
Dependable Systems
!

Summary

Dr. Peter Tröger

Lena Herscheid

Dependable Systems Course PT 2014

Dependability

• Umbrella term for operational requirements on a system

• IFIP WG 10.4: "[..] the trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers [..]"

• IEC IEV: "dependability (is) the collective term used to describe the availability
performance and its influencing factors : reliability performance, maintainability
performance and maintenance support performance"

• Laprie: „ Trustworthiness of a computer system such that  
reliance can be placed on the service it delivers to the user “

• Adds a third dimension to system quality

• General question: How to deal with unexpected events ?

• In German: ,Verlässlichkeit‘ vs. ,Zuverlässigkeit‘ 

2

Dependable Systems Course PT 2014

Course Topics

• Definitions and metrics

• Fault, error, failure, fault models, fault tolerance, fault forecasting, ...

• Reliability, availability, maintainability, error mitigation, damage confinement, ...

• Reliability engineering, reliability testing, MTTF, MTBF, failure rate, ...

• Fault tolerance patterns

• N-out-of-M, voting, heartbeat, ...

• Analytical evaluation

• Reliability block diagrams, fault tree analysis, ...

• Petri nets, Markov chains

• Root cause analysis, risk analysis and assessment

3

Dependable Systems Course PT 2014

Course Topics

• Hardware-Implemented Dependability

• Failure rates, testing, hardware redundancy approaches

• Software-Implemented Dependability

• Fault-tolerant programming: simplex, recovery blocks, checkpointing, roll-back, ...

• Testing, software metrics

• Fault-tolerant distributed systems: Transactions, consensus, clocks, ...

• Advanced approaches

• Autonomic computing, rejuvenation, online failure prediction, performability

• Case studies from practice

4

Dependable Systems Course PT 2014

Dependability Tree (Laprie)

5

Dependable Systems Course PT 2014

Dependability Stakeholders

• System - Entity with function, behavior, and structure

• A number of components or subsystems, which interact under the control of a
design [Robinson]

• Service - System behavior abstraction, as perceived by the user

• User - Human or physical system that interacts with the systems service

• Specification - Definition of expected service and delivery conditions

• On different levels, can lead to specification fault

• Reliance demands assessment of non-functional dependability attributes

• Provide ability for trustworthy service delivery by dependability means

• Undesired (maybe expected) circumstances form dependability threats

6

Dependable Systems Course PT 2014

2 - Dependability Threats

• System failure - ,Ausfall‘

• Event that occurs when the service no longer complies with the specification /
deviates from the correct service.

• System error - ,Fehler(zustand)‘

• Part of system state that can lead to subsequent failure

• Some sources define errors as active faults - not in this course ...

• System fault - ,Fehler(ursache)‘

• Adjudged or hypothesized cause of an error

• Failure occurs when error state alters the provided service

• Systems are build from connected components, which are again systems

• Fault is the consequence of a failure of some other system to deliver its service
7

Fault
Error

Failure

Dependable Systems Course PT 2014

Chain of Dependability Threats (Avizienis)

8

Fault

Error

Failure

Activation

Propagation

Causation
Fault

Dependable Systems Course PT 2014

Faults
• High diversity in possible sources and types

• Fault nature

• Accidental faults (,Zufallsfehler‘) vs. intentional faults (,Absichtsfehler‘)

• Intentional faults are created deliberately, presumably malevolently

• Fault origin viewpoints (not exclusive)

• Phenomenological causes: Physical / natural faults vs. human-made faults

• System boundaries: Internal faults (part of system state that produces an error)
vs. external faults (interference with the environment)

• Phase of creation: Design faults vs. operational faults

• Temporal persistence

• Permanent faults vs. temporary faults

9

Dependable Systems Course PT 2014

System-Level Fault Model
• Fault model idea originates from hardware

• How many faults of different classes can occur ?  
What do I tolerate ?

• Timing of faults: Fault delay, repeat time, recovery time, ...

• Also mappable to software or even complete systems

• Activities as black box, only look on input and output messages

• Link faults are mapped to the  
participating components

• Every participating component  
would need a fault model -  
pick the most urgent ones

10

Dependable Systems Course PT 2014

Error Propagation

11

(C) Avizienis

Dependable Systems Course PT 2014

Error Message Occurrence (Hansen & Siewiorek)

• Same fault can lead to different (detected or undetected) errors

• Errors become detected by error detection mechanism

• Some undetected errors are detected by several detectors

• Some detectors report several undetected errors as one

• Some undetected errors are never uncovered

• Detected errors might not be logged, if the system stops too fast

12

Dependable Systems Course PT 2014

Failures

• Non-compliance with the specification - arbitrary failure (‘willkürlicher Ausfall‘)

• System failures can be further categorized in failure modes

• Fail-silent / crash failure mode - incorrect results are not delivered

• Fail-stop mode - constant value is delivered

• Failure mode domain - what is influenced

• Service result - value failures

• Service timeliness - timing failures

• Service availability - stopping failures

• User perception in the mode - consistent / inconsistent for all users

• Failure mode consequences for ranking the identified issues

13

Dependable Systems Course PT 2014

Failure Severity (,Schweregrad des Ausfalls‘)
• Denotes consequences of failure

• Benign failures (,unkritische Ausfälle‘)

• Failure costs and operational benefits are similar

• Sometimes also umbrella term for failures only detected by inspection

• A system with only such failures is fail-safe

• Catastrophic failures (,kritische Ausfälle‘)

• Costs of failure consequences are much larger than service benefit

• Significant / serious failures - Intermediate steps expressing reduced service

• Grading of failure consequences on overall system depends on application

• Flying airplane - Catastrophic stopping failure, Train - Benign stopping failure

• Criticality - Highest severity of possible failure modes in the system
14

Dependable Systems Course PT 2014

Example: DO-178B Standard

15

Dependable Systems Course PT 2014

3 - Means for Dependability

• Fault prevention - Prevent fault occurrence or introduction

• Fault tolerance - Provide service matching the specification under faults

• Fault removal - How to reduce the presence of faults

• Fault forecasting- Estimate the present number, future incidence, and the
consequences of faults

• Combined utilization

16

Dependable Systems Course PT 2014

Fault Tolerance

• Fault tolerance is the ability of a system to operate correctly in presence of faults.

or

• A system S is called k-fault-tolerant with respect to a set of  
algorithms {A1, A2, ... , Ap} and a set of faults {F1, F2, ... , Fp}  
if for every k-fault F in S, Ai is executable by a subsystem of system S with k faults.
(Hayes, 9/76)

or

• Fault tolerance is the use of redundancy (time or space) to achieve the desired level
of system dependability - costs !

• Accepts that an implemented system will not be fault-free

• Implements automatic recovery from errors

• Is a recursive concept (voter replication, self-checking checkers, stable memory)

17

Error Processing

Dependable Systems Course PT 2014

Phases of Fault Tolerance (Hanmer)

18

Latent
Fault Error Normal

OperationFault
Activation

Error Recovery

Error Mitigation

Error
Detection

Fault
Treatment

Dependable Systems Course PT 2014

Fault Tolerance - Error Processing Through Recovery

• Forward error recovery

• Error is masked to reach again a consistent state (fault compensation)

• Corrective actions need detailled knowledge (damage assessment)

• New state is typically computed in another way

• Examples with compensation: Error correcting codes, non-journaling file
system check, advanced exception handlers, voters

• Backward error recovery

• Roll back to previous consistent state (recovery point / checkpoint)

• Very suitable for transient faults

• Computation can be re-done with same components (retry),  
with alternate components (reconfigure), or can be ignored (skip frame)

19

Dependable Systems Course PT 2014

„Fail-Fast“

• A common concept from system engineering, company management, ...

• „Report failure and stop immediately without further action“

• Discussed by Jim Gray in 1985 as part of his famous article 
„Why do computers stop and what can be done about it ?“

• Useful when benefit from recovery is not good enough for its costs,  
or if error propagation is highly probable

• Single units of a redundant set

• Deeply interwired IT system components

• Components under heavy request load

• And ... crappy start-up companies

20

Dependable Systems Course PT 2014

4 - Fault Tolerance Patterns

• Architectural patterns

• Considerations that cut across all parts of the system

• Need to be applied in early design phase

• Detection patterns

• Detect the presence of root faults, error states, and failures

• Errors vs. failures -> a-priori knowledge vs. comparison of redundant elements

• Error Recovery Patterns

• Methods to continue execution in a new error-free state

• Undoing the error effects + creating the new state

21

Dependable Systems Course PT 2014

4 - Fault Tolerance Patterns

• Error Mitigation Patterns

• Do not change application or system state,  
but mask the error and compensate for the effects

• Typical strategies for timing or performance faults

• Fault Treatment Patterns

• Prevent the error from reoccurring by repairing the fault

• System verification

• Diagnosis of fault location and nature

• Correction of the system and / or the procedures

22

Dependable Systems Course PT 2014

5 - Attributes of Dependability

• Non-functional attributes such as reliability and maintainability

• Complementary nature of viewpoints in the area of dependability

• In comparison to functional properties

• ... hard to define

• ... hard to abstract

• ... ,Divide and conquer‘ does not work as good

• ... difficult interrelationships

• ... often probabilistic dependencies

23

Dependable Systems Course PT 2014

In Detail

• Reliability - Function R(t)

• Probability that a system is functioning properly and constantly over time period t

• Assumes that system was fully operational at t=0

• Denotes failure-free interval of operation

• Availability - Statement if a system is operational at a point in time / fraction of time

• Describe system behavior in presence of error treatment mechanisms

• Instantaneous availability (at t) - Probability that a system is performing
correctly at time t; equal to reliability for non-repairable systems: Ai(t) = R(t)

• Steady-state availability - Probability that a system will be operational at any
random point of time, expressed as the fraction of time a system is operational
during its expected lifetime: As = Uptime / Lifetime

24

Dependable Systems Course PT 2014

Why Exponential ?
• Distribution function that models the memoryless property of the Poisson process

• P(T > t + s|T > t) = P(T > s), e.g. PFailure(5 years|T > 2 years) = PFailure(3 years)

• Failure is not the result of wear-out

• Models ,intrinsic failure‘ behavior, assumed for the majority of hardware life time

• Weibull distribution as alternative, can also model tear-in and wear-out

• Some natural phenomena have constant failure rate (e.g. cosmic ray particles)

25

Dependable Systems Course PT 2014

Variable Failure Rate in Real World

26

Burn in Use Wear out Integration
& Test

Use Obsolete

Hardware Software

• Failure rate is treated as constant parameter of the exponential distribution

• (maybe invalid) simplification, mostly combined solution in practice:

• Exponential distribution when failure rate is constant

• Weibull distribution when failure rate is monotonic decreasing / increasing

• Mean time to failure (MTTF) -  
Average time it takes to fail 
-> average uptime

• Mean time to recover / repair (MTTR) -
Average time it takes to recover

• Mean time between failures (MTBF) -
Average time between two successive failures

• Availability = Uptime / Lifetime 
 = MTTF / MTBF

Dependable Systems Course PT 2014

Steady-State Availability

27

up down up

MTBF

down up

up

C1

up

C3

up

C2

MTTF

Dependable Systems Course PT 2014

Steady-State Availability

28

Availability Downtime per year Downtime per week

90.0 % (1 nine) 36.5 days 16.8 hours

99.0 % (2 nines) 3.65 days 1.68 hours

99.9 % (3 nines) 8.76 hours 10.1 min

99.99 % (4 nines) 52.6 min 1.01 min

99.999 % (5 nines) 5.26 min 6.05 s

99.9999 % (6 nines) 31.5 s 0.605 s

99.99999 % (7 nines) 0.3 s 6 ms

A = Uptime
Uptime+Downtime = MTTF

MTTF+MTTR

Dependable Systems Course PT 2014

MTTR << MTTF [Fox]

• Armando Fox on ,Recovery-Oriented Computing‘

• A = MTTF / (MTTF + MTTR)

• 10x decrease of MTTR as good as 10x increase of MTTF ?

• MTTF‘s are not claimable, but MTTR claims are verifiable

• Proving MTTF numbers demands system-years of observation and experience

• Lowering MTTR directly improves user experience of one specific outage,  
since MTTF is typically longer than one user session

• HCI factor of failed system

• Miller, 1968: >1sec “sluggish”, >10sec “distracted” (user moves away)

• 2001 Web user study: ~5sec „acceptable”, ~10sec „excessively slow“

29

Dependable Systems Course PT 2014

6 - Dependability Modeling
• Default approach: Utilize a formalism to model system dependability

• Quantify the availability of components, calculate system availability based on this
data and a set of assumptions (the availability model)

• Most models expose the same expressiveness

• Each formalism allows to focus on certain aspects

• Structure-based models: Reliability block diagram, fault tree

• State-based models: Markov chain, petri net

• System understanding evolved from hardware to software to IT infrastructures

• Example: Organization management influence on business service reliability

• Information Technology Infrastructure Library (ITIL)

• CoBiT(Control Objectives for Information and related Technology)
30

Dependable Systems Course PT 2014

Dependability Modeling

• The Failure Space-Success Space concept

• Often easier to agree on what constitutes a system failure

• Success tends to be associated with system efficiency, which makes it harder to
formulate events in the model („The car drives fast.“, „The car stops driving.“)

• In practice, there are more ways to success than to failure

31

Fault Tree Handbook with Aerospace Applications Version 1.1

Chapter 2, System Logical Modeling Approaches 9

2. System Logical Modeling Approaches

2.1 Success vs. Failure Approaches

The operation of a system can be considered from two standpoints: the various ways for system
success can be enumerated or the various ways for system failure can be enumerated. Such an
enumeration would include completely successful system operation and total system failure, as
well as intermediate conditions such as minimum acceptable success. Figure 2-1 depicts the
Failure/Success space concept.

Figure 2-1. The Failure Space-Success Space Concept

It is interesting to note that certain identifiable points in success space coincide with certain
analogous points in failure space. Thus, for instance, “maximum anticipated success” in success
space can be thought of as coinciding with the “minimum anticipated failure” in failure space.
Although the first inclination might be to select the optimistic view of our system (success)
rather than the pessimistic one (failure) when considering system operation, this is not
necessarily the most advantageous perspective to take.
From an analytical standpoint, there are several overriding advantages that accrue from the
failure space perspective. First of all, it is generally easier to attain concurrence on what
constitutes failure than it is to agree on what constitutes success. An aircraft might be desired to
fly high and fast, travel far without refueling and carry a big load. When the final version of this
aircraft rolls off the production line, some of these features may have been compromised in the
course of making design trade-offs. Whether the vehicle is a "success" or not may very well be a
matter of controversy. On the other hand, if the aircraft crashes, there will be little argument that
this event constitutes system failure.
“Success” tends to be associated with the efficiency of a system, the amount of output, the
degree of usefulness, and production and marketing features. These characteristics are
describable by continuous variables that are not easily modeled in terms of simple discrete
events, such as “valve does not open,” which characterize the failure space (partial failures, i.e., a
valve opens partially, are also difficult events to model because of their continuous possibilities).
Thus, the event “failure,” or in particular, “complete failure,” is generally easy to define, whereas
the event “success” may be much more difficult to tie down. This fact makes the use of failure
space in analysis much more valuable than the use of success space.

Dependable Systems Course PT 2014

Dependability Modeling
• System analysis approaches

• Inductive methods - Reasoning from specific cases to a general conclusion

• Postulate a particular fault or initiating event, find out system effect

• Determine what system (failure) states are possible

• Trivial approach: „parts count“ method

• Examples: Failure Mode and Effect Analysis (FMEA), Preliminary Hazards
Analysis (PHA), Event Tree Analysis, Reliability Block Diagrams (RBD), ...

• Deductive methods - Postulate a system failure, find out what system modes or
component behaviors contribute to this failure

• Determine how a particular system state can occur

• Examples: Fault Tree Analysis (FTA)

32

�S = cLB � (cWS1 ⇥ cWS2) � (cDB1 ⇥ cDB2)

Asite = aLB ⇥AWSset ⇥ADBset

= aLB ⇥ [1� (1� aWS)nWS]⇥ [1� (1� aDB)nDB]

Dependable Systems Course PT 2014

Examples

33

aWS

aWS

aDB

aDB
aLB

Dependable Systems Course PT 2014

Reliability Block Diagrams (RBD)

• Model logical interaction for success-oriented analysis of system reliability

• Building blocks: series structure, parallel structure, k-out-of-n structure

• System is available only if there is a path between s and t

• Granularity based on data and lowest actionable item concept

• Structure formula can be obtained from RBD by identifying the  
subset of nodes that disconnects s from t if removed

34

s t

A1

A2

A3

A4

B

Spare

C

D

E

2/3

C

C

D

D

E

E

Dependable Systems Course PT 2014

Deductive Analysis - Fault Trees

• Structure analysis effort grows exponentially with the number of components

• Fault Trees

• Invented 1961 by H. Watson (Bell Telephone Laboratories)

• Facilitate analysis of the launch control system of the intercontinental
Minuteman missile

• Used by Boeing since 1966, meanwhile adopted by different industries

• Root cause analysis, risk assessment, safety assessment

• Basic idea

• Technique for describing the possible ways in which an  
undesired system state can occur

• Complex system failures are broken down into basic events

35

Example: 2-of-3 System

State-Based Modeling | Dependable Systems 2014 24

The complexity of the petri net does not
depend on the number of components!

Dependable Systems Course PT 2014

7 - State-Based Modeling

• Structural vs. state-based modeling

• State Transition Diagrams

• Markov Chains

• Petri Nets

36

37

State-Based Modeling | Dependable Systems 2014 34

Dependable Systems Course

Real World
Systems

Model
Solution
Technique

Evaluations

Input
Parameters

Modeling Errors
• Structural Errors: Initial state,

missing or extra states / transitions
• Error Propagation Model
• Parametric Models: Failure and repair rates,

coverage parameters
• Errors due to non-independence

Solution Errors
• Approximation Errors: System partition, state aggregation
• Numerical Errors: Truncation, Round-off
• Programming Errors
• Estimation Errors: Stochastic estimators, not enough data

Parametric Errors
• Different component parameter sources
• Projected stress factors assume unrealistic
operational conditions

Dependable Systems Course PT 2014

8 - Qualitative Dependability Investigation

• Different approaches that focus on structural (qualitative) system evaluation

• Root cause analysis

• Broad research / industrial topic targeting error diagnosis

• Specialized topic in quality methodologies

• Development process investigation

• Procedures for ensuring industry quality in production

• Software development process

• Organizational investigation

• Non-technical influence factors on system reliability

38

Dependable Systems Course PT 2014

FMEA
• Failure Mode and Effects Analysis

• Engineering quality method for early concept phase - identify and tackle weak points

• Introduced in the late 1940s for military usage (MIL-P-1629)

• Later also used for aerospace program, automotive industry,  
semiconductor processing, software development, healthcare, ...

• Main goal is to identify and prevent critical failures

• Performed by cross-functional team of subject matter experts

• Most important task in many reliability programs

• Six Sigma certification, reliability-centered maintenance (RCM) approach

• Automotive industry (ISO16949, SAE J1739)

• Medical devices

39

Dependable Systems Course PT 2014

Hazard & Operability Studies (HAZOPS)

• Process for identification of potential hazard & operability problems, 
caused by deviations from the design intend

• Difference between deviation (failure) and its cause (fault)

• Conduct intended functionality in the safest and most effective manner

• Initially developed to investigate chemical production processes,  
meanwhile for petroleum, food, and water industries

• Extended for complex (software) systems

• Qualitative technique

• Take full description of process and systematically question every part of it

• Assess possible deviations and their consequences

• Based on guide-words and multi-disciplinary meetings

40

Dependable Systems Course PT 2014

Root Cause Analysis

• What caused the fault ? - Starting point of dependability chain

• Peeling back the layers

• Must be performed systematically as an investigation

• Establish sequence of events / timeline

41

(C) Avizienis

Dependable Systems Course PT 2014

Reliability Models for IT Infrastructures

• System reliability in a commercial environment is determined by many factors:

• Software and hardware reliability

• Training of maintenance personnel

• „Business processes“ how maintenance is handled

• The way the IT department is organized

• ...

• Impact of management organization on reliability is an emerging research field

• Standards for IT organization, based on best practices

• Describe which processes have to be established in an IT department

• Provide reference models for organization of IT department

42

Dependable Systems Course PT 2014

CMMI Maturity Levels

43

(C
) W

iki
pe

di
a

Dependable Systems Course PT 2014

ITIL
• Information Technology Infrastructure Library (ITIL), latest version v3

• Started as set of recommendations by the UK Government

• Concepts and guides for IT service management

• Supports to deliver business-oriented  
quality IT services

• Core publications: Service Strategy,  
Service Design, Service Transition,  
Service Operation,  
Continual Service Improvement

• Broad tool support from vendors

• High costs for certification and training

• Methodology sometimes over-respected at  
the expense of pragmatism

44

Dependable Systems Course PT 2014

9 - Predicting System Reliability

• Feasibility evaluation for given model, identification of potential problem sources

• Comparison of competing designs

• Identification of potential reliability problems - low quality, over-stressed parts

• Input to other reliability-related tasks

• Maintainability analysis, testability evaluation

• Failure modes and effects analysis (FMEA)

• Ultimate goal is the prediction of system failures by a reliability methodology

• Approach depends on nature of component (electrical, electronic, mechanical)

45

Dependable Systems Course PT 2014

Reliability Data

• Field (operational) failure data

• Meaningful source of information, experience from real world operation

• Operational and environmental conditions may be not fully known

• Service life data with / without failure

• Helpful in assessing time characteristics of reliability issues

• Data from engineering tests

• Example: Accelerated life tests

• Results from controlled environment

• Trustworthy for analysis purposes

• Lack of failure information is the ,greatest deficiency‘ in reliability research [Misra]

46

Dependable Systems Course PT 2014

Reliability Prediction Models

• Economic requirements affect field-data availability

• Customers do not need generic field data, so collection is extra effort

• Numerical reliability prediction models available for specific areas

• Hardware-oriented reliability modeling

• MIL-HDBK-217, Bellcore Reliability Prediction Program, ...

• Software-oriented reliability modeling

• Jelinski-Moranda model, Basic Execution model, software metrics, ...

• Prediction models look for corrective factors, so they are always focused

• Demands confidence in understanding of environmental conditions

• Reconciliation is often needed between the different values of failure data from
various sources

47

Dependable Systems Course PT 2014

Software Reliability Assessment

• Software bugs are permanent faults, but behave as transient faults

• Activation depends on software usage pattern and input values

• Timing effects with parallel or distributed execution

• Software aging effects

• Fraction of system failures reasoned by software increased in the last decades

• Possibilities for software reliability assessment

• Black box models - No details known, observations from testing or operation

• Reliability growth models

• Software metric models - Derive knowledge from static code properties

48

Dependable Systems Course PT 2014

Halstead Metric
• Statistical approach - Complexity is related to number of operators and operands

• Only defined on method level, OO code analysis must consider additional structure

• Program length N = Number of operators NOP + total number of operands NOD

• Vocabulary size n = Number of unique operators nOP + number of unique operands nOD

• Program volume V = N * log2(n)

• Describes size of an implementation by vocabulary and (mainly) by program length

• In-place changes are ok ...

• Difficulty level D = (nOP / 2) * (NOD / nOD), program level L = 1 / D

• Error proneness is proportional to number of unique operators  
-> since most languages only offer a few, this should be small

• Also proportional to the level of operand reuse through the code
49

x = x + 1;
NOP=nOP=3

NOD=3
nOD=2

Dependable Systems Course PT 2014

10 - Distributed Systems Theory

• Fallacies of Distributed Computing

• The network is reliable, Latency is zero, Bandwidth is infinite, The network is
secure, Topology doesn’t change, There is one administrator, Transport cost is
zero, The network is homogeneous

• Timing Models

• Logical time, Lamport clocks

• Fault Models

• Consensus Problems

• 2PC

• Paxos

50

Asynchronous*

Par-ally*synchronous*

Synchronous*

Dependable Systems Course PT 2014

11 - Fault-Tolerant Distributed Systems

• Consistency Models

• Strict consistency, sequential consistency, eventual consistency

• Trade-Offs

• Brewer, CAP Theorem

• Replication

• State Machine Replication, …

51

P1# W(x)#!#a#

P2# R(x)#!#a#

P1# W(x)#!#a#

P2# R(x)#!#NIL# R(x)#!#a#

Dependable Systems Course PT 2014

12 - Dependable Distributed Applications

• Frameworks - Erlang / FT-CORBA

• Coordination Services

• Chubby, Zookeeper

• Distributed Storage

• Cassandra, RIAK, HDFS …

52

Dependable Systems Course PT 2014

13 - Hardware Diagnosis
• Contains of fault detection (what ?) and fault location (where ?)

• Fault detection

• Replication checks - Test operation / execution against alternate implementation

• Timing checks - Test operation / execution against timing constraints

• Reversal checks - Make use of operation reversibility

• Coding checks - Utilize redundant (but different) representation of data

• Reasonableness checks - Check against known system / data properties

• Structural checks - Ensure consistent structure of data, diagnostic tests, ...

• Diagnostic checks - Use set of inputs for which the outputs are known

• Algorithmic checks - Check invariants of an algorithm

53

Dependable Systems Course PT 2014

14 - Hardware Redundancy
• Redundancy for error detection and forward error recovery

• Redundancy types: spatial, temporal, informational (presentation, version)

• Redundant not mean identical functionality, just perform the same work

• Static redundancy implements error mitigation

• Fault does not show up, since it is transparently removed

• Examples: Voting, error-correcting codes, N-modular redundancy

• Dynamic redundancy implements error processing

• After fault detection, the system is reconfigured to avoid a failure

• Examples: Back-up sparing, duplex and share, pair and spare

• Hybrid approaches

54

Dependable Systems Course PT 2014

Sphere of Replication

• Components outside the
sphere must be protected by
other means

• Level of output comparison
decides upon fault coverage

• Larger sphere tends to
decrease the required
bandwidth on input and output

• More state changing
happens just inside the
sphere

• Vendor might be restricted on
choice of sphere size

55

HDD HDD

Input Replication Output
Comparison

I/O Bus

HDD HDD

Input Replication Output
Comparison

HDD HDD

Controll
er

Controll
er

RAID1

RAID10

Dependable Systems Course PT 2014

Masking / Static Redundancy: Voting
• Exact voting: Only one correct result possible

• Majority vote for uneven module numbers

• Generalized median voting - Select result that is the median,  
by iteratively removing extremes

• Formalized plurality voting - Divide results in partitions,  
choose random member from the largest partition

• Inexact voting: Comparison at high level might lead to multiple correct results

• Non-adaptive voting - Use allowable result discrepancy, put boundary on
discrepancy minimum or maximum (e.g. 1,4 = 1,3)

• Adaptive voting - Rank results based on past experience with module results

• Compute the correct value based on „trust“ in modules from experience

• Example: Weighted sum R=W1*R1 + W2*R2 + W3*R3 with W1+W2+W3=1
56

Voter

A B C

Dependable Systems Course PT 2014

N-Modular Redundancy (with perfect voter)

57

Module 1

Module 2

Module 3 Voter

...

Module N

Input Output

R
NMR

=
mX

i=0

✓
N

i

◆
(1�R)iRN�i

✓
n

k

◆
=

n!

k!(n� k)!

R2�of�3 =

✓
3

0

◆
(1�R)0R3 +

✓
3

1

◆
(1�R)R2

R2�of�3 = R3 + 3(1�R)R2

R3�of�5 = ...

• Special cases for combination of duplex (with comparator) and sparing (with switch)

• Pair and spare - Multiple duplex pairs, connected as standby sparing setup

• Two replicated modules operate as duplex pair (lockstep execution),  
connected by comparator as voting circuit

• Same setting again as spare unit,  
spare units connected by switch

• On module output mismatch, comparators  
signal switch to perform failover

• Commercially used, e.g. Stratus XA/R Series 300

Dependable Systems Course PT 2014

Pair and Spare

58

MODULES

1

2

3

OUTPUT INPUT

COMPARATOR

4
COMPARATOR

SWITCH/COMPARATOR

Dependable Systems Course PT 2014

Hybrid Approaches

• N-modular redundancy  
with spares

• Also called hybrid redundancy

• System has basic NMR  
configuration

• Disagreement detector replaces 
modules with spares if their  
output is not matching 
the voting result

• Reliability as long as the spare pool is not exhausted

• Improves fault masking capability of NMR

• Can tolerate two faults with one spare, while classic NMR would need 5
modules with majority voting to tolerate two faults

59

Adds fault
localization

Dependable Systems Course PT 2014

Coding Checks in Memory Hardware

• Primary memory

• Parity code

• m-out-of-n resp. m-of-n resp. m/n code

• Checksumming

• Berger Code

• Hamming code

• Secondary storage

• RAID codes

• Reed-Solomon code

60

Dependable Systems Course PT 2014

Memory Redundancy

• Standard technology in DRAMs

• Bit-per-byte parity, check on read access

• Implemented by additional parity memory chip

• ECC with Hamming codes - 7 check bits for 32 bit data words, 8 bit for 64 bit

• Leads to 72 bit data bus between DIMM and chipset

• Computed by memory controller on write, checked on read

• Study by IBM: ECC memory achieves R=0.91 over three years

• Can correct single bit errors and detect double bit errors

• Hewlett Packard Advanced ECC (1996)

• Can detect and correct single bit and double bit errors

61

Dependable Systems Course PT 2014

RAID

• Redundant Array of Independent Disks (RAID) [Patterson et al. 1988]

• Improve I/O performance and / or reliability by building raid groups

• Replication for information reconstruction on disk failure (degrading)

• Requires computational effort (dedicated controller vs. software)

• Assumes failure independence

62

Dependable Systems Course PT 2014

Parity With XOR

• Self-inverse operation

• 101 XOR 011 = 110, 110 XOR 011 = 101

63

Disk Byte
1 1 1 0 0 1 0 0 1
2 0 1 1 0 1 1 1 0
3 0 0 0 1 0 0 1 1
4 1 1 1 0 1 0 1 1

Parity 0 1 0 1 1 1 1 1

Disk Byte
1 1 1 0 0 1 0 0 1

Parity 0 1 0 1 1 1 1 1
3 0 0 0 1 0 0 1 1
4 1 1 1 0 1 0 1 1

Hot Spare 0 1 1 0 1 1 1 0

Dependable Systems Course PT 2014

15 - Software Dependability

• Fault elimination

• Reduce number of dormant faults at development time

• Fault-tolerant software

• Techniques to achieve fault tolerance for software faults

• Application of redundancy idea to software modules

• Software fault tolerance

• Techniques to achieve fault tolerance by software mechanisms

• Typically for hardware failures on lower levels in the system stack

• Redundancy managed by operating system, cluster framework, application code

64

Dependable Systems Course PT 2014

Fault Elimination through Software Testing

65

(C) Ian Sommerville

Responsibility of
the component

developer, based
on experience

Responsibility of an
independent testing

team, based on
specification

Black-Box
Tests

Access to source
code, tested while
components are

integrated

Steadily
increasing

load

Excess
maximum

design load

Dependable Systems Course PT 2014

Testing Through Software Fault Injection

• Intentionally trigger erroneous behavior of the execution environment

• Typical approach for communicating software entities

• Orientation towards implementation details - program state, functional behavior

• Several non-intrusive implementation techniques, such as AOP

• Injection can be done as part of execution under real conditions

• Huge variety of fault classes, including SWIFI fault classes

• New approaches support remote fault injection (e.g. fuzzing)

• Compile-time injection: Leads to erroneous image being executed

• Run-time injection: Demands some altering of application state during runtime

• Typical triggers: Time-out, exception, debugging trap, code insertion

66

Dependable Systems Course PT 2014

Software Fault Model [Goloubeva]

• Example: Control loop writing computation result to a variable

• Temporary fault: Write NULL to result variable after end of usage

• Permanent fault: Compute and store incorrect output from input data

• Single vs. multiple faults depends on granularity level of investigation

• On source code level

• Program: Structured collection of features with syntax and semantic

• Syntax allows to describe fault model

• Negation of semantic properties defines a fault model

• Examples: Calling non-existent functions, Functions not returning a value, values
out of their type range, missing input parameters

• On executable level, e.g. stack overflow due to recursion
67

Dependable Systems Course PT 2014

Fault-Tolerant Software -
Another categorization [Lyu 95]

• Single version techniques

• Add mechanisms for detection, containment, and handling of errors to the
software component itself

• Examples: Software structure and actions approaches, error detection,  
exception handling, checkpointing and restart, process pairs, data diversity

• Multi version techniques

• Rely on structured utilization of variants of the same software

• Examples: Recovery blocks, N-version programming

• Principles can be applied to any software layer

• Identify source of most design faults

• Typically no problem with parallel application, beside cost factor

68

Dependable Systems Course PT 2014

Single-Version Approaches -
Wrapper

• Piece of software that encapsulates a given program when it is being executed

• Typical approach for operating systems and middleware stacks

• Structure: Wrapper software and wrapped entity

• Inputs and outputs are checked by the wrapper

• Examples:

• Dealing with buffer overflow, checking scheduler correctness (e.g., EDF),
bypassing known bugs, checking output correctness

• When pre- or postconditions are violated, usually an exception is being raised

• Wrapper forms an acceptance test in the dependability rings

• Good approach for fixing issues in the operational phase of software

69

• Save application state data at recovery points

• Can be reloaded on crash or any other kind  
of data loss

• Possible on different levels: local per process,  
partial, complete, distributed

• Optimum checkpointing interval

• Checkpointing too frequent: Majority of time spent for data saving

• Checkpointing too rare: May take long time to recover

• Several specialized solutions for C / C++ language, easier with reflection support

• Popular approach in clusters / high-performance computing

• Latest trend: In-memory checkpointing

Dependable Systems Course PT 2014

Single Version Approaches -
Checkpointing

70

taken from  
Software Fault Tolerance: A Tutorial

Dependable Systems Course PT 2014

Single Version Approaches -
Data Diversity [Ammann 88]

71

ta
ke

n
fro

m
  

So
ftw

ar
e

Fa
ult

 To
ler

an
ce

: A
 T

ut
or

ial

Dependable Systems Course PT 2014

Single Version Approaches -
High-Level Instruction Duplication [Goloubeva]
• Introduce data and code redundancy through

high-level transformation

• Duplicate every variable

• Perform every write operation on both copies
of the variable

• After each read operation, the copies must be
checked for consistency

• Should be close to read operation,  
in order to avoid error propagation

• Includes also expression evaluation

• Procedure parameters treated as variables

• Independent from underlying hardware,  
targets cache / main memory faults  

72

a=b;
.. becomes ...
a0=b0;
a1=b1;
if (b0 != b1)
 error();
...

a=b+c;
... becomes ...
a0=b0+c0;
a1=b1+c1;
if ((b0!=b1)||(c0!=c1))
 error();

Dependable Systems Course PT 2014

Control Flow Error

• Control flow error (CFE) leads to unexpected instruction
execution

• Terminology:

• Basic block (BB) - branch-free serial code fragment

• Branch / jump instruction is modeled as last instruction
of a basic block

• Control flow graph (CFG) - one node per basic block

• Illegal branch - Node transition is not part of the CFG

• Wrong branch - Node transition is already part of the CFG

• Inter-block error - Erroneous branch to different block

• Intra-block errors - Erroneous branch inside a block

73

i=0;
while(i<n) {

 if (a[i] < b[i])

 x[i]=a[i];

 else
 x[i]=b[i];

 i++;
}

BB 0

BB 1

BB 2 BB 3

B 4

BB 5

Dependable Systems Course PT 2014

Multi-Version Approaches
Recovery Blocks

• Redundant system
implementations are
typically used
simultaneously,  
best answer is picked i.e.
by voting

• Alternative way:
Sequential execution of
recovery blocks

• Introduced in 1974 by
Horning et. al.

• Dynamic fault tolerance
approach, related to
stand-by sparing in
hardware

74

establish Checkpoint
 Primary Module
Acceptance Test, else
 load Checkpoint
 Alternative Module 1
Acceptance Test, else
 load Checkpoint
 Alternative Module 2
 ...
else Failure Exception

Dependable Systems Course PT 2014

Multi-Version Approaches -
N-Version Programming

• Common mode errors are only catchable by design diversity

• Design diversity is a complex issue

• Design philosophies, software tools, programming languages, test philosophies

• Typical approaches try to utilize randomness - separate teams on different locations

• N-Version Programming

• Suggested by Elmendorf in 1972, developed by Avizienis & Chen in 1977

• Static approach, combination of decision mechanism and forward recovery

• At least two independently designed and functionally equivalent variants

• Variants are executed in parallel, decision mechanism selects the „best“ result

• Can support reliability, but also system security against malicious logic

75

Dependable Systems Course PT 2014

Simplex

• Idea: Using simplicity to control complexity

• Forward recovery approach, based on feedback loop

• HAC subsystem - Simple construction, formal methods, reliable hardware

• HPC subsystem - Complex technology, advanced features

• HPC can use HAC output, but not vice versa

• Decision logic based on control loop output

• Typically performance degredation with HAC

• Example: Boeing 777 primary and secondary  
flight controller

76

77

