA,handleB;
void interrupt HandleDeviceA() {
handleA = true;
}
void interrupt HandleDeviceB() {
handleB = true;
}
void main (void)
{
while (true)
{
if (handleA) {
handleA = false;
// handle A }
if (handleB) {
handleB = false;
// handle B }
}
}
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Software Architectures
Real-Time Operating System

void interrupt HandleDeviceA() {
// set signal X

}

void interrupt HandleDeviceB() {
// set signal Y

}

void Task2 () {

void Taskl () { while (true) {

while (true) { // wait for signal Y

// wait for signal X // handle device B

// handle device A }

}
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Software Architectures
Priorities

Round Robin Round Robin RTOS
with Interrupts

high priority

[device AISR |
[device BISR]
[ Taskt |

| device A ISR |

[ allcode | [ device B ISR |

| all other code |

low priority
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GNU Compiler Collection

© Multiple language frontends, for parsing many
languages (C,C++,Ada, some Ecma-IL)

© Compile / Cross-compile for many architectures (x86,
Sparc, Itanium, AVR, ...)
© Cross Compiler Gee binary : TARGETNAME-gcc

© Gcc invocation stages
© preprocessing (to expand macros)
© compilation (from source code to assembly language)
© assembly (from assembly language to machine code)
© linking (to create the final executable)
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