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Redundancy (Reiteration)

• Redundancy for error detection and forward error recovery

• Redundancy types: spatial, temporal, informational (presentation, version)

• Redundant not mean identical functionality, just perform the same work

• Static redundancy implements error mitigation

• Fault does not show up, since it is transparently removed

• Examples: Voting, error-correcting codes, N-modular redundancy 

• Dynamic redundancy implements error processing

• After fault detection, the system is reconfigured to avoid a failure

• Examples: Back-up sparing, duplex and share, pair and spare

• Hybrid approaches
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System-Failure Response Strategies 
[Sieworek / Swarz]
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Redundancy

• Redundancy is never for free !

• Hardware: Additional components, area, power, shielding, ...

• Software: Development costs, maintenance costs, ...

• Information: Extra hardware for decoding and encoding

• Time: Faster processing (CPU) necessary to achieve same performance

• Tradeoff: Costs vs. benefit of redundancy; additional design and testing effort

• Sphere of replication [Mukherjee]

• Identifies logical domain protected by the fault detection scheme

• Questions: For which components are faults detected ? 
Which outputs must be compared ? Which inputs must be replicated ?
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Sphere of Replication

• Components outside the 
sphere must be protected by 
other means

• Level of output comparison 
decides upon fault coverage

• Larger sphere tends to 
decrease the required 
bandwidth on input and output

• More state changing 
happens just inside the 
sphere

• Vendor might be restricted on 
choice of sphere size
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Masking / Static Redundancy: Voting

• Exact voting: Only one correct result possible 

• Majority vote for uneven module numbers

• Generalized median voting - Select result that is the median, 
by iteratively removing extremes

• Formalized plurality voting - Divide results in partitions, 
choose random member from the largest partition

• Inexact voting: Comparison at high level might lead to multiple correct results

• Non-adaptive voting - Use allowable result discrepancy, put boundary on 
discrepancy minimum or maximum  (e.g. 1,4 = 1,3)

• Adaptive voting - Rank results based on past experience with module results

• Compute the correct value based on „trust“ in modules from experience

• Example: Weighted sum R=W1*R1 + W2*R2 + W3*R3 with W1+W2+W3=1
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Static Redundancy: N-Modular Redundancy

• Fault is transparently removed on detection

• Triple-modular redundancy (TMR)

• 2/3 of the modules must deliver correct results 

• Generalization with N-modular redundancy (NMR)

• m+1/N of the modules must deliver correct result, with N=2m+1 

• Standard case without any redundancy is called simplex
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N-Modular Redundancy (with perfect voter)
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• TMR is appropriate if RTMR > RM (for given t)

• TMR with perfect voter only improves system reliability when RM > 0.5

• Voter needs 
to have RV>0.9 
to reach 
RTMR > RM
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TMR Reliability
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Imperfect Voters
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• Redundant voters

• Module errors do not propagate

• Voter errors propagate only by one stage

• Assumption of multi-step process, final voter still needed
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Hardware Voting

• Smallest hardware solution is the 1-bit majority voter

• f=ab + ac + bc

• Delivers the bit that has the majority

• Requires 2 gate delays and 4 gates

• Hardware voting can become expensive

• 128 gates and 256 flip-flops for 32-bit voter

• Input must be synchronized

• Central clock source may be single point of failure

• Can be solved by special event latching

11



Dependable Systems Course PT 2012

Dynamic Redundancy

• Reconfiguration of the system in response to an error state

• Prevents error propagation

• Triggered by internal fault detection in the unit, or external error detection based 
on the outputs

• Dynamic redundancy combines error confinement with fault detection

• Still questions of coverage and diagnosability

• On transient errors, good modules may be deactivated

• Typically solved by combination of dynamic redundancy with retry approach

• Typical approaches: Duplex, sparing, degradation, compensation
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• Reconfigurable duplication : Have relevant modules redundant, switch on failure

• Identification on mismatch („test“)

• Self-diagnostics procedure

• Self-checking logic

• Watchdog timer, e.g.
for having components resetting
each other (e.g. split brain)

• Outside arbiter for signatures
or black box tests

• Test interval depends on application scenario - each clock period / bus cycle / ...

• Also called dual-modular redundancy

• Reliability computation as with parallel / serial component diagram
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Duplex Systems
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• Combination of working module and a set of spare modules (,replacement parts‘)

• Hot spares: Receive input with main modules, have results immediately

• Warm spares: Are running, but receive input only after switching

• Cold spares: Need to be started before switching
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Back-Up Sparing
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• Special cases for combination of duplex (with comparator) and sparing (with switch)

• Pair and spare - Multiple duplex pairs, connected as standby sparing setup 

• Two replicated modules operate as duplex pair (lockstep execution), 
connected by comparator as voting circuit

• Same setting again as spare unit, 
spare units connected by switch

• On module output mismatch, comparators 
signal switch to perform failover

• Commercially used, e.g. Stratus XA/R Series 300
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Pair and Spare 
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Graceful Degradation

• Performance design of the system allows continued operation with spares

• Many commercial systems supports this, but lack automated error processing

• Example: Operating system support for CPU off-lining, but no MCA handling

• Designed-In Resources: 

• Replaceable or bypass-able components (f.e. caches, disks, processors)

• Support for operation with degraded performance

• Added-On Resources: 

• Redundant units used for excess capacity during normal operation

• Still non-degraded performance on failure

• Interconnect reconfiguration: Use alternative paths in the network

• Hardware solutions in telco industry, today replaced by software solutions
16
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Example: Spanning Tree Protocol

• Modern implementation of interconnect reconfiguration for dynamic redundancy

• Bridges for connecting different Ethernet sub-networks 

• By default no coordination, better products use the spanning tree protocol

• Explicit removal of redundant paths (loops), 
while still supporting all point-to-point communication

• Each bridge has its own MAC address, protocol based on broadcast

• Create a tree of bridges, starting from a chosen root bridge

• All paths start from the root bridge

• Ports participating in redundant paths have to be switched off

• Cost model for paths to make a choice (root distance, speed)
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Example: Spanning Tree Protocol

• Determine root bridge

• Send your ID (MAC address) to a 
multicast group, smallest ID wins

• Each non-root bridge determines 
the ,cheapest‘ path to the root bridge

• This port becomes the root port (RP)

• For multiple bridges in a segment, 
the ,cheapest‘ representative is elected -
designated port (DP)

• All ports that are not DP or RP are 
deactivated -
blocked port (BP)

18



(from Wikipedia)
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Rapid Spanning Tree Protocol (RSTP)
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from
 netcordia.com

• Alternate Port: Blocked port to a 
network that can be currently reached 
by another bridge in a better way

• Reduces time for re-arrangement 
of the tree on errors

• Backup Port: Blocked port to a 
network that can be reached by 
another port in a cheaper way

• May be used in parallel, or only as 
update

• Bridge Protocol Data Unit (BPDU) is 
sent every other second

• „Hello-Time“
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Hybrid Approaches

• N-modular redundancy 
with spares

• Also called hybrid redundancy

• System has basic NMR 
configuration

• Disagreement detector replaces
modules with spares if their 
output is not matching
the voting result

• Reliability as long as the spare pool is not exhausted

• Improves fault masking capability of NMR

• Can tolerate two faults with one spare, while classic NMR would need 5 
modules with majority voting to tolerate two faults

21

Adds fault 
localization
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TMR with Spares

22

NASA Technical Report 32-1467, 1969

• Basic reliability computation based on the assumption of similar module failure 
rates in spares and non-spares

• At least any two of all S+3 modules must survive
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Comparison TMR vs. TMR/S vs. NMR
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Hybrid Approaches

• Self-purging redundancy

• Active redundant modules, each can remove itself from the system if faulty

• Basic idea: Test for agreement with the voting result, otherwise 0

24

• If module output does not match 
to system output, 0 is delivered

• Works fine with threshold voters
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Hybrid Approaches

25

• Sift-out modular redundancy (N-2), no voter required

• Pair-wise comparison of module outputs by comparator

• N inputs and N-over-2 outputs

• Detector uses these signals to identify the faulty module, includes also 
memory cells for failed modules

• Collector sifts out the 
faulty input, based on
information from
detector
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Hybrid Approaches

• Triple Duplex Architecture

• TMR with duplex modules, used in the Shinkansen (Japanese train)

• Fault masking with comparator, no more contribution to voting from faulty one

• Allows tolerating another fault in the further operation, 
since comparator localizes again the faulty module

• Adds again fault location
capability to redundancy
scheme

• Supports also hot
plugging of deactivated
components
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The Real World of Hardware Redundancy -
Replacement Frequencies [Schroeder 2007]
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760 node cluster,
2300 disks

ISP, multiple sites,
26700 disks

ISP, multiple sites,
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IBM System z
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IBM System z

• Machine-Check-Handling mechanism in z/Series

• Equipment malfunction detection

• Permit automatic recovery

• Error states are reported by machine-check interruption

• Data error detection through information redundancy

• Recovery from machine-detected error states

• Error checking and correction - use circuitry redundancy

• CPU retry - checkpoint written at instruction-based synchronization points

• Channel-subsystem recovery - restart of I/O components

• Unit deletion - automated degradation of malfunctioning units

29



Dependable Systems Course PT 2012

zEnterprise: Processor

• Instruction fetch and execution units 
are replicated

• Error check at the end of the pipeline

• R-unit keeps CPU registers and 
processor checkpoint

• E-units have shadow copy of registers 
for speed improvement

• All register / cache writes are 
compared, instruction retry in case

• On fault, overwrite with R unit state

• Since z6, reverted to 
non-lockstepping and more fault 
sensors

30
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IBM System z - Processor Books
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• 4 PU‘s (cores) per CP 
+ 
co-processors

• SC: Storage Control

• 96-192 MB L4 
cache per SC, 
accessible  from 
other MCMs

• FBC: Fabric book 
connectivity

• Support for dynamic 
book addition and 
repair

• 2+1 redundancy for 
book power supply

Multi-Chip Module (MCM)
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IBM System z

32

!"

# !$%%&'()&*+,-+,./0+123

'()&451/6,-,076

4%"8&9:;&<670=1&+>&
??@@ABCCD&96EB1E.1/&'FG&;BH7D7/6I&J +>&6K07/01=&'G&L.=6&.1E&E,.M6,7

!"##$%&'(")(*)+%,-.%/'012)
! ;:N&F&*N&7-.,01=
! ;:N&96.770=1I61/
! 'FG&9676/&O&A.0C+P6,
! 'FG&)BK 9676/&F&A.0C+P6,
! 96EB1E.1/&'FG&:E.-/6,
! 96EB1E.1/&'FG&01/6,L+116L/
! 96EB1E.1/&Q6/M+,R&:E.-/6,7
! 96EB1E.1/&';*&C01R7
! 96EB1E.1/&*,D-/+&-,+L677+,7
! 'FG&;M0/LS6E&A.H,0L
! Q6/M+,R&;M0/LS6EF9+B/6,&A.H,0L
! T0=S&:P.0C.H0C0/D&NCB==01=&9BC67
! 'FG&.1E&L+B-C01=&>.1+B/

,6H.C.1L01=&+1&*(:
! *S.116C&'10/0./6E&96/,D
! T0=S&<./.&'1/6=,0/D&'1>,.7/,BL/B,6
! 'FG&:C/6,1./6&N./S
! Q6/M+,R&:C/6,1./6&N./S
! U0,/B.C04./0+1&V6LS1+C+=D

-,+L677+,

A.0C+P6,

'FG&)BK

'FG&TBH 'FG&TBH

'FG&)BK 'FG&)BK 'FG&)BK

A.0C+P6,

'FG
&&.
E.
-/
6,
@

'FG
&&.
E.
-/
6,
@

Q
6/
M
+,
R&
&.
E.
-/
6,
@

Q
6/
M
+,
R&
.E
.-
/6
,@

*
,D
-,
+
:L
L6
C6
,.
/+
,

*
,D
-/
+&
:L
L6
C6
,.
/+
,

';
*
&&W
01
R7

';
*
&W
01
R7

:C/6,1./6&N./S

'FG&
;M0/LS

*+1/,+C
X10/

'FG&
;M0/LS

*+1/,+C
X10/

Q6/M+,R
;M0/LS

51E&
X76,

Q6/M+,R
;M0/LS

51E
X76,

# !$%%&'()&*+,-+,./0+12Y

'()&451/6,-,076

N,6P61/01=&:CC&GB/.=67

! 3)045'("#'(%."+*2'0
" :EP.1L6E&)6I+,D&9:')&Z96EB1E.1/&:,,.D&+>&'1E6-61E61/&)6I+,D[&E670=1
"51S.1L6E&966E\;+C+I+1&L+E6&Z5**[&J "$(F8](
"N,+/6L/0+1&.=.017/&*S.116CF<'))&>.0CB,67
"*S0-&I.,R01=&>+,&>.7/&<9:)&,6-C.L6I61/7

" )0,,+,6E&^6D&L.LS6
" 'I-,+P6E&LS0-&-.LR.=01=
" 'I-,+P6E&L+1E617./0+1&I.1.=6I61/
" '1/6=,./6E&V*NF'N&LS6LR7BI&=616,./0+1FLS6LR01=
" '1/6=,./6E&5NG&7M0/LS&L+P6,&Z-,+/6L/01=&/S6&7M0/LS&EB,01=&,6-.0, .L/0+17[
" *+1/01B6E&>+LB7&+1&A0,IM.,6



Dependable Systems Course PT 2012

Memory Redundancy

• Redundancy of memory data for masking

• Replication / coding at different levels

• Examples

• STAR (Self-testing and self-repairing computer, 
for early spacecrafts), 1971

• COMTRAC (Computer-aided traffic control system
for Shinkansen train system)

• Stratus (Commercial fault-tolerant system)
http://www.stratus.com/uptime/

• 3B20 by AT & T (Commercial fault-tolerant system)

• Most modern memory controllers in servers

33
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Memory Redundancy

• Standard technology in DRAMs

• Bit-per-byte parity, check on read access

• Implemented by additional parity memory chip

• ECC with Hamming codes - 7 check bits for 32 bit data words, 8 bit for 64 bit 

• Leads to 72 bit data bus between DIMM and chipset

• Computed by memory controller on write, checked on read

• Study by IBM: ECC memory achieves R=0.91 over three years

• Hewlett Packard Advanced ECC (1996)

• Can detect and correct single bit and double bit errors

34
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Memory Redundancy

• IBM ChipKill

• Originally developed for NASA Pathfinder project, now in X-Series

• Corrects up to 4 bit errors, detects up to 8 bit errors

• Implemented in chipset and firmware, works with standard ECC modules

• Based on striping approach with parity checks (similar to RAID)

• 72 bit data word is split in 18 bit chunks, distributed on 4 DIMM modules

• 18 DRAM chips per module, one bit per chip

• HP Hot Plug RAID Memory

• Five memory banks, cache line is striped, fifth bank for parity information

• Corrects single bit, double bit, 4-bit, 8-bit errors; hot plugging support

35
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Memory Redundancy

• Dell PowerEdge Servers, 2005 (taken from www.dell.com)

36
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Memory Redundancy

• Fujitsu System Board D2786 for RX200 S5 (2010)

• Independent Channel Mode: Standard operational module, always use first slot

• Mirrored Channel Mode: Identical modules on slot A/B (CPU1) and D/E (CPU2)

37
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IBM System z - Memory RAID

38

• System z10 EC memory design

• Four Memory Controllers (MCUs) organized in two pairs, 
each MCU with four redundant channels 

• 16 to 48 DIMMs per book, plugged in groups of 8 

• 8 DIMMs (4 or 8 GB) per feature, 32 or 64 GB physical memory per feature 

• 64 to 384 GB physical memory per book = 64 to 384 GB for use 
(HSA and customer) 

• z196 memory design: 

• Three MCUs, each with five channels. The fifth channel in each z196 MCU is 
required to implement Redundant Array of Independent Memory (RAIM)

• Detected and corrected: Bit, lane, DRAM, DIMM, socket, and complete memory 
channel failures, including many types of multiple failures
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IBM System z196 - Memory RAID
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IBM z10 EC Memory Structure
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IBM System z196 - RAIM
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Disk Redundancy

• Typical measure is the annual failure rate (AFR) - average number of failures / year

• Can be interpreted as failure probability during a year

• MTBF = Mean time before failure, here

• Disk MTTF: On average, one failure takes place in the given disk hours

• Example: Seagate Barracuda ST3500320AS: MTTF=750000h=85.6 years

• With thousand disks, on average every 750h (a month) some disk fails

• Measured by the manufacturer under heavy load and physical stress

• AFR=0.012

42

AFR = 1
MTBFyears

= 8760
MTBFhours
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RAID

• Redundant Array of Independent Disks (RAID) [Patterson et al. 1988]

• Improve I/O performance and / or reliability by building raid groups

• Replication for information reconstruction on disk failure (degrading)

• Requires computational effort (dedicated controller vs. software)

• Assumes failure independence
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RAID Reliability Comparison

• Treat disk failing as Bernoulli experiment - independent events, identical probability

• Probability for k events of probability p  in n runs

• Probability for a failure of a RAID 1 mirror - all disks unavailable:

• Probability for a failure of a RAID 0 strip set - any faults disk leads to failure:

44
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• Works for RAID levels were second outage during repair is fatal

• Core idea is that groups of data disks are protected by additional check disks

• D - Total number of data disks

• G - Number of data disks in a group (e.g. G=1 in RAID1)

• C - Number of redundant check disks (parity / mirror) in a group 
      (e.g. C=1 in RAID1)

• nG = D / G = number of groups, G+C : Number of disks in a group

Dependable Systems Course PT 2012

RAID MTTF Calculation [Patterson]
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MTTFGroup =
MTTFDisk

G+ C
· 1

pSecondFailureDuringRepair



• Assuming exponential distribution, the probability for a second disk failure during the 
repair time can be determined by:

• So:
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RAID MTTF Calculation [Patterson]
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MTTFGroup =
MTTFDisk

G+ C
· 1

pSecondFailureDuringRepair

pSecondFailure =
MTTR

MTTFDisk
G+C−1

MTTFRaid =
MTTFGroup

nG

=
MTTFDisk

2

(G+ C) ∗ nG ∗ (G+ C − 1) ∗MTTR
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RAID 0

• Raid 0 - Block-level striping

• I/O performance improvement with many channels and drives

• One controller per drive

• Optimal stripe size depends on I/O request size, random vs. sequential I/O, 
concurrent vs. single-threaded I/O

• Fine-grained striping: Good load balancing, catastrophic data loss

• Coarse-grained striping: Good recovery for small files, worser performance

• One option: Strip size = Single-threaded I/O size / number of disks

• Parallel read supported, but positioning overhead for small concurrent accesses

• No fault tolerance
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RAID 1

• Raid 1 - Mirroring and duplexing

• Duplicated I/O requests

• Decreasing write performance, up to double read rate of single disk

• RAID controller might allow concurrent read and write per mirrored pair

• Highest overhead of all solutions, smallest disk determines resulting size

• Reliability is given by probability that one disk fails and the second fails while the 
first is repaired

• With D=1, G=1, C=1 and the generic formula, we get
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(C) Wikipedia

MTTFRaid1 =
MTTFDisk

2
· MTTFDisk

MTTRDisk
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Raid 2/3

• Raid 2 - Byte-level striping with Hamming code -based check disk

• No commercial implementation due to ECC storage overhead

• Online verification and correction during read

• Raid 3 - Byte-level striping with dedicated XOR parity disk

• All data disks used equally, one XOR parity disk as bottleneck (C=1)

• Bad for concurrent small accesses, good sequential performance (streaming)

• Separate code is needed to identify a faulty disk

• Disk failure has only small impact on throughput

• RAID failure if more than one disk fails:
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(C) Wikipedia

MTTFRaid3 =
MTTFDisk

D + C
·

MTTFDisk
D+C−1
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Parity With XOR

• Self-inverse operation

• 101 XOR 011 = 110, 110 XOR 011 = 101
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Disk ByteByteByteByteByteByteByteByte

1

2

3

4

Parity

1 1 0 0 1 0 0 1

0 1 1 0 1 1 1 0

0 0 0 1 0 0 1 1

1 1 1 0 1 0 1 1

0 1 0 1 1 1 1 1

Disk ByteByteByteByteByteByteByteByte

1

Parity

3

4

Hot Spare

1 1 0 0 1 0 0 1

0 1 0 1 1 1 1 1

0 0 0 1 0 0 1 1

1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0



MTTFRaid5 =
MTTFDisk

N
·

MTTFDisk
N−1

MTTRDisk
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RAID 4 / 5

• Raid 4 - Block-level striping with dedicated parity disk

• RAID 3 vs. RAID 4: Allows concurrent block access

• Raid 5 - Block-level striping with distributed parity

• Balanced load as with Raid 0, better reliability

• Bad performance for small block writing

• Most complex controller design, difficult rebuild

• When block in a stripe is changed, old block and parity 
must be read to compute new parity

• For every changed data bit, flip parity bit
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RAID 6 / 01 / 10

• Raid 6 - Block-level striping with two parity schemes

• Extension of RAID5, can sustain multiple drive
failures at the same time

• High controller overhead to compute parities,
poor write performance

• Raid 01 - Every mirror is a Raid 0 stripe 
(min. 4 disks)

• Raid 10 - Every stripe is a Raid 1 mirror 
(min. 4 disks)

• RAID DP - RAID 4 with second parity
disk

• Additional parity includes first parity + all but one of the data blocks (diagonal)

• Can deal with two disk outages
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• Take the same number of disks
in different constellations

• AFRDisk = 0.029, MTTR=8h

• RAID5 has bad reliability, but
offers most effective capacity

• In comparison to RAID5, RAID10
can deal with two disk errors

• Also needs to consider different 
resynchronization times

• RAID10: Only one disk needs to be copied to the spare

• RAID5 / RAID-DP: All disks must be read to compute parity

• Use RAID01 only in 2+2 combination
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RAID Analysis (Schmidt)
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RAID Analysis (TecChannel.de)
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RAID 0 RAID 1 RAID 10 RAID 3 RAID 4 RAID 5 RAID 6

Number of 
drives n > 1 n = 2 n > 3 n > 2 n > 2 n > 2 n > 3

Capacity 
overhead (%) 0 50 50 100 / n 100 / n 100 / n 200 / n

Parallel reads n 2 n / 2 n - 1 n - 1 n -1 n - 2

Parallel 
writes n 1 1 1 1 n / 2 n / 3

Maximum 
read 
throughput 

n 2 n / 2 n - 1 n - 1 n - 1 n - 2

Maximum 
write 
throughput

n 1 1 1 1 n / 2 n / 3
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Software RAID

• Software layer above block-based device driver(s)

• Windows Desktop / Server, Mac OS X, Linux, ...

• Multiple problems

• Computational overhead for RAID levels beside 0 and 1

• Boot process

• Legacy partition formats

• Driver-based RAID

• Standard disk controller with special firmware

• Controller covers boot stage, device driver takes over in protected mode
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Disk Redundancy: Google 

• Failure Trends in a Large Disk Drive Population [Pinheiro2007]

• > 100.000 disks, SATA / PATA consumer hard disk drives, 5400 to 7200 rpm

• 9 months of data gathering in Google data centers

• Statistical analysis of SMART data

• Failure event: „A drive is considered to 
have failed if it was replaced as part 
of a repairs procedure.“

• Prediction models based on SMART only 
work in 56% of the cases
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Disk Redundancy: Google

• Failure rates are correlated with drive model, manufacturer and drive age

•  Indication for infant mortality

• Impact from utilization (25th percentile, 50-75th percentile, 75th percentile) 

• Reversing effect in third year - „Survival of the fittest“ theory
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Disk Redundancy: Google
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• Temperature effects only at high end of temperature range,  with old drivers
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Connection Redundancy - Fibre Channel

• Fibre Channel

• Developed for HPC, meanwhile standard in SAN technology

• Can run on copper and fiber-optic channels, primarily SCSI transport

• Host bus adapter (HBA), switch, disk - all connected by ports

• Multi-pathing with switched fabric (FC-SW)

• Combination of switches as fabric supports failover and shortest route approach

• Multi-pathing - redundant HBAs connected to multiple switches

• Also possible to connect redundant HBAs to different (linked) fabrics

• Bonding (client) / trunking (switch): Bundle multiple connections to one logical

• Implementations support failover between the bonding lanes
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Connection Redundancy - Fibre Channel
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IBM System z - Redundant I/O

• Each processor book 
has up to 8 dual port fanouts

• Direct data transfer 
between memory and 
PCI/e (8 GBps) or 
Infiniband (6 GBps)

• Optical and copper 
connectivity supported

• Fanout cards are 
hot-pluggable, without 
loosing the I/O connectivity

• Air-moving devices (AMD) have N+1 redundancy for fanouts, memory and power 
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Chapter 2. CPC hardware components 31

InfiniBand coupling to a coupling facility is achieved directly from the HCA2-O (12xIFB) fanout 
and HCA3-O (12xIFB) fanout to the coupling facility with a bandwidth of 6 GBps.

The HCA2-O LR (1xIFB) fanout and HCA3-O LR (1xIFB) fanout support long distance 
coupling links for up to 10 km or 100 km when extended by using System z qualified DWDM1 
equipment. Supported bandwidths are 5 Gbps and 2.5 Gbps, depending on the DWDM 
equipment used.

2.1.4  Top exit I/O cabling

On z196 you now have the option of ordering the infrastructure to support top exit of your fiber 
optic cables (ESCON, FICON, OSA, 12x InfiniBand, 1x InfiniBand, and ISC-3) as well as your 
copper cables for the 1000BASE-T Ethernet features.

Top exit I/O cabling is designed to provide you with an additional option. Instead of all of your 
cables exiting under the CPC and/or under the raised floor, you now have the flexibility to 
choose the option that best meets the requirements of your data center.

Top exit I/O cabling can also help to increase air flow. This option is offered on new build as 
well as MES orders.

2.2  Book concept

The central processor complex (CPC) uses a packaging design for its processors based on 
books. A book contains a multi-chip module (MCM), memory, and connectors to I/O cages 
and other CPCs. Books are located in the processor cage in frame A. The z196 has from one 
book to four books installed. A book and its components are shown in Figure 2-3.

Figure 2-3   Book structure and components

1  Dense Wave Division Multiplexing
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IBM System z - Redundant I/O

• PCI/e I/O drawer supports up to 32 
I/O cards from fanouts in 4 domains

• One PCI/e switch card per domain

• Two cards provide backup path for 
each other (f.e. with cable failure)

• 16 cards max. per switch
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Figure 4-2 illustrates the I/O structure of a z196. An InfiniBand (IFB) cable connects the 
HCA2-C fanout to an IFB-MP card in the I/O cage. The passive connection between two 
IFB-MP cards allows for redundant I/O interconnection. The IFB cable between an HCA2-C 
fanout in a book and each IFB-MP card in the I/O cage supports a 6 GBps bandwidth.

Figure 4-2   z196 I/O structure when using I/O cages

Attention: Installing an additional I/O cage is disruptive.
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IBM System z - Redundant I/O
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The InfiniBand and PCIe fanouts are located in the front of each book. Each book has eight 
fanout slots. They are named D1 to DA, top to bottom; slots D3 and D4 are not used for 
fanouts. Six types of fanout cards are supported by z196. Each slot holds one of the following 
six fanouts:

! Host Channel Adapter (HCA2-C): This copper fanout provides connectivity to the IFB-MP 
card in the I/O cage and I/O drawer. 

! PCIe Fanout: This copper fanout provides connectivity to the PCIe switch card in the PCIe 
I/O drawer.

! Host Channel Adapter (HCA2-O (12xIFB)): This optical fanout provides 12x InfiniBand 
coupling link connectivity up to 150 meters distance to a z196, z114, System z10 and 
System z9. 

! Host Channel Adapter (HCA2-O LR (1xIFB)): This optical long range fanout provides 1x 
InfiniBand coupling link connectivity up to 10 km unrepeated distance to a z196, z114 and 
System z10 servers.

! Host Channel Adapter (HCA3-O (12xIFB)): This optical fanout provides 12x InfiniBand 
coupling link connectivity up to 150 meters distance to a z196, z114 and System z10, 
cannot communicate with an HCA1-O fanout on z9. 

! Host Channel Adapter (HCA3-O LR (1xIFB)): This optical long range fanout provides 1x 
InfiniBand coupling link connectivity up to 10 km unrepeated distance to a z196, z114 and 
System z10 servers.

The HCA3-O LR (1xIFB) fanout comes with 4 ports and each other fanout comes with two 
ports.

Figure 4-10 illustrates the IFB connection from the CPC cage to an I/O cage and an I/O 
drawer, and the PCIe connection from the CPC cage to an PCIe I/O drawer.

Figure 4-10   PCIe and InfiniBand I/O Infrastructure
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