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Predicting System Reliability - Application Areas

- Feasibility evaluation for given model, identification of potential problem sources
- Comparison of competing designs
- |dentification of potential reliability problems - low quality, over-stressed parts
* Input to other reliability-related tasks
- Maintainability analysis, testability evaluation
- Failure modes and effects analysis (FMEA)
 Ultimate goal is the prediction of system failures by a reliability methodology

« Approach depends on nature of component (electrical, electronic, mechanical)

Dependable Systems Course 2 PT 2014



Predicting System

Reliabllity -

Procedure

« Procedure of system reliability prediction [Misra]

 Define system and its operating conditions

- Define system performance criteria (success, failure)

 Define system model (e.g. with RBDs or fault trees)

« Compile parts list for the system

» Assign failure rates and modify generic failure rates with an according procedure

- Combine part failure rates

- Estimate system reliability
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Reliability Data

- Field (operational) failure data
- Meaningful source of information, experience from real world operation
 Operational and environmental conditions may be not fully known
- Service life data with / without failure
- Helpful in assessing time characteristics of reliability issues
- Data from engineering tests
- Example: Accelerated life tests
* Results from controlled environment
» Trustworthy for analysis purposes

- Lack of failure information is the ,greatest deficiency* in reliability research [Misra]
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—allure Probability Sources (Clemens & Sverdrup)

* Original data
» Manufacturer‘s Data
- Industry Consensus Standards, MIL Standards
- Historical Evidence - Same or similar systems
- Similar product technique - Take experience from old product with similar attributes

- Similar complexity technique - Estimate reliability by relate product complexity to
well-known product

* Prediction by function technique - Part count prediction or part stress prediction

 Simulation or testing
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Reliability Prediction Models

- Economic requirements affect field-data availability
« Customers do not need generic field data, so collection is extra effort
- Numerical reliability prediction models available for specific areas
- Hardware-oriented reliability modeling
- MIL-HDBK-217, Bellcore Reliability Prediction Program, ...
- Software-oriented reliability modeling
- Jelinski-Moranda model, Basic Execution model, software metrics, ...
 Prediction models look for corrective factors, so they are always focused
- Demands confidence in understanding of environmental conditions

 Reconciliation is often needed between the different values of failure data from
various sources
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MIL-HDBK 217

- Most widely used and accepted prediction data for electronic components

- Military handbook for reliability prediction of electronic equipment

- First published by the U.S. military in 1965, last revision F2 from 1995

- Common ground for comparing the reliability of two or more similar designs

- Empirical failure rate models for various part types used in electronic systems
- ICs, transistors, diodes, resistors, capacitors, relays, switches, connectors, ...
- Failures per million operating hours

- Modification for mechanical components
- Due not follow exponential failure distribution or constant rate (e.g. wear-out)

« Focus on very long investigation time to include replacement on failure
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MIL-HDBK 217 - Part Count Method

- Part count prediction in early product development cycle, quick estimate
 Prepare a list of each generic part type and their numbers used
- Assumes that component setup is reasonably fixed in the design process
- MIL 217 provides set of default tables with generic failure rate per component type
- Based on intended operational environment
- Quality factor - Manufactured and tested for military, or relaxed environment
- Learning factor - Number of years the component has been in production

- Assumes constant failure rate for each component, assembly and the system
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MIL-HDBK 217 - Part Count Method

- Early estimate of a failure rate, given by
n
A=) N\img,
1=1
1, - Number of part categories
N ; -~ Number of parts in category |
)\7; - Failure rate of category |

« TT(QY; - Quality factor for category i
- Literally: Counting similar components of a product and grouping them in types

* Quality factor from MIL 217 tables

 Part count assumes all components in a series
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MIL-HDBK 217 - Part Stress Method

- Part stress analysis prediction supporting 14 different operational conditions
- Accurate method for prediction, as alternative to simulation
- Used with final design - detailed part lists and stress test results are known

- Demands knowledge of all stresses (temperature, humidity, vibration, ...)
and their effect on the failure rate

- Relies typically on data sheet from component manufacturer
- MIL 217 provides mathematical model for failure rate per component type
- Environment factors influence resulting failure rate

- Emulation of environments in test chambers

 Excludes effects of ionizing radiation
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MIL-HDBK 217 - Part Stress Method

« Determine the system failure rate from each part‘s stress level
AN=mpmo(Cimrmy + Comg)
7T [, - Learning factor (1-2)
TTQ - Production quality factor (1-100)
70T - Temperature acceleration factor (1-100)
7Ty - Voltage stress factor
TUE - Application environment factor (1-20)
+ (1, Uy - Technology constants for complexity (1-100) and case (1-20)
A\ - Failure rate per million hours
- Supports quantitative assessment of relative cost-benefit of system-level tradeoffs
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Application

—Nnvironment

—actor

Environment

Ground, Benign

Symbol

Description

Nonmobile, temperature and humidity controlled
environments readily accessible to maintenance;
includes laboratory instruments and test equipment,
medical electronic equipment, business and scientific
computer complexes, and missiles and support
equipment in ground silos.

Ground, Fixed

Moderately controlled environments such as
installation in permanent racks with adequate cooling
air and possible installation in unheated building;
includes permanent installation of air traffic control
radar and communications facilities.

Environmentally uncontrolled areas, which cannot be
inhabited by an aircraft, crew during flight.
Environmental extremes of pressure, temperature

Ground, Mobile

Equipment installed on wheeled or tracked vehicles
and equipment manually transported; includes tactical
missile ground support equipment, mobile
communication equipment, tactical fire direction
systems, handheld communications equipment, laser
designations and range finders.

Naval,
Sheltered

Includes sheltered or below deck conditions on
surface ships and equipment installed in submarines.

Naval,
Unsheltered

Unprotected surface shipborne equipment exposed to
weather conditions and equipment immersed in salt
water. Includes sonar equipment and equipment
installed on hydrofoil vessels.

Typical conditions in cargo compartments, which can
be occupied by an aircrew. Environment extremes of

Alrporne., and shock may be severe. Examples include
Uninhabited, Ac e L
Cargo uninhabited areas pf long mission aircraft such as.the
C130, C5, B52 and C141. This category also applies
to uninhabited areas pf lower performance smaller
aircraft such as the T38.
Airborne, Same as AUC but installed on high performance
Uninhabited, AUF aircraft such as fighters and interceptors. Examples
Fighter include the F15, F16, F111, and A10 aircraft.
Equipment installed on helicopters. Applies to both
Airborne, ARv. internally and externally mounted equipment such as
Rotary Winged ' laser designators, fire control systems, and
communications equipment.
Earth orbital. Approaches benign ground conditions.
Space, Flight SF Vehicles neither under powered flight nor in
atmospheric reentry; include satellites and shuttles.
Conditions related to powered flight or air breathing
Missile, Flight MF missiles, cruise missiles, and missiles in unpowered
free flight.
Severe conditions related to missile launch (air,
ground, and sea), space vehicle boost into orbit, and
Missile, Launch ML vehlgle re-ent.ry and landing by paraghute. Also
applies to solid rocket motor propulsion powered
flight, and torpedo and missile launch from
submarines.
Extremely severe conditions related to canon
Cannon, C launching of 155mm and 5 inch guided projectiles.
Launch - Conditions apply to the projectile from launch to

target impact.

Airborne, pressure, temperature, shock and vibration are

Inhabited, Ac minimal. Examples include long mission aircraft such

Cargo as the C130, C5, B52 and C141. This category also
applies to inhabited areas in lower performance
smaller aircraft as the T38.

Airborne, Same as AIC but installed on high performance

Inhabited, Au: aircraft such as fighters and interceptors. Examples

Fighter include the F15, F16, F111, F/A18 and A10 aircraft.
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MIL-HDBK 217

- Till today the most commonly used method for MTBF computation
- Was based on historical component failure data, mostly exponential distribution
« 1996 announced as discontinued by the U.S. Army
» ,has been shown to be unreliable”
* Main driver in product reliability is no longer hardware component reliability
» Failure rates in the specification are too high for todays electronic
 Specific failure model per component
- Example: Solid tantalum fixed electrolytic capacitor

- Failure rate depends on base failure rate, series resistance factor, quality level and
environment factor
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MIL-HDBK 217

—Xamples

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

1. Bipolar Devices, Digital and Linear Gate/Logic Arrays

MOS Devices, Digital and Linear Gate/Logic Arrays

Programmable Array Logic (PAL)
Microprocessors

2.
3. Field Programmable Logic Array (PLA) and
4,

lp = (Cyry + Cong) mam Failures/10® Hours

Bipolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C,

Digital Linear 1 PLA/PAL
No. Gates C1 No. Transistors C No. Gates C
| l 1 1
1 to 100 0025 1 to 100 .010 Up to 200 010
101 to 1,000 .0050 101 to 300 .020 201 to 1,000 .021
1,001 to 3,000 010 301 to 1,000 .040 1,001 to 5,000 042
3,001 to 10,000 020 1,001 to 10,000 060
10,001 to 30,000 040
30,001 to 60,000 .080
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MIL-HDBK 217

—xamples

5.2 MICROCIRCUITS, MEMORIES

D
1.
2.
3
4

5.
6.

ESCRIPTION

Read Only Memories (ROM)

Programmable Read Only Memones (PROM)

Uitravioiei Eraseable PROMs (UVEPROM)

“Elash.* MNQOS and Floating Gate Electrically

Fraseable PROMs (EEPROM). Includes both

floating gate tunnel oxide (FLOTOX) and texiured
polysilicon type EEPROMs

Static Random Access Memories (SRAM)

Dynamic Random Access Memories (DRAM)

Ap = (Cq 77 + Co 7 * Aeyo) " ™ Failures/108 Hours

Die Complexity Failure Rate - Cq

Dependable Systems Course

MOS B Bipolar
PROM, SRAM
UVEPROM, (MOS & ACM,
i ' EEFRCM, ~ A MANQY
Memory Size, B (Bits) ROM EAPROM DRAM BiMOS) PR SRAM
Up t0 16K .00065 .00085 .0013 0078 0094 .0052
16K < B < 64K .0013 L0017 .0025 016 018 011
64K < B < 256K 0026 0034 0080 .031 .038 021
256K < B S 1M 0052 .0068 .010 .062 .075 042
A4 Factor for Aoyc Calculation A, Factor for doye Calculation
Total No, of Totai No. oi
Programming Textured- Programming Cycles Textured-Poly Ao
Cycles Over | Fiotox' Poly? Over EEPROM Life, C
EEPROM Lite, U
Up to 300K 0
uo to 100 .00070 .0097
: o s annK < C < 400K 1.1
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Mechanical Parts

12.1 ROTATING DEVICES, MOTORS

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to
polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional
horsepower motors utilizing roliing element grease packed bearings. The modal is dictated by two failure modss, bsaring
tailures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and
replaced and are not a failure mode. Typical applications include fans and blowers as well as various other motor
applications. The mode! is based on References 4 and 37, which contain a more comprehensive treatment of motor ife

_prediction methods. The references should be reviewed when bearing loads exceed 10 percent of rated load, speeds
excead 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous failure rates, or hazard rates, experienced by motors are not constant but increase with time. The
failure rate model in this section is an average failure rate for the motor operating over time period t". This time period is
either the system design life cycle (LC) or the time period the motor must last between complete refurbishment (or
replacement), The model assumes that motors are replaced upon failure and that an effective constant failure rate is

achieved after a given time due 1o the fact that the effective “time zero" of replaced motors becomes random after a
significant portion of the population is replaced. The average failure rate, xp can be treated as a constant failure rate and
added to other part failure rates from this Handbook.

.*1 l2 6
kp= n + x 10° Failures/10°® Hours
(!B Ba.w

Bearing & Winding Characteristic Life - ag and oy

TA °C) ag (Hr.) oy (Hr.) Ty (°C) ag (Hr.) oy (Hr.)
0 3600 6.40+06 70 22000 1.16405
10 13000 3.20+06 80 14000 7.00404
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elcordia (Bellcore) SR-332 / TR-332

- Reliability prediction model evolved from telecom industry equipment experience
- First developed by Bellcore Communications research, based on MIL217
- Lower and more conservative values for MTBF
- Availability with relation to failures per billion component operation hours
- Factors: Static failure rate of basic component, quality, electrical load, temperature
- Often observed that calculations are more optimistic than in MIL 217
- Requires fewer parameters than MIL 217 (four unified quality levels)

- Different components supported - Printed circuit boards, lasers, tubes, magnetic
memories (217) vs. gyroscopes, batteries, heaters, coolers, computer systems
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elcordia (

Bellcore) S

R-332 /

« Three methods with empirically proven data

- Method 1: Part count approach, no field data available

- Supports first year multiplier for infant mortality modeling
* Method 2: Method 1 extended with laboratory test data

« Supports Bayes weighting procedure for burn-in results

* Method 3: Method 2 including field failure tracking

R-332

- Different Bayes weighting based on the similarity of the field data components

A= Ty ApT

[Environmenta

A

STt

/ Quality Factor )

Dependable Systems Course

| Factor [ Base Failure Rate from

Transistor Count

1

J

Temperature Factor,
default 40 deg

PT 2014



MIL-HDBK-217 vs. Telcordia

- Often observed that Telcordia calculations are much more optimistic

- Telecordia requires fewer parameters for components, has additional capabilities for
considering burn-in data, laboratory test data, and field data

 Helps to calculate failure rates based on historical data
- Can model infant mortality effects

- Telcordia uses Failures-In-Time (FIT) - per billion hours, MIL uses failures per million
hours

- Operating environments in Telcordia are limited, since only designed for telco users

- Telcordia quality levels are simplified
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PRISM

- PRISM released by Reliability Analysis Center (RAC) in 2000

- Can update predictions based on test data

- Addresses factors such as development process robustness and thermal cycling
 Basic consideration of system software part

« Seen as industry replacement for MIL 217

 Factors in the model: Initial failure rate, infant mortality, environment, design
processes, reliability growth, manufacturing processes, item management
processes, wear-out processes, software failure rate, ...

- Quantitative factors are determined through an interactive process
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RIAC 217Plus

- Predictive models for integrated circuits (Hermetic and non-hermetic), diodes,
transistors, capacitors, resistors and thyristors

- Based on over 2x1013 operation hours and 795,000 failures

* Includes also software model

- System level modeling part for non-component variables

- Failure rate contribution terms: Operating, non-operating, cycling, induced

 Process grading factors: Parts, Design, Manufacturing, System Management, Wear-
out, Induced and No Defect Found

- Model degree of action for failure mitigation

- Still only series calculation, no active-parallel or standby redundancy support
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Other Sources

- |EC TR62380 - Technical report of the International Electrotechnical Commission,
considers thermal behavior and system under different environmental conditions

« |EC 61709 - Parts count approach, every user relies on own failure rates

- NPRD-95 - Failure rates for > 25.000 mechanical and electromechanical parts,
collected from 1970s till 1994

- HRD5 - Handbook for reliability data of electronic components used in Telco industry,
developed by British Telecom, similar to MIL 217

- VZAP95 - Electrostatic discharge susceptibility for 22.000 devices (e.g. microcircuits)
- RDF 2000 - Different approach for failure rates
« Cycling profiles - power on/off, temperature cycling

- Demands complex information (e.g. thermal expansion, transistor technology,
package related failure rates, working time ratio)
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Other Sources

- WASH-1400 (NUREG-75/015) - ,,Reactor Safety Study - An Assessment of Accident
Risks in U.S. Commercial Nuclear Power Plants* 1975

- [IEEE Standard 500
- Government-Industry Data Exchange Program (GIDEP)

- NUREG/CR-1278; ,,Handbook of Human Reliability Analysis with Emphasis on
Nuclear Power Plant Applications;* 1980

- SAE model - Society of automotive engineers, similar equations to MIL 217
- Modifying factors are are specific for automotive industry

- Examples: Component composition, ambient temperature, location in the vehicle
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Comparison

- Naval Surface Warfare Center
(NSWC) Crane Division
established working group for
modification factors of MIL
217

* Industry survey - Reliability
prediction methods used

* From survey of 1900
component tests,

less than 25% had used
prediction models

« 38% of them used MIL 217

Dependable Systems Course

25

No Traceable
MTBF Source

1,900 COTS Items (1,378 with MTBF)

Prediction Methods Used (Breakdown of 437)

P
L 167 165
100
62
50 } m 15» | | D |
2
. I 2
2 3 “ S 6

(—_&
1=MIL-HDBK-2 3 = Demonstrated 5 = Engineering Estimate

210 227

(C)VMEC:tritical.com

2 = Telcordia (Bellcore) 4 = Accelerated Life 6 = OTHER 7?7 E
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Software - A Different Story

A

test/debug useful life obsolecence

e

failure rate

P time
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Software Reliability Assessment

- Software bugs are permanent faults, but behave as transient faults
- Activation depends on software usage pattern and input values
 Timing effects with parallel or distributed execution
- Software aging effects
* Fraction of system failures reasoned by software increased in the last decades
* Possibilities for software reliability assessment
- Black box models - No details known, observations from testing or operation
* Reliability growth models

- Software metric models - Derive knowledge from static code properties
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Dimensions of

-

Good for
managers

~

J

Slack

Box Models (Musa et al.)

Black box
SW reliability

Consider how
failure severity is
distributed

model
| |
Time domain Category
| | |
|
Calendar Execution 255 =23 : : :
Time Time Finite Infinite Poisson Binomial
A A i
— IC A\ .

through agin
. gh ag 9/

Consider stress
factors, e.g.
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Consider infinite
number of failures,
e.g. from

9 reintroduced bugs Py

Distribution
Class /
Family

Consider how failures
are distributed in time
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Software Reliability Growth Models

- Fundamental concept for software reliability modeling
- Basic assumptions
- Faults are removed immediately after being discovered
- Failure frequency tends to decrease over time, so reliability increases

- Software reliability can be predicted by interpolating the progress of testing-based
or bug fixing-based reliability improvement with a growth model

* Typical question for the model: When will we arrive at some reliability target?
« Supports planning of testing and service operation efforts
- Hundreds of proposed models, only a few tested with sufficient field data

- Collect software failure data, analyze for distribution characteristics, choose model

* Active empirical research in software engineering
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Reliability Growth Model Analysis by Tandem [Wood]

Number Number
of of
Defects Defects
Concave S-Shaped
Test Time Test Time

- Concave models: Fault detection rate decreases over time with repair activities
« S-Shaped models: Early testing is more efficient than later testing
- Ramp-up phase were error detection rate increases

- Example: Early phase detects faults that prevent the application from running
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Software Reliability Growth Models

- Classification by Singpurwalla and Wilson (1994)

- Type |: Model time between successive failures
- Should get longer as faults are removed from the software
- Time is assumed to follow a function, related to number of non-fixed faults
- Type I-1: Based on failure rate (Example: Jelinski-Moranda Model (1972))
* Type |-2: Model inter-failure time based on previous inter-failure times

* Type Il: Counting process to model the number of failures per time unit
- As faults are removed, observed number of failures per unit should decrease
» Typically derivation of remaining number of defects / failures

- Example: Basic execution time model by Musa (1984)
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Jelinksi-Moranda Model

* Finite number of bugs, inter-failure time has exponential distribution

- Assumptions: Faults are equal, occur randomly and independent from each other,
detection rate is constant, repairs are perfect, repair time is zero,
software operation during test is the same as in production use

« Constant function for failure rate in the i-th time interval, based on constant factor and
number of bugs:

- Estimation of )\i : Number of failures in interval i / length of interval i
- Failure rate estimation based on testing efforts done so far

- Allows to reason about (remaining) number of dormant faults in the software
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—xample: Jelinski-Moranda

- Time between failures 7.5 min at start, 2h after investigated testing / fixing period

« 75 faults were removed

 Looking for number of initial faults and proportionality constant

)\Q:(I)*N )\end:q)*(N—75) )\0%

0,125

p— :1 p— —
9 N N 6 N =80, =0,1

- Reliability after 10h of operation with the improved version of the software

R(t;) = e it R(10R) = ¢~ AenalOh — 7%
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BasIC

—Xxecution

ime Model (Musa)

« Another reliability growth model

- Determine cumulative number of failures by time |

- Start with estimated number of initial faults, get number of corrected fault after T

- Fundamental assumption that correction of faults does not introduce new ones

* One of the first models to rely on execution time, instead of calendar time

* Resources limit execution time spent

- Expression in terms of CPU time can indicate ,stress’ on software

- Random process that represents the number of failures experienced at some point

- Exponential distribution of resulting failure intensity function

- Failure intensity changes with a constant rate, depending on the number of
observed failures

Dependable Systems Course
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Basic Execution Time Model (Musa)

A - Failure rate (humber of failures per time unit)

T - Execution time (time since the program is running)

[ - Mean number of expected failures in an execution time interval

)\0 - Initial failure rate at the start of execution

Lo - Total number of failures over an infinite time period

Ao EXPECTED |
— YT FAILURES

/L(T) — VO(]“ — € " ) e LOGARITHMIC POISSON

)\(T) — )\06_”_87_ o e T e

BASIC EXECUTION TIME MODEL

- Assumed maximum number of
failures I/(y leads to decreasing [
over time
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Reliability Growth Model Analysis by Tandem [Wood]

* Technical report 96.1 by Tandem, 1996
 Analysis of 9 different growth models in comparison with real data
- Methodology needs to be adjusted with every new release
- Execution time is the best measure for test amount, calendar time does not work
- Weekly data was sufficient for the prediction models
- Simple (exponential) models outperformed others in stability and predictive ability

- Failure count estimation relevant for planning amount of testing and customer
support levels
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Reliability Growth Model Analysis by Tandem [Wood]

- Reality check for typical assumptions

- ,Repair is perfect”. New defects are less likely to be detected,
since regression is not as comprehensive as the original tests

- ,Each unit of time is equivalent”. Corner tests are more likely to find defects,
test re-runs for fixed bugs are less likely to find new defects

* ,, [ests represent operational profile*: Size and transaction volume of production
system is typically not reproducible

- ,Failures are independent®. Reasonable, except for badly tested portions of code
 During testing, the model should predict additional test effort for some quality level
- After test, the model should predict the number of remaining defects in production

« Most models do not become stable until about 60% of the tests
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Reliability Growth Model Analysis by

andem [Wood]

Total Defects predicted several weeks after RQA

Model Name 10 Weeks | 12 Weeks F 14 Weeks ﬁ 17 Weeks | 20 Weeks
Goel-Oku moto (G-O) 98 116 | 129 139 | 133
G-O S-Shaped 71 | 82 | o1 | 99 | 102
Gompertz 96 | 110 | 107 114 112
Yamada Raleigh 77 | 89 98 107 | 111
Pareto 757 833 735 631 462
Yamada Exponential 152 | 181 | 204 | 220 | 213
Hossain-Dahiya/G-O results same as G-O model
Weibull All results same as G-O model

| Log Poisson 140 | 153 | 161 166 160

There were 134 total defects found for Release 1, 100 in QA test, 34 after QA test

 Most models become stable at the same time as the G-O model

- S-shaped models tend to underestimate the number of effects

« G-O model (which is the Musa model) is the best choice for Tandem
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White Box Approach - Software Metric Models

- Larger software is more complex, which brings more dormant faults
- |dea: Rank software reliability by complexity measures

- ... for the code itself

- ... for the development process

- Complexity metrics should rank degree of difficulty for design and implementation of
program structures, algorithms, and communication schemes

- Hundreds of different metrics proposed, variety of software tools
- Most basic approach - lines of code (LOC)
* Industry standard from 0,3 to 2 bugs per 1000 lines of code

- Better data for structured analysis available with large open source projects
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Lines of Code By Language

Language

l XSL Transformation

Vim Script

Code Lines

8,173,235
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124,516
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21,223

10,878

3,552
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27

Comment Comment
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3 0.3%
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Halstead Metric

- Statistical approach - Complexity is related to number of operators and operands
+ Only defined on method level, OO code analysis must consider additional structure
» Program length N = Number of operators Nop + total number of operands Nop
- Vocabulary size n = Number of unique operators nop + number of unique operands nop
* Program volume V = N *logz(n)
 Describes size of an implementation by vocabulary and (mainly) by program length
* In-place changes are ok ...
* Difficulty level D = (norp / 2) * (Nop / nop), program level L =1 /D

* Error proneness is proportional to number of unique operators
-> since most languages only offer a few, this should be small

* Also proportional to the level of operand reuse through the code
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Halstead Metric

- Effort to implement / understand the program E=V *D
« Depends on volume and difficulty level of the analyzed software
« Describes mental effort to re-create the software (only implementation)
* Questioned by some researchers
- Time in seconds to implement / understand the program T =E / 18
« Stroud number 18 by John Stroud, psychologist
- -> humans can detect between 5 and 20 discrete events per second
« Widely ignored in software metric tools
- Number of delivered bugs B = V / 3000
- Bug count correlates with the complexity / effort to understand the software

- Statistically proven for object-oriented software
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Phantom edge for
CyC|QmatiC Comp|ex|’[y strongly connected graph

Thomas McCabe‘s cyclomatic complexity (1976) T

- Measure based on graph representation of the control flow lf ° V\Iﬁirle/ /

- Cyclomatic number v(G) for a strongly connected graph: 2 Cactiie//___
« Number of directed edges - number of vertexes L c <\ —

+ number of connected components

« Expresses number of independent conditional
paths in the control flow 134 12

- No consideration of data structure complexity,
data flow, or module interface design

« Goal should be max. 15 for functions, 100 for files

« Studies showed correlation between fault count and
cyclomatic number
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State-

« Software modules N1 ... Nm

Based Software Model (Cheung)

- States C and F denote correct and incorrect output

- Each module Ni computes the right result with probability R

- Pj denotes probability of control transition from module i to j, allows DTMC model

- System produces correct output if N is reached from N1, and Nn produces C

C F .\v ] .\v'_) ‘\v ] 4\'rn
C 1 0 0 0 0 0
F 0 1 0 0 0 0
N, 0 1 — R, 0 R, P> Ry Py Ry Py,
N, 0 ] — R, 0 R; P;o R;P;; R; P,
Nooi| 0 1-R,.1 0 R, _1P,_1) Ry—1Pi—1); Ry 1P 1yn
N, |R, 1-R, 0 0 0 0



"All Models are Wrong - Some are Useful."
George E. P. Box
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