Dependable Systems

Dependabillity Threats

Dr. Peter Troger
Sources:

J.C. Laprie. Dependability: Basic Concepts and Terminology

Eusgeld, Irene et al.: Dependability Metrics. 4909. Springer Publishing, 2008

Echtle, Klaus: Fehlertoleranzverfahren. Heidelberg, Germany : Springer Verlag, 1990.
Pfister, Gregory F.: High Availability. In: In Search of Clusters. , S. 379-452

Dependability

- Umbrella term for operational requirements on a system

- IFIP WG 10.4: "[..] the trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers [..]"

 |EC IEV: "dependability (is) the collective term used to describe the availability
performance and its influencing factors : reliability performance, maintainability

performance and maintenance support performance”

- Laprie: ,, Trustworthiness of a computer system such that .
reliance can be placed on the service it delivers to the user “ Cost

- Adds a third dimension to system quality

« General question: How to deal with unexpected events ?

Performance

- In German: ,Verlasslichkeit® vs. ,Zuverlassigkeit
Dependability

Dependable Systems Course 2 PT 2014

System Type Examples

- Dependable (reliable) system
» Delivers a required service during its lifetime
- Fault-tolerant computer system
 Continues correct service provisioning in the presence of faults
- Real-time computer system
» Deliver a service within given time constraints (physical time, duration, ...)
- Responsive computer system

* Fault-tolerant real-time system

Dependable Systems Course 3 PT 2014

System Integration Levels

- Dependability has to be considered at every level

- Decomposition approach influences dependability success

(Java EE Application
(Application Modules

4

Application Server

Virtual Runtime Environment

Operating System

(Virtualization Environment)
(Operating System)

Compute Blade
Blade Center
(Integrated Circuits)

Dependable Systems Course 4 PT 2014

Dependability Stakeholders

- System - Entity with function, behavior, and structure

« A number of components or subsystems, which interact under the control of a
design [Robinson]

- Service - System behavior abstraction, as perceived by the user
« User - Human or physical system that interacts with the systems service
 Specification - Definition of expected service and delivery conditions

- On different levels, can lead to specification fault
- Reliance demands assessment of non-functional dependability attributes
 Provide ability for trustworthy service delivery by dependability means

- Undesired (maybe expected) circumstances form dependability threats

Dependable Systems Course 5 PT 2014

Dependability Tree (Laprie)

DEPENDABILITY —

— ATTRIBUTES —

— AVAILABILITY
I— RELIABILITY

— SAFETY
CONFIDENTIALITY

— INTEGRITY

— MEANS

— MAINTAINABILITY

— FAULT PREVENTION
— FAULT TOLERANCE

— FAULT REMOVAL

— FAULT FORECASTING

— FAULTS

L. THREATS

ERRORS

- FAILURES

Dependable Systems Course

PT 2014

Dependability Threats W/ U

- System failure - ,Ausfall’

- Event that occurs when the service no longer complies with the specification /
deviates from the correct service.

- System error - ,Fehler(zustand)‘
- Part of system state that can lead to subsequent failure
- Some sources define errors as active faults - not in this course ...
- System fault - ,Fehler(ursache)‘
- Adjudged or hypothesized cause of an error
* Failure occurs when error state alters the provided service
- Systems are build from connected components, which are again systems

* Fault is the consequence of a failure of some other system to deliver its service

Dependable Systems Course 7 PT 2014

Chain of Dependability Threats (Avizienis)

[Fault)a
Causation a

| Failure)
Propagation a
[Error)

Activation

AN

Dependable Systems Course 8 PT 2014

[Fault)

-

Front End Load Balancer
API Proxy ﬁ

[http://blog.programmableweb.com/]

Load BaIancer

Componen - ||® ‘
Services ' '

Data Center
AWS Storage SimpleDB

NETELI

http://blog.programmableweb.com/

—aults

 High diversity in possible sources and types

« Fault nature

- Accidental faults (,Zufallsfehler’) vs. intentional faults (,Absichtsfehler?)
* Intentional faults are created deliberately, presumably malevolently

- Fault origin viewpoints (not exclusive)

- Phenomenological causes: Physical / natural faults vs. human-made faults

- System boundaries: Internal faults (part of system state that produces an error)
vs. external faults (interference with the environment)

- Phase of creation: Design faults vs. operational faults

« Temporal persistence

- Permanent faults vs. temporary faults

Dependable Systems Course 10 PT 2014

Observations on Faults

* An external fault is a design fault - inability or refusal to foresee all situations

 Design faults are created during system development, system modification, or
operational procedure creation and establishment

- Just replacing broken version of the same component leads to recurrent faults
- Physical faults are accidental faults
- Temporary external accidental physical faults are also called transient faults
- Temporary internal accidental faults are also called intermittent faults
- Examples: Pattern-sensitive memory hardware, system overload
- Arbitrary concept - Permanent faults with unknown activation condition
- Intentional and design faults are human-made faults, might be malicious faults

- Hardware production defects are typically physical faults
Dependable Systems Course 11 PT 2014

Observations on Faults

- A fault is active when it produces an error

- A non-active internal fault is a dormant / passive fault (,inaktive Fehlerursache’)
- Origin in hardware fault analysis - often cycling between dormant and active

- Many specialized versions of the term ,fault, e.g. bug
- Heisenbug - Intermittent software fault, Bohrbug - Permanent software fault
- Mandelbugs - Appear chaotic due to many dependencies

- Fault-tolerant system design is a contradiction
- Design demands specification, faults are non-specified cases
- Solution: Specification for fault-free case + additional fault specification

- Fault can mean performance or timing faults (derivation from expected load / timing)

Dependable Systems Course 12 PT 2014

—ault Characterization (Laprie & Kanoun)

FAULTS
NATURE PHENOMENOLOGICAL SYSTEM PHASE PERSISTENCE

/ \ CA/USE\ B; NDA\RIES ; CRF.A\TION / \

AOCIOENTAL INTENTIONAL PHYSICAL HUMAN INTERNAL EXTERNAL DESIGN OPERATION PEHMANENT TEMPORARY

PHYSICAL
— FAULTS

TRANSIENT
FAULTS

l

* INTERMITTENT
| [FauLts

*

. DESIGN FAULTS

INTERACTION
o= FAULTS

. MALICIQUS
_l- LOGIC
L]
L
I_ INTRUSIONS
.

Dependable Systems Course 13 PT 2014

-ault Model

 Faults can be classified into different categories on different abstraction levels

* Physics
- Circuit level / switching circuit level

* Interesting for hardware design research (not this course)

* Investigate logical signals on connections

- stuck-at-zero, stuck-at-one, bridging faults, stuck-open

- Register transfer level
* Processor-memory-switch (PMS) level
- Hardware system level

. ... (Software) ...

Dependable Systems Course 14 PT 2014

Physical Faults [Goloubeva]

 Highly energized particles originate from space, atmospheric, or ground radiation

- Cosmic radiation, solar heavy ions, solar protons, ...

- Interaction of particle that strikes a circuit - atomic displacement, direct ionization,
indirect ionization created by nuclear reactions

- Smaller structures are sensitive to ionization effects from all kinds of particles

- Single Event Upset (SEU) - injected charge modifies memory information

- Dynamic random access memory (DRAM) - typical building blocks for main memory
* No inherent refreshing, storage capacitor changes value

- Static random access memory (SRAM), for caches, registers, pipeline, ...

* Impact on restoring transistor leads to invalid refresh operation

Dependable Systems Course 15 PT 2014

Physical Faults [Goloubeva]

* Logic circuits: Shrinking size, reduction of power supply, increase of frequency
* Noise margin is extremely reduced, single-event strike impacts circuit lines
- Single Event Transient (SET): Particles modify voltage in a combinational circuit

- Can be modeled at gate level as erroneous transition on the gate output

1: 91\, -g4>—1/0/1

g3

1_ N\
g2 }1/0/1
1_

Dependable Systems Course 16 PT 2014

$

—ault Model for Semiconductor Memories

- Stuck-at-1 or stuck-at-0 (hard) faults, transition / bit-flip faults (0->1, 1->0)

- Open and short circuits - Too much or too little metallization; Also open bonds

* Input and output leakage - Leakage current in excess of the specified limit

- Multiple writing - Data written into more than one cell on write attempt in one cell
- Pattern sensitivity - Device does not perform reliably with certain data pattern(s)
- Refresh dysfunction - Data is lost during the specified minimum refresh time

- Write recovery - Write followed by read/write at different location results in read/
write at same location

- Sense amplifier recovery - Data accessed remains the same for a number of cycles
and then suddenly changed

- Sleeping sickness - Memory loses information in less than the stated hold time
(typically tens of milliseconds)

Dependable Systems Course 17 PT 2014

—ault Model for Semiconductor Memories

- Decoder malfunction - Inability to address same portions of the memory array
* No cell accessed by certain address, multiple cells accessed by certain address
- Certain cell not accessed by any address
- Certain cell accessed by multiple addresses

- Bridging fault - Short between cells, AND type or OR type

- State coupling fault - Coupled (victim) cell is forced to 0 or 1 if coupling (aggressor)
cell is in a given state

* Inversion coupling fault - Transition in coupling cell inverts coupled cell

- Idempotent coupling fault - Coupled cell is forced to 0 or 1 if coupling cell transits
fromOto1ori1to0

- Disturb fault - Victim cell forced to 0 or 1 if we read or write aggressor cell (may be
the same cell)

Dependable Systems Course 18 PT 2014

System-Level Fault Model

- Fault model idea originates from hardware

- How many faults of different classes can occur ?
What do | tolerate ?

- Timing of faults: Fault delay, repeat time, recovery time, ...
 Also mappable to software or even complete systems
* Activities as black box, only look on input and output messages

- Link faults are mapped to the
participating components

Computation fault

 Every participating component
would need a fault model -
pick the most urgent ones

Byzantine fault

Membership protocols

System diagnosis / Voting protocols

Byzantine agreement
Dependable Systems Course 19 PT 2014

System-Level Fault Model [Cristian]

- Fail-Stop Fault : System stops all operations, notifies the other ones
 Crash Fault : System looses internal state or stops without notification
- Omission Fault : System will break a deadline or does not react to some task at all

- Send / Receiver Omission Fault: Necessary message was not not sent / not
received in time

- Timing Fault / Performance Fault : System stops / reacts to a task before its time
window, after its time window, or never

 Incorrect Computation Fault : No correct output on correct input
- Byzantine Fault / Arbitrary Fault : Every possible fault

 Authenticated Byzantine Fault : Every possible fault, but authenticated messages
cannot be tampered

 This maps to both shared-memory and shared-nothing systems (system of systems)

Dependable Systems Course 20 PT 2014

Vulnerabillities as Security Faults

- Different dependability attributes might lead to different terminology
- Example: Vulnerability assessment for nuclear security [Johnston]

- Threat: Who might attack against what asset, using what resources, with what
goal in mind, when / where / why, with what probability

- Threat assessment (TA): Attempting to predict the threats - proactive security
- Vulnerability: Specific weakness in security that could be exploited (fault)
- Vulnerability assessment (VA): Attempting to discover / demonstrate them

- Risk management: Deploy, modify, and re-assign security resources, based on
TA results, VA results, assets, security breach consequences, and costs
(time, money, human resources)

- Attack: Attempt to harm valuable asset by exploiting one or more vulnerabilities,
may lead to security failure

Dependable Systems Course 21 PT 2014

Security - Vulnerability Assessment [Johnston]

 Threats and vulnerabilities are different concepts, and must be treated separately
* Vulnerabilities without threats are not interesting
- Vulnerabilities do not define threats (bad locks do not imply thieves to show up)
- No one-to-one mapping, different attacks can exploit the same vulnerability
* TA involves mostly speculation about unknown people, so VA is more important
 Correct VA should identify large amount of issues with cheap countermeasures
- System features can become a vulnerability only in combination with an attack

- TA and VA are not pass / fail certifications

Dependable Systems Course) PT 2014

—I'TOrs

- State of the system, not an event !

- Escalates to failure depending on ...
- ... intentional / unintentional redundancy
* ... System activity

- ... specification of a failure case from user perspective
(i.,e. maximum outage time, acceptable delay, retransmission rate)

- System activity can reverse the error state before damage is happening
- Latent (not recognized) vs. detected error resulting from an active fault

- Hardware often contains unintentional redundancy, makes it difficult to test

Dependable Systems Course 23 PT 2014

Hardware Error Models [Goloubeval

- Hardware faults effect state information, e.g. register values

» Stuck-at and other hardware faults therefore can also be denoted as error
- More interesting to investigate resulting effects on system-level

- Single data error - Program data is corrupted (in cache, memory, or register)

- Single code error - Effect on one instruction of the code

- Type 1/2 - Instruction modification without / with change of control flow

 Nature of error state may confirm to the nature of the originating fault

* Transient vs. permanent, static vs. dynamic, single vs. multiple

» Depends on utilized dependability means

Dependable Systems Course 24 PT 2014

Hardware Error Models [Goloubeval

- Mapping of hardware-level single bit-flip error to other layers
- Memory data segment, processor data cache: System-level single data error

- Memory code segment, processor code cache: System-level single code error
of type 1 (modification of target register) or type 2 (modification of branch target)

- Memory stack segment: System-level data error or type 2 code error

* Processor register: Depending on processor architecture and register type
« Single data error if register holds data interpreted by the application
- Single type 1 code error, if register holds address used by load/store operation
- Single type 2 code error, if register holds address of a branch target

* Processor control register: Everything could happen ...

Dependable Systems Course 25 PT 2014

Hardware

LOOP:

LOOP:

LOOP:

Dependable Systems Course

—rror Models - Code

—rrors [Goloubeva]

MOV RO, 10 MOV RO, 10
MOV R1, 1 MOV R1, 1
ADD R1, R1 > LOOP: SUB R1, RI1
SUB RO, 1 SUB RO, 1

BNZ LOOP BNZ LOOP
MOV RO, 10 MOV RO, 10
MOV R1, 1 MOV R1, 1
ADD R1, R1 > LOOP: ADD R1, RI1
SUB RO, 1 SUB RO, 1

BNZ LOOP BNZ FOOBAR
MOV RO, 10 MOV RO, 10
MOV R1, 1 MOV R1, 1
ADD R1, R1 > LOOP: ADD R1, RI1
SUB RO, 1 SUB RO, 1

BNZ LOOP BZ LOOP

26

PT 2014

Software Error Models [Goloubeva]

- Similar terminology, but completely different semantics
- Syntactical errors are handled by compiler, semantical errors occur at runtime
- Static vs. dynamic, permanent vs. temporary errors
- Example for C programming language
- Errors affecting assignments (missing / wrong local variable values)
- Errors affecting conditional instructions (wrong boolean or iteration condition)
» Errors affecting function call / return (wrong parameters, return statement)
» Errors affecting algorithms (missing statements or function calls, wrong operators)

- Under research in the software engineering field - field studies, automated code
analysis, developer interviews

Dependable Systems Course 27 PT 2014

—rror Propagation

Service status

Component A

opagation

Service
Interface

Propagation

of component A

Service status
of component B

Correct
Service

FailureY

Component B Se

Interface

Propagation

Incorrect
Service

rvice

Correct
Service

) Incorrect
Failure Service

Dependable Systems Course

28

(C) Avizienis

PT 2014

mffolg

Input >

<

OQutput

Dependable Systems Course

Propagation [Goloubeval

(

CPU

Instruction
Cache

Data
Cache

Pipeline

X

Registers

29

PT 2014

—rror Message Occurrence (Hansen & Siewiorek)

- Same fault can lead to different (detected or undetected) errors
 Errors become detected by error detection mechanism

- Some undetected errors are detected by several detectors

- Some detectors report several undetected errors as one

- Some undetected errors are never uncovered

 Detected errors might not be logged, if the system stops too fast

>@ >0
>0
M >0
»Q—»|
ndetected > Detected
Fault Errors Errors Error Messages

Dependable Systems Course 30 PT 2014

Hazard

- Several domains prefer the term hazard for a safety error
- Situation (system state) that is threatening to life, health, property, or environment
« An active hazard situation is an incident, leading to loss event called accident
» Historically important in nuclear power, railroad and aviation industry

- Hazard analysis demands critical thinking

- What can go wrong with which consequences ?

Dependable Systems Course 31

—allures

- Non-compliance with the specification - arbitrary failure (‘willkGrlicher Ausfall®)
- System failures can be further categorized in failure modes
- Fail-silent / crash failure mode - incorrect results are not delivered
- Fail-stop mode - constant value is delivered
- Failure mode domain - what is influenced
* Service result - value failures
 Service timeliness - timing failures
- Service availability - stopping failures
- User perception in the mode - consistent / inconsistent for all users

- Failure mode consequences for ranking the identified issues

Dependable Systems Course 30 PT 2014

—allure Severity (,Schweregrad des Ausfalls®)

- Denotes consequences of failure
- Benign failures (,unkritische Ausfalle)
- Failure costs and operational benefits are similar
- Sometimes also umbrella term for failures only detected by inspection
* A system with only such failures is fail-safe
- Catastrophic failures (,kritische Ausfélle‘)
- Costs of failure consequences are much larger than service benefit
- Significant / serious failures - Intermediate steps expressing reduced service
- Grading of failure consequences on overall system depends on application
* Flying airplane - Catastrophic stopping failure, Train - Benign stopping failure

- Criticality - Highest severity of possible failure modes in the system

Dependable Systems Course 33 PT 2014

Criticality Levels Example: DO-178B Standard

¢ Software Considerations in Airborne Systems and Equipment Certification
- Mature document, developed for more than 20 years
- Definition of severity of failure conditions for airplane, crew, and passengers
» Catastrophic - Loss of ability to continue safe flight and landing
» Major - Reduced airplane or crew capability to cope with operating conditions
- Reduction in safety margins and functional capabilities
- Higher workload or physical distress for the crew

« Minor - Not significantly reduced airplane safety, slight increase in workload
(Example: Change of flight plan)

* No effect - Failure results in no loss of operational capabilities and no increase in
crew workload

Dependable Systems Course 34 PT 2014

—xample: DO-178B Standard

Catastrophic
Accident

Adverse
Effects on

Occupants
Airplane
Damage

Emergency
Procedures

Abnormal
Procedures

Unacceptable

Acceptable

Nuisance

Nomal

Consequence of Failure Condition

Probable Improbable Extremely

Probability of Failure Condition

Dependable Systems Course 35 PT 2014

—allure Types

 Duration of the failure
- Permanent failures - no possibility for repairing or replacement
- Recoverable failures - back in operation after the system recovered from error state
» Transient failures - short duration, no major recovery action
- Effect of the failure
- Functional failures - system does not operate according to its specification
- Performance failures - performance or SLA specifications not met
» Scope of the failure
- Partial failure - only parts of the system become unavailable

- Total failure - all services go down

Dependable Systems Course 36 PT 2014

Swiss Cheese Model (Prof. Reason)

» Origins in medical research

- Defenses, barriers, and safeguards might be penetrated by fault trajectory

" T, .

\
\ \\\\ The Latent Failure Model of Complex System Failure

TRIGGERS] 7
wlomé " g |

SYSTEMS

ACCIDENT

Dependable Systems Course 37

(C) Fernando Bernal

PT 2014

Observations on Failures

* Failures vs. Load
* Typically positive correlation
* Increasing load can lead to wear-out, so the failure probability increases
 Higher load can activate dormant faults
 Detected faults lead to recovery activities, which again increases the load
 Possibility for unintended feedback effects in complex systems
- Related faults (attributed to a common cause) can lead to common-mode failures

- Mostly reasoned by design faults that impact redundant copies of the component

Dependable Systems Course 38 PT 2014

Chain of Dependability Threats

UNSTABLE OR
MARGINAL
HARDWARE

PHY SICAL — ™| PERMANENT [™
DEFECT / FAULT
INCORRECT | —
DESIGN
\INTER_I\/IITTENT. -
FAULT

UNSTABLE
ENVIRONMENT

%‘E(I\/[POR_ARY INTERINAL

l

TRANSIENT
FAOULT

+—

TEMPORARY EXTERINAL

OPERATOR
MIS TAKE

Dependable Systems Course

FRROR

SERVICE
FAIL. URE

SOURCES OF ERRORS

[from Siewiorek and Swarz=z]

39

PT 2014

