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Dependability Modeling

• Use a formalism to model system dependability
• Quantify dependability attributes of components

• Calculate system availability/reliability
• Based on a set of data and assumptions - the availability model

• Most models expose the same expressiveness
• Each formalism allows to focus on certain aspects
• Component-based models: Reliability block diagrams, fault trees
• State-based models: Markov chains, petri nets

• System understanding evolved from hardware to software to IT 
infrastructures
• Example: Organization management influence on business service reliability

• Information Technology Infrastructure Library (ITIL)
• CoBiT(Control Objectives for Information and related Technology) 

State-Based Modeling | Dependable Systems 2014 2



Structural vs State-Based Dependability Models

• Structural / combinatorial models:
• Focus on static system structure

• High-level graphical modelling

• Mapping components to model elements

• State-based / Markov models:
• Focus on dynamic behaviour

• Notion of stochastic distributions in continuous time

• Can be solved analytically or simulated

• Structural models are often mapped to Markov 
models for quantitative analysis
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Malhotra, Manish, and Kishor S. Trivedi.
"Power-hierarchy of dependability-model types."



State-based models

• Component-based models work well if failure events are stochastically 
independent
• But: Catastrophic events destroy multiple components

• State-based models focus on failure states of the system
• Can handle transitions between failure states
• Independent of the system structure

• Analytical solution
• Demands independent failures, constant failure rates, (exponential distribution)

• Solution through simulation
• State model is simulated to estimate the resulting dependability metrics
• Arbitrary failure event distributions, approximations, long simulation time
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State Transition Diagrams

• Modelling approach typically used for queueing systems

• Assumptions
• Homogeneous workload assumption

All request are indistinguishable, so only their sum counts
• Operational equilibrium

Number of requests in the system is the same at the start and end of 
investigation
• May vary in the interval, but average throughput is constant
• Number of departures tends to approach the number of arrivals -

„all forces on the object are balanced“

• Memoryless assumption
Server state is a single parameter - number of processed requests

State-Based Modeling | Dependable Systems 2014 5



State Transition Diagrams

• Transitions between states happen at some rate
• Arrival rate l (transitions / sec), request completion rate m (transitions / sec)

• Flow-In Flow-Out principle
• Operational equilibrium ensures that transitions into the state are equal to 

transitions out of that state

• Not relevant how this state was reached and how long it stays in it
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State Transition Diagrams: Application

• System of n parallel servers which ,arrive‘ at repair situation (i.e., fail)
• Maximum number m of parallel repair activities

• Maximum k-out-of-n servers are allowed to be failed

• Arrival rate == failure rate

• Completion rate == repair rate

• State: number of servers down

• Transitions: a component failure or a component back in operation
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State Transition Diagrams: Analysis
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Probability that k servers are down 𝑝𝑘

Site availability 𝐴 = 1 − 𝑝𝑛

Average number of working servers

Probability of more than k servers down



Markov Chains

• Discrete random process, usually drawn as state transition diagram

• Markov property: next step depends only on the current step

𝑃 𝑋𝑛+1 𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑃 𝑋𝑛+1 𝑋𝑛)

• Impossible to predict future states, but useful for statistical properties
• Finite state space (chain), transitions with probabilities, initial state probabilities

• Transient state: probability > 0 to not return to this state (finite number of visits)

• Recurrent state: probability of 1 to return to this state after unspecified time t
• Mean recurrence time can be used as MTTF metric

• Time-homogeneous Markov chains: transition probabilities/rates do not change 
in time

𝑃 𝑋𝑛+1 = 𝑥 𝑋𝑛 = 𝑦) = 𝑃 𝑋𝑛 = 𝑥 𝑋𝑛−1 = 𝑦)
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Markov Chains: Time Model

Discrete-time Markov chain (DTMC)
• State changes after fixed time 

intervals

• Discrete parameter space,
discrete state space

• System is in exactly one state

• Transition to next state depends on 
transition probability at t

• Probability transition matrix
• Rows: flow out of that state
• Columns: flow into the state
• Rows and columns sum up to 1

Continuous-time Markov chain (CTMC)
• State changes at any point in time

• Continuous parameter space,
discrete state space

• Transition to next state after spending 
some time in a state (holding time)

• Transition rates instead of 
probabilities

• Transition rate / generator matrix Q
• qij : rate departing from i and arriving in j
• qii : -(total rate out of i)  no state change
• Rows sum up to 0
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Markov Chains: DTMC

• Each row sum of the transition matrix is 1 

• For each step: apply transition matrix to state probability vector
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Transition Matrix

Probability Matrix after 2 steps

(C) Tamara Lynn Anthony

Initial state probabilities
(distribution vector) 

State Transition Diagram



Dependability Modelling with CTMCs

• State: represents a particular error state
• E.g., number of failed components at any given time

• Transition: assigned with component failure rate
• Time-homogeneous process: failure / repair rates do not change over time
• Failure / repair events are stochastically independent, process is memory-less

• Each row sum is 0
• Probability mass flowing out of a state will go to some other state

• Stationary Distribution: the probability distribution to which the 
chain converges after a long time
• E.g., the availability distribution
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Example

Consider a k-out-of-n system with n components.
• Their failure rates are distributed following the bathtub curve

• Their repair rates are exponentially distributed

• Would (and can) you model this system using
• Time-homogenous DTMC?

• Time-homogenous CTMC?

• Time-inhomogenous CTMC?

• In a Markov chain modelling this system, which are recurring states?
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Example: Availability Analysis

• Interested in steady-state availability of the system
• Interpretation as steady-state probability for the system being operational at t

• Derived from probability vector: steady-state probabilities for the system 
being in one of the failure states after a number of steps

• “Static” steady-state availability computable if probabilities are in 
equilibrium
• Probability for leaving state is similar to probability for going into that state -

probability mass is evenly distributed

• Typically achieved after a high number of steps
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Example: 2-out-of-3 System

1. Balance equations (steady-state equilibrium criterion):

2. Compute per-state steady-state probabilities:

3. 2-out-of-3 availability:
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solve for si

Equilibrium: P(leaving s0) = P(entering s0)

< 2 failed nodes:



Markov Chains: Complexity

• Resulting formula equals result from Boolean investigation

• Markov chains also support non-independent events
• Common cause failures

• Markov chains sizes grow exponentially with their number of 
components - which is bad
 Divide-and-conquer: decompose and aggregate chain parts

• Structural decomposition: consider a system as set of independent 
subsystems 

• Behavioral decomposition: assume time constants for some fault occurrences 
and handling processes based on criticality - e.g. fault in parked airplane 
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Markov Chains: Complexity

3-component model, where each component has its own failure and 
repair rate

 23 states
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Petri Nets

• Modelling language for concurrent, distributed systems

• Bipartite graph
• Places contain tokens (marking)  state
• Transitions consume & produce tokens  behaviour

• Simultaneous enabling of multiple transitions: concurrent behaviour

• Transition firing: consume tokens from input places, produce tokens in output 
places
• Places: pre/post-conditions for state changes
• If all input places contain tokens, a transition is enabled

• Necessary number determined by arc cardinality
• Inhibitor arcs disable transitions if tokens lie in their origin places

• Conflict: When two transitions need the same token, only one can fire
• Resolved by priorities (absolute) or weights (randomized)
• E.g., competing for resources
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Petri Nets – Conceptual Mapping
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Input Places Transitions Output Places

Required Resources Task Freed Resources

Input Data Computations Output Data

Input Signals Signal Processing Output Signals

Buffers / Registers Processor Buffers / Registers



Stochastic Petri Nets

• Extend petri nets by stochastic temporal properties
• Delayed transition firing
• Temporal properties allow to study quantitative, time-dependent metrics

• E.g., MTTF

• Event propagation can be modelled in time, not just logically
 Increased expressiveness

• Generalized Stochastic Petri Nets (GSPN)
• Immediate transitions: fire immediately
• Timed transitions: fire with stochastic delay
• Model in continuous time

• Marking corresponds to a continuous probability distribution
• For simulation, time discretization becomes necessary
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Immediate transition

Timed transition



Stochastic Petri Nets: Transitions

• Immediate transitions
• Model logical inter-dependencies, e.g. error propagation chains

• Fire ‘in no time’, 0-Dirac distribution

• Timed transitions
• Model stochastic behaviour, e.g. random component failure

• Delayed firing, defined by probability distribution in continuous time

• For GSPN: exponential distribution

• Firing policies: when to sample the delay?
• Race with enabling memory: at enabling time

• Race with age memory: at firing time
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Stochastic Petri Nets – Properties

• Reachability set
• Contains all possible markings reachable from the initial marking
• Analysis questions:

• Can some system state (e.g. an error state) be reached at all?
• Does a firing sequence exist, that transforms M0 to M?

• Vanishing marking (GSPN)
• A marking that is abandoned again at once, due to immediate transition firing
• Probability of observing this marking: 0 (continuous time)

• Tangible marking (GSPN)
• A marking that the net remains in for some time 

• Reduced Reachability graph
• Graph of reachable tangible markings from the initial marking

• Boundedness
• A place is k-bounded if for every reachable marking, the number of tokens in it does not exceed k
• A net is k-bounded if all places are k-bounded
• Useful for modeling limited (bounded) resources
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Example: 2-of-3 System
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The complexity of the petri net does not 
depend on the number of components!



Stochastic Petri Nets vs Markov Chains

• Reachability graphs of GSPN are isomorphic to CTMC

• GSPN  “compact representation” of a CTMC
• CTMC: one node per state (exponential growth with #components)

• GSPN: one marking per state (linear growth with #components)

• GSPN simulation
• Traverse underlying CTMC at random

• No need to generate all states beforehand
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Example: K-of-N with Standby and Repairmen
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Cold standby components

Limited repair capacities



Example: Priority AND  Stochastic Petri Net
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Basic Event

PAND Gate



Example: Parallel System with Input Buffer

State-Based Modeling | Dependable Systems 2014 28

Light lines: Fault free operation
Heavy lines: Failures
Dotted lines: Repairs



Petri Net Simulation vs Analysis

Computational analysis
• Compute static properties of the net

• Probability of an event defined 
through place markings
• Add up the probabilities of all markings in 

which the condition corresponding to the 
event definition holds true

• Requires construction of reachability 
graph  state space explosion

• Additional challenges
• Transition guard functions

• Non-exponential distributions

Simulation

• Execute the model to randomly 
explore the state space

• Play the “token game” many times 
(Monte Carlo approaches) 

• Challenges
• Rare event simulation: small failure rates 
 importance sampling

• Random number generation

• Verification of results (statistical tests)
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Petri Net Simulation: Token Game
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update event queue

immediate transitions 
(error propagation)

timed transitions
(basic events)



Rare Event Simulation: Importance Sampling

• Problem: naïve simulation is inefficient for very rare events
• Such as simulating components with low failure rates
• Monte Carlo methods with moderately many rounds have high variance
• Many rounds needed to achieve a desired confidence level

Importance Sampling: Compute p = 𝐸 𝜙 𝑋 , where 𝜙 𝑋 is a desired 
dependability metric, and 𝑋 a rare random variable
• But sample from a different, not rare, distribution!
• Instead of sampling from 𝑃𝐷𝐹(𝑥), sample from 𝑃𝐷𝐹∗ 𝑥

• 𝑃𝐷𝐹 𝑥 > 0 ⇒ 𝑃𝐷𝐹∗ 𝑥 > 0

• Likelihood ratio: 𝑤 𝑥 =
𝑃𝐷𝐹 𝑥

𝑃𝐷𝐹∗ 𝑥

 p = 𝐸 𝜙 𝑋∗ ∗ 𝑤(𝑥)
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Importance Sampling
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Reliability Tools
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System structure
Fault classes
Failure rates

Fault handling procedures
Repair procedures

Success criteria Model development

Model solution (combinatorial, simulation)

Dependability evaluation

Reliability Life Cycle Costs
MTTF / MTTRAvailabilityFault Coverage ...
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Dependable Systems Course

Real World 
Systems

Model
Solution 
Technique

Evaluations

Input
Parameters

Modeling Errors
• Structural Errors: Initial state, 

missing or extra states / transitions
• Error Propagation Model
• Parametric Models: Failure and repair rates, 

coverage parameters
• Errors due to non-independence

Solution Errors
• Approximation Errors: System partition, state aggregation
• Numerical Errors: Truncation, Round-off
• Programming Errors
• Estimation Errors: Stochastic estimators, not enough data

Parametric Errors
• Different component parameter sources
• Projected stress factors assume unrealistic 
operational conditions



Runtime Dependability Evaluation
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(C) Salfner



Bayesian Networks

• Encode uncertain expert knowledge

• Encode causality relationships

• Given a set of random variables, find Joint Probability Distribution (JPD)

• Bayesian approach:
prior probability + likelihood  posterior probability

• Applications to dependability modeling
• Error propagation chains as causality relationships:

What is the probability of an overall error state, given prior per-component failure 
probabilities?

• Online fault diagnosis
What is the probability of observing the current system state, given that a processor 
is faulty/non-faulty?
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Bayesian Networks
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A
{sa1, sa2}

B
{sb1, sb2}

C
{sc1, sc2}

𝑱𝑷𝑫: 𝑃 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑛

𝑃 𝑥𝑖 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

e. g. ∶ 𝑃 𝑠𝑎1 ⋀ 𝑠𝑏1 ⋀ 𝑠𝑐1 = 𝑃 𝑠𝑎1 𝑃 𝑠𝑏1 𝑠𝑎1 𝑃(𝑠𝑐1)



Example: Fault Tree  Bayesian Network
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