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Dependability

- Umbrella term for operational requirements on a system

- IFIP WG 10.4: "[..] the trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers [..]"

 |EC IEV: "dependability (is) the collective term used to describe the availability
performance and its influencing factors : reliability performance, maintainability

performance and maintenance support performance”

- Laprie: ,, Trustworthiness of a computer system such that .
reliance can be placed on the service it delivers to the user “ Cost

- Adds a third dimension to system quality

« General question: How to deal with unexpected events ?

Performance

- In German: ,Verlasslichkeit® vs. ,Zuverlassigkeit
Dependability
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System Type Examples

- Dependable (reliable) system
» Delivers a required service during its lifetime
- Fault-tolerant computer system
 Continues correct service provisioning in the presence of faults
- Real-time computer system
» Deliver a service within given time constraints (physical time, duration, ...)
- Responsive computer system

* Fault-tolerant real-time system
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System Integration Levels

- Dependability has to be considered at every level

- Decomposition approach influences dependability success

( Java EE Application
( Application Modules

4

Application Server

Virtual Runtime Environment

Operating System

( Virtualization Environment )
( Operating System )

Compute Blade
Blade Center
( Integrated Circuits )
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Dependability Stakeholders

- System - Entity with function, behavior, and structure

« A number of components or subsystems, which interact under the control of a
design [Robinson]

- Service - System behavior abstraction, as perceived by the user
« User - Human or physical system that interacts with the systems service
 Specification - Definition of expected service and delivery conditions

- On different levels, can lead to specification fault
- Reliance demands assessment of non-functional dependability attributes
 Provide ability for trustworthy service delivery by dependability means

- Undesired (maybe expected) circumstances form dependability threats
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Dependability Tree (Laprie)
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Dependability Threats W/ U

- System failure - ,Ausfall’

- Event that occurs when the service no longer complies with the specification /
deviates from the correct service.

- System error - ,Fehler(zustand)‘
- Part of system state that can lead to subsequent failure
- Some sources define errors as active faults - not in this course ...
- System fault - ,Fehler(ursache)‘
- Adjudged or hypothesized cause of an error
* Failure occurs when error state alters the provided service
- Systems are build from connected components, which are again systems

* Fault is the consequence of a failure of some other system to deliver its service
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Chain of Dependability Threats (Avizienis)

[ Fault )a
Causation a

|  Failure )
Propagation a
[ Error )

Activation

AN
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—aults

 High diversity in possible sources and types

« Fault nature

- Accidental faults (,Zufallsfehler’) vs. intentional faults (,Absichtsfehler?)
* Intentional faults are created deliberately, presumably malevolently

- Fault origin viewpoints (not exclusive)

- Phenomenological causes: Physical / natural faults vs. human-made faults

- System boundaries: Internal faults (part of system state that produces an error)
vs. external faults (interference with the environment)

- Phase of creation: Design faults vs. operational faults

« Temporal persistence

- Permanent faults vs. temporary faults
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Observations on Faults

* An external fault is a design fault - inability or refusal to foresee all situations

 Design faults are created during system development, system modification, or
operational procedure creation and establishment

- Just replacing broken version of the same component leads to recurrent faults
- Physical faults are accidental faults
- Temporary external accidental physical faults are also called transient faults
- Temporary internal accidental faults are also called intermittent faults
- Examples: Pattern-sensitive memory hardware, system overload
- Arbitrary concept - Permanent faults with unknown activation condition
- Intentional and design faults are human-made faults, might be malicious faults

- Hardware production defects are typically physical faults
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Observations on Faults

- A fault is active when it produces an error

- A non-active internal fault is a dormant / passive fault (,inaktive Fehlerursache’)
- Origin in hardware fault analysis - often cycling between dormant and active

- Many specialized versions of the term ,fault, e.g. bug
- Heisenbug - Intermittent software fault, Bohrbug - Permanent software fault
- Mandelbugs - Appear chaotic due to many dependencies

- Fault-tolerant system design is a contradiction
- Design demands specification, faults are non-specified cases
- Solution: Specification for fault-free case + additional fault specification

- Fault can mean performance or timing faults (derivation from expected load / timing)
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—ault Characterization (Laprie & Kanoun)
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-ault Model

 Faults can be classified into different categories on different abstraction levels

* Physics
- Circuit level / switching circuit level

* Interesting for hardware design research (not this course)

* Investigate logical signals on connections

- stuck-at-zero, stuck-at-one, bridging faults, stuck-open

- Register transfer level
* Processor-memory-switch (PMS) level
- Hardware system level

. ... (Software) ...

Dependable Systems Course 14 PT 2014



Physical Faults [Goloubeva]

 Highly energized particles originate from space, atmospheric, or ground radiation

- Cosmic radiation, solar heavy ions, solar protons, ...

- Interaction of particle that strikes a circuit - atomic displacement, direct ionization,
indirect ionization created by nuclear reactions

- Smaller structures are sensitive to ionization effects from all kinds of particles

- Single Event Upset (SEU) - injected charge modifies memory information

- Dynamic random access memory (DRAM) - typical building blocks for main memory
* No inherent refreshing, storage capacitor changes value

- Static random access memory (SRAM), for caches, registers, pipeline, ...

* Impact on restoring transistor leads to invalid refresh operation
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Physical Faults [Goloubeva]

* Logic circuits: Shrinking size, reduction of power supply, increase of frequency
* Noise margin is extremely reduced, single-event strike impacts circuit lines
- Single Event Transient (SET): Particles modify voltage in a combinational circuit

- Can be modeled at gate level as erroneous transition on the gate output

1: 91\, -g4>—1/0/1

g3

1_ N\
g2 }1/0/1
1_
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—ault Model for Semiconductor Memories

- Stuck-at-1 or stuck-at-0 (hard) faults, transition / bit-flip faults (0->1, 1->0)

- Open and short circuits - Too much or too little metallization; Also open bonds

* Input and output leakage - Leakage current in excess of the specified limit

- Multiple writing - Data written into more than one cell on write attempt in one cell
- Pattern sensitivity - Device does not perform reliably with certain data pattern(s)
- Refresh dysfunction - Data is lost during the specified minimum refresh time

- Write recovery - Write followed by read/write at different location results in read/
write at same location

- Sense amplifier recovery - Data accessed remains the same for a number of cycles
and then suddenly changed

- Sleeping sickness - Memory loses information in less than the stated hold time
(typically tens of milliseconds)

Dependable Systems Course 17 PT 2014



—ault Model for Semiconductor Memories

- Decoder malfunction - Inability to address same portions of the memory array
* No cell accessed by certain address, multiple cells accessed by certain address
- Certain cell not accessed by any address
- Certain cell accessed by multiple addresses

- Bridging fault - Short between cells, AND type or OR type

- State coupling fault - Coupled (victim) cell is forced to 0 or 1 if coupling (aggressor)
cell is in a given state

* Inversion coupling fault - Transition in coupling cell inverts coupled cell

- Idempotent coupling fault - Coupled cell is forced to 0 or 1 if coupling cell transits
fromOto1ori1to0

- Disturb fault - Victim cell forced to 0 or 1 if we read or write aggressor cell (may be
the same cell)
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System-Level Fault Model

- Fault model idea originates from hardware

- How many faults of different classes can occur ?
What do | tolerate ?

- Timing of faults: Fault delay, repeat time, recovery time, ...
 Also mappable to software or even complete systems
* Activities as black box, only look on input and output messages

- Link faults are mapped to the
participating components

Computation fault

 Every participating component
would need a fault model -
pick the most urgent ones

Byzantine fault

Membership protocols

System diagnosis / Voting protocols

Byzantine agreement
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System-Level Fault Model [Cristian]

- Fail-Stop Fault : System stops all operations, notifies the other ones
 Crash Fault : System looses internal state or stops without notification
- Omission Fault : System will break a deadline or does not react to some task at all

- Send / Receiver Omission Fault: Necessary message was not not sent / not
received in time

- Timing Fault / Performance Fault : System stops / reacts to a task before its time
window, after its time window, or never

 Incorrect Computation Fault : No correct output on correct input
- Byzantine Fault / Arbitrary Fault : Every possible fault

 Authenticated Byzantine Fault : Every possible fault, but authenticated messages
cannot be tampered

 This maps to both shared-memory and shared-nothing systems (system of systems)
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Vulnerabillities as Security Faults

- Different dependability attributes might lead to different terminology
- Example: Vulnerability assessment for nuclear security [Johnston]

- Threat: Who might attack against what asset, using what resources, with what
goal in mind, when / where / why, with what probability

- Threat assessment (TA): Attempting to predict the threats - proactive security
- Vulnerability: Specific weakness in security that could be exploited (fault)
- Vulnerability assessment (VA): Attempting to discover / demonstrate them

- Risk management: Deploy, modify, and re-assign security resources, based on
TA results, VA results, assets, security breach consequences, and costs
(time, money, human resources)

- Attack: Attempt to harm valuable asset by exploiting one or more vulnerabilities,
may lead to security failure
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Security - Vulnerability Assessment [Johnston]

 Threats and vulnerabilities are different concepts, and must be treated separately
* Vulnerabilities without threats are not interesting
- Vulnerabilities do not define threats (bad locks do not imply thieves to show up)
- No one-to-one mapping, different attacks can exploit the same vulnerability
* TA involves mostly speculation about unknown people, so VA is more important
 Correct VA should identify large amount of issues with cheap countermeasures
- System features can become a vulnerability only in combination with an attack

- TA and VA are not pass / fail certifications
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—I'TOrs

- State of the system, not an event !

- Escalates to failure depending on ...
- ... intentional / unintentional redundancy
* ... System activity

- ... specification of a failure case from user perspective
(i.,e. maximum outage time, acceptable delay, retransmission rate)

- System activity can reverse the error state before damage is happening
- Latent (not recognized) vs. detected error resulting from an active fault

- Hardware often contains unintentional redundancy, makes it difficult to test

Dependable Systems Course 23 PT 2014



Hardware Error Models [Goloubeval

- Hardware faults effect state information, e.g. register values

» Stuck-at and other hardware faults therefore can also be denoted as error
- More interesting to investigate resulting effects on system-level

- Single data error - Program data is corrupted (in cache, memory, or register)

- Single code error - Effect on one instruction of the code

- Type 1/2 - Instruction modification without / with change of control flow

 Nature of error state may confirm to the nature of the originating fault

* Transient vs. permanent, static vs. dynamic, single vs. multiple

» Depends on utilized dependability means
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Hardware Error Models [Goloubeval

- Mapping of hardware-level single bit-flip error to other layers
- Memory data segment, processor data cache: System-level single data error

- Memory code segment, processor code cache: System-level single code error
of type 1 (modification of target register) or type 2 (modification of branch target)

- Memory stack segment: System-level data error or type 2 code error

* Processor register: Depending on processor architecture and register type
« Single data error if register holds data interpreted by the application
- Single type 1 code error, if register holds address used by load/store operation
- Single type 2 code error, if register holds address of a branch target

* Processor control register: Everything could happen ...
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Hardware

LOOP:

LOOP:

LOOP:
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—rror Models - Code

—rrors [Goloubeva]

MOV RO, 10 MOV RO, 10
MOV R1, 1 MOV R1, 1
ADD R1, R1 > LOOP: SUB R1, RI1
SUB RO, 1 SUB RO, 1

BNZ LOOP BNZ LOOP
MOV RO, 10 MOV RO, 10
MOV R1, 1 MOV R1, 1
ADD R1, R1 > LOOP: ADD R1, RI1
SUB RO, 1 SUB RO, 1

BNZ LOOP BNZ FOOBAR
MOV RO, 10 MOV RO, 10
MOV R1, 1 MOV R1, 1
ADD R1, R1 > LOOP: ADD R1, RI1
SUB RO, 1 SUB RO, 1

BNZ LOOP BZ LOOP
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Software Error Models [Goloubeva]

- Similar terminology, but completely different semantics
- Syntactical errors are handled by compiler, semantical errors occur at runtime
- Static vs. dynamic, permanent vs. temporary errors
- Example for C programming language
- Errors affecting assignments (missing / wrong local variable values)
- Errors affecting conditional instructions (wrong boolean or iteration condition)
» Errors affecting function call / return (wrong parameters, return statement)
» Errors affecting algorithms (missing statements or function calls, wrong operators)

- Under research in the software engineering field - field studies, automated code
analysis, developer interviews
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—rror Propagation

Service status

Component A

opagation

Service
Interface

Propagation

of component A

Service status
of component B

Correct
Service

FailureY

Component B Se

Interface

Propagation

Incorrect
Service

rvice

Correct
Service

) Incorrect
Failure Service
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Propagation [Goloubeval

(

CPU

Instruction
Cache

Data
Cache

Pipeline

X

Registers
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—rror Message Occurrence (Hansen & Siewiorek)

- Same fault can lead to different (detected or undetected) errors
 Errors become detected by error detection mechanism

- Some undetected errors are detected by several detectors

- Some detectors report several undetected errors as one

- Some undetected errors are never uncovered

 Detected errors might not be logged, if the system stops too fast

>@ >0
>0
M >0
»Q—»|
ndetected > Detected
Fault Errors Errors Error Messages
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Hazard

- Several domains prefer the term hazard for a safety error
- Situation (system state) that is threatening to life, health, property, or environment
« An active hazard situation is an incident, leading to loss event called accident
» Historically important in nuclear power, railroad and aviation industry

- Hazard analysis demands critical thinking

- What can go wrong with which consequences ?
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—allures

- Non-compliance with the specification - arbitrary failure (‘willkGrlicher Ausfall®)
- System failures can be further categorized in failure modes
- Fail-silent / crash failure mode - incorrect results are not delivered
- Fail-stop mode - constant value is delivered
- Failure mode domain - what is influenced
* Service result - value failures
 Service timeliness - timing failures
- Service availability - stopping failures
- User perception in the mode - consistent / inconsistent for all users

- Failure mode consequences for ranking the identified issues
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—allure Severity (,Schweregrad des Ausfalls®)

- Denotes consequences of failure
- Benign failures (,unkritische Ausfalle)
- Failure costs and operational benefits are similar
- Sometimes also umbrella term for failures only detected by inspection
* A system with only such failures is fail-safe
- Catastrophic failures (,kritische Ausfélle‘)
- Costs of failure consequences are much larger than service benefit
- Significant / serious failures - Intermediate steps expressing reduced service
- Grading of failure consequences on overall system depends on application
* Flying airplane - Catastrophic stopping failure, Train - Benign stopping failure

- Criticality - Highest severity of possible failure modes in the system
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Criticality Levels Example: DO-178B Standard

¢ Software Considerations in Airborne Systems and Equipment Certification
- Mature document, developed for more than 20 years
- Definition of severity of failure conditions for airplane, crew, and passengers
» Catastrophic - Loss of ability to continue safe flight and landing
» Major - Reduced airplane or crew capability to cope with operating conditions
- Reduction in safety margins and functional capabilities
- Higher workload or physical distress for the crew

« Minor - Not significantly reduced airplane safety, slight increase in workload
(Example: Change of flight plan)

* No effect - Failure results in no loss of operational capabilities and no increase in
crew workload

Dependable Systems Course 34 PT 2014



—xample: DO-178B Standard

Catastrophic
Accident

Adverse
Effects on

Occupants
Airplane
Damage

Emergency
Procedures

Abnormal
Procedures

Unacceptable

Acceptable

Nuisance

Nomal

Consequence of Failure Condition

Probable Improbable Extremely

Probability of Failure Condition
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—allure Types

 Duration of the failure
- Permanent failures - no possibility for repairing or replacement
- Recoverable failures - back in operation after the system recovered from error state
» Transient failures - short duration, no major recovery action
- Effect of the failure
- Functional failures - system does not operate according to its specification
- Performance failures - performance or SLA specifications not met
» Scope of the failure
- Partial failure - only parts of the system become unavailable

- Total failure - all services go down
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Swiss Cheese Model (Prof. Reason)

» Origins in medical research

- Defenses, barriers, and safeguards might be penetrated by fault trajectory

" T, .

\
\ \\\\ The Latent Failure Model of Complex System Failure

TRIGGERS] 7
wlomé " g |

SYSTEMS

ACCIDENT
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Observations on Failures

* Failures vs. Load
* Typically positive correlation
* Increasing load can lead to wear-out, so the failure probability increases
 Higher load can activate dormant faults
 Detected faults lead to recovery activities, which again increases the load
 Possibility for unintended feedback effects in complex systems
- Related faults (attributed to a common cause) can lead to common-mode failures

- Mostly reasoned by design faults that impact redundant copies of the component
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Chain of Dependability Threats

UNSTABLE OR
MARGINAL
HARDWARE

PHY SICAL — ™| PERMANENT [ ™
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TRANSIENT
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TEMPORARY EXTERINAL
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