
Dependable Systems

Hardware Dependability - Testing

Dr. Peter Tröger

Sources:

Siewiorek, Daniel P.; Swarz, Robert S.:
Reliable Computer Systems. third. Wellesley, MA : A. K. Peters, Ltd., 1998. ,
156881092X

Ziade, Haissam; Ayoubi, Rafic A.; Velazco, Raoul:
A Survey on Fault Injection Techniques. In: Int. Arab J. Inf. Technol. 1 (2004), Nr. 2,
S. 171-186

Dependable Systems Course PT 2011

Dependable System Design (Echtle)

2

Measurement
procedure

Constrained
search

procedure
Guides

Dependable Systems Course PT 2011

Testing [Sieworek & Swartz]

• Core of specification-based diagnosis is testing - black box approach

• Type of fault is influencing the test procedure - logical fault vs. structural fault

• Development phase influences test procedure - functional vs. acceptance test

3

Design Phase Production Phase Operational Phase

Hierarchical
Level

System Design maturity test -
Reach specification goals

Maturity test Synthetic load

Hierarchical
Level

Logic Simulation Acceptance test Built-in testHierarchical
Level

Circuit Simulation
Parametric test,

up to stress tests Margining

Temporal StageTemporal StageTemporal Stage

Dependable Systems Course PT 2011

Hardware Testing

• What makes hardware testing today difficult and expensive ?

• Large number of faults and fault classes

• Limited observability and controllability

• Pattern sensitivity in large density circuits

• Increasing circuit speeds

• Increasing system complexity

• Exponentially growing number of test patterns

• Incomplete information about a system

• Companies often do not disclose system description

4

Dependable Systems Course PT 2011

Taxonomy of Computer Test Approaches

5

Dependable Systems Course PT 2011

Hardware Design for Testability

• Testing problem - Test generation vs. test verification

• Fault simulation as only option for measuring test effectivness

• Design for testability

• Accept the risk of shipping a defect product, but support testing in a better way

• Ad-hoc approaches: Partitioning, extra test points at board level, bus systems

• Structured approaches: Allow observability for state variables in the system

• Stress testing approaches for production phase to force infant mortalities

• Vibration, over-voltage, burn-in, thermal shock, ...

• Largest body of theory exists for logic-level acceptance testing

• Usually, single structural stuck-at faults are assumed

• Define the „unit under test“, stimulus can be on-chip / off-chip
6

Dependable Systems Course PT 2011

Hardware Design for Testability

• Some recommendations

• Allow all memory elements to be initialized before testing begins,
preferably via a single reset line

• Provide means for opening feedback loops during testing

• Allow external access to the clock circuits to permit the tester to synchronize with,
or disable, the unit under test

• Insert multiplexers to increase the number of internal points which can be
controlled or observed from the external pins

• Use synchronous circuitry whenever possible

• With more complexity, built-in tests (per component) become attractive

• Coding or self-testing hardware

7

Dependable Systems Course PT 2011

Processor Testing

• Typical approach is logic testing - over 50.000 papers

• Algorithms for test generation, designed to be programmable

• D-algorithm - guarantees to find a test vector if one exists

• Invented by Roth at IBM in 1966, based on D notation

• Compact way, by a collapsed trueth table,
to describe how faults propagate through a circuit

• D - „1“ in the good circuit, „0“ in the faulty

• D‘ - „0“ in the good circuit, „1“ in the faulty

• Works for stuck-at faults, bridging faults, logic flaws

• Primitive D cube of failure (PDCF) -
sets of input that will bring the fault to the output

8

AND
A

B
C

Fault PDCFPDCFPDCF

A B C

A stuck-at-0 1 1 D

B stuck-at-0 1 1 D

C stuck-at-0 1 1 D

A stuck-at-1 0 1 D‘

B stuck-at-1 1 0 D‘

C stuck-at-1 X 0 D‘

Dependable Systems Course PT 2011

Processor Testing
• Propagation D cube - set of inputs that will

propagate a D to the outputs

• Other approaches

• L.A.S.A.R. / Critical Path Method

• All circuits must be converted to NAND
equivalent form

• Works back from assumed output to input

• P.O.D.E.M.

• Designed to generate tests for error detection / correction circuits

• Focus on large number of XOR gates

• Works from primary input to fault location, and then to primary output

9

Propagation
D cube for AND

Propagation
D cube for AND

Propagation
D cube for AND

A B Y

1 D D

D 1 D

D D D

1 D‘ D‘

1 1 D‘

D‘ D‘ D‘

Dependable Systems Course PT 2011

Processor Testing

• Functional testing (Thatte/Abraham, 1978)

• Data flow graph model

• Nodes represent registers or active units, links correspond to data transfer
paths in the processor hardware

• Three classes of instructions (fault model is defined for each class)

• Sequencing & control

• Data storage and transfer

• Example fault model: Any number of lines can be stuck-at-1 or 0

• Data manipulation

• Functional testing is usually supplemented by additional pseudorandom tests

10

Dependable Systems Course PT 2011

Memory Testing

• More and more important issue

• Key component for electronic systems, embedded memory eats most transistors

• About 30% of the semiconductor market

• Multitude of memory testing approaches

• Caching problem

• Memory testing is performed by the processor

• Disable caches or use appropriate techniques, such as modulo

• Layout problem

• Testing procedure must consider organization of RAM hardware

• Testing time vs. fault coverage trade off, additional runtime monitoring

11

Dependable Systems Course PT 2011

RAM Testing

• Categories: Functional (1‘s and 0‘s),
DC parametric (signal timing, fall and rise),
AC parametric (access times, setup and hold
times and cycle times)

• Exhaustive test

• Total number of bit configurations is 2N

• N! potential address sequences

• 16 bit RAM

• 65536 words possible

• 2.092279e+13 possible sequential
writing sequences

• Total of 1.371196e+18 combinations !

12

Test Complexity

MSCAN 4n

Column Bars 4n

Checkerboard 4n

Marching 1‘s / 0‘s 12n

Shifted Diagonal 4n3/2

Ping Pong n2

Walking 1‘s / 0‘s 2n2 + 6n

Galloping 1‘s & 0‘s 2n2 + 8n

Dependable Systems Course PT 2011

RAM Testing

• Memory Scan (MSCAN)

• For all cells: Write 0, read, write 1, read

• Can detect any stuck-at fault in the memory, memory data register, or logic

• Will not detect stuck-at in the memory address register or in the decoder

• Checkerboard / Volatility Test Pattern

• Write 1‘s in all even locations and 0‘s in all odd locations

• Wait

• Read and compare all

• Repeat with complementary pattern

• Can check for hold time in dynamic memories

13

Dependable Systems Course PT 2011

RAM Testing

• Marching 1‘s / 0‘s

• Step 1 - For all cells: Write 0

• Step 2 - For all cells: Read and compare, write 1, read and compare

• Step 3 - For all cells backward: Read and compare, write 0, read and compare

• Step 4 - Repeat steps 1 to 3 with complementary pattern

• Detection of many decoder errors, minimal check on cell interaction

• Ping Pong

• Chose designated test cell, test read / write interaction with all other cells

• Detect pattern sensity and the interaction between pair cells

14

Dependable Systems Course PT 2011

RAM Testing

• Walking 1‘s / 0‘s

• Step 1 - For all cells: Write 0

• Step 2 - For all cells: Write 1 to test cell, read and compare all others, read and
compare test cell, write 0 to test cell

• Checks for independence of cell operations and that decoder addressing works

• Detects also sense amplifier problems

• Galloping 1‘s / 0‘s

• Same as above, but read 0 test is always followed by read 1 test in test cell

• Complexity Problem: 2 GB RAM = 2*109 Bytes = 16*109 Bits

• Time effort with checkerboard (4n) and 10ns access time: 10,6 min

• Reduction by chip-level parallel tests
15

Dependable Systems Course PT 2011

Stress Test

• Multitude of approaches for hardware stress test

• Example by Hobbs Engineering [Misra]:
Highly accelerated life tests (HALT), highly accelerated stress screens (HASS)

• Improve reliability of products by harsh testing in production phase

• ,Discovery testing‘, while system modelling normally targets compliance

• Classical HALT

• Apply monitoring with high coverage

• Low temperature, high temperature, voltage and frequency margining

• All axis vibration, product-specific stresses

• Combine a few at a time, then all

• Repeat until satisfactory level of robustness is achieved

16

Dependable Systems Course PT 2011

Fault Injection / Insertion

• Typically low failure rates in standard hardware systems

• Testing procedures (especially for fault tolerance mechanisms) might take an
unacceptable amount of time

• Idea: Accelerate the failure rate by fault injection (in hardware or software)

• Usually controlled from a second computer

• FI hook demands trigger for injection process

• Readout collector obtains data (and verifies injection activity)

17

Dependable Systems Course PT 2011

Fault Injection Advantages [Ziade et al.]

• Understanding of the effects of real faults and the related system behavior

• Assessment of the efficiency of fault tolerance mechanisms (design faults)

• Encompassing a measurement of the coverage of the fault tolerance mechanism

• Estimate failure coverage and latency

• Explore effects of different workloads on the effectiveness of the FT mechanisms

• Study fault propagation and degree of error containment

• Prove fault model correctness and coverage

18

Dependable Systems Course PT 2011

Fault Injection

• Hardware fault injection

• With contact / invasive (putting unspecified voltages to pins, ...)

• Without contact (radiation, heat, particle beams, interferences, laser, ...)

• Simulation-based methods

• In high-level models (e.g. VHDL)

• Emulation-based methods

• Use of FPGAs for effective circuit simulation

• SoftWare-Implemented Fault Injection (SWIFI)

• Modification of real system to „emulate“ faults

• Hybrid approaches

• Mix hardware injection with software-based monitoring
19

Dependable Systems Course PT 2011

Fault Injection

• FARM classification approach by Arlat et al.

• F: Set of faults to be deliberately introduced in the system

• A: Set of activation trajectories used to excercise the system

• R: Set of readout values that correspond to the system behavior

• M: Set of dependability measures obtained through the fault injection

• Input domain: Set of faults F and set of activations A

• Output domain: Set of readouts R and set of measures M

• Single experiment: Select f from F, a from A, and a workload; determine r

• M is determined from a set of experiments called campaign

• Each experiment is characterized by <f, a, r>

20

Dependable Systems Course PT 2011

FARM Assumptions - Set of Faults (F)

• Starts with the choice of a fault model

• As close as possible to real faults, but still manageable

• Each fault is characterized by

• Fault injection time (time stamp, number of instructions, number of clock cycles)

• Fault location (system component - gate, memory location, register)

• Fault mask (selection of bits to be affected)

• Golden-run experiment used for fault-list generation and collapsing

21

Dependable Systems Course PT 2011

Fault List Reduction

• Example - fault list reduction for processor SEUs

• Faults changes a legal instruction code into an illegal instruction code

• Fault affects the code of an instruction after its last evaluation

• Fault affects memory cell before a write access, or after the last read access

• Fault flips the same bit of instruction code as another fault

• Fault flips the same memory bit as another fault, in between two accesses

• Fault-injection time or fault location are such that effects do not reach the output

• Experiments show 40% reduction for randomly generated initial fault list

•

22

Dependable Systems Course PT 2011

FARM Assumptions - Set of Measures (M)

• Determine fault coverage from experiment results

• Effect-less faults: Fault was not activated and was finally removed

• Failure: Fault propagated through the system to the output

• Detected fault: Fault produced an error, was signalled to the user

• Different fault detection strategies - software-detected, hardware-detected,
time-out detected

• Latent fault: Fault remained passive, or became an error that never escalated to
the system output

• Corrected fault: System was able to identify an process the error on it‘s own

23

Dependable Systems Course PT 2011

(HW) Fault Insertion Methods [Sieworek & Swartz]

24

MethodMethodMethodMethod

Software Simulation Hardware Emulation Fault Emulation Physical Insertion

Pro

Cons

Access to system at
any detail level, fault
types and control are
unlimited

Representative
hardware with favorable
access and monitoring

True hardware
and software in
use

True hardware
and software in
use

Simulation time
explosion

Implementation and
other parameters will
change with deployed
system

Fault types are
limited

Hardware form
factor limits
access and
monitoring points,
difficult

Dependable Systems Course PT 2011

Faults vs. Fault Injection

• The set of injected faults usually does not cover the set of targeted real faults

• The fault injection typically can only partly emulate the selected fault model

• The fault model usually covers only parts of the relevant real faults

• Testing with fault injection

• Problem of repeatability and dependability chain analysis

25

Dependable Systems Course PT 2011

Hardware-Based Fault Injection

• With contact - Injector has direct physical contact with the target system

• Pin-level active probes for stuck-at and bridging (probe across two pins) faults

• Socket insertion for stuck-at, open, or more complex logic faults

• Inverting signal; Logical combination with other pins or previous signals

• Supports transient / permanent / random / non-random faults

• Without contact - External source produces physical phenomenon for disturbances

• Benefits

• Unique locations, supports high resolution systems, accuracy, fast experiments,
broad support for fault classes, support for permanent faults

• Drawbacks

• High risk of damage, dense packaging issues, low portability and observability,
high setup time, expensive

26

Dependable Systems Course PT 2011

Simulation-Based Fault Injection

• Construction of a simulation model for the hardware under test

• Typically with VHDL: Widespread use, hierarchical description capabilities, structure
and behavior description in one place

• VHDL code modification vs. saboteurs insertion

• Latter mutate existing component descriptions, supported by VHDL tool set

• Saboteurs can model most faults, including environmental conditions (ESD)

• Benefits

• Can support all levels (electrical, logical, functional, architectural), not intrusive,
broad fault models, without extra hardware, integrated in normal design flow,
support for timing-related faults, maximum observability

• Drawbacks

• Large development effort, long experiments, model accuracy

27

Dependable Systems Course PT 2011

Emulation-Based Fault Injection

• Cope with time limitations of simulation by synthesizing VHDL descriptions

• Typically, necessary injection modifications are included in the model

• External trigger from connected development machine

• Alternative: Rely on reconfiguration capabilities of the FPGA itself

• Benefits

• Injection is faster than with simulation, low cost approach

• Drawbacks

• VHDL must be synthesizable, only good to investigate functional failures, timing
failures are not supported, restricted by I/O capabilities of the FPGA

28

Dependable Systems Course PT 2011

SoftWare-Implemented Fault Injection (SWIFI)

• Use software to emulate hardware faults by representative modifications

• Additional software is expected to be independent from the rest of the system

• Compile-time vs. run-time injection

• Latter demands trigger: Time-out, exception / trap, code insertion, debug register

• Benefits

• Can target applications and operating systems, testing the production system, no
special-purpose hardware required, no model development needed

• Drawbacks

• Limitation to assembly instruction level, only locations that are accessible for
software, additional code that does not exist with the real fault, limited
controllability (e.g. processor pipeline), permanent faults are problematic

29

Dependable Systems Course PT 2011

Current Research at OSM / HPI

• Software-Implemented Fault Injection at Firmware Level - a new SWIFI approach

• New fault locations (instruction pointer, trap controller state, hypervisor, ...)

• Better portability

• Advanced fault triggers

30

!"#$%&'()*$+,-.*,$

!"#$"-,)/0,*$

12#$30'45*,$

"0&56$#'7*869,$

!"#$%&'()*$+,-.*,$

!"#$"-,)/0,*$

"0&56$#'7*869,$

:&;69)$<#=1$

"-,)/0,*$

12#$30'45*,$

"0&56$#'7*869,$

:&;69)$<#=1$

"-,)/0,*$

"0&56$#'7*869,$

30,4/0,*$

=>*,0('?$1@;6*)$ =>*,0('?$1@;6*)$ =>*,0('?$1@;6*)$ =>*,0('?$1@;6*)$

30,4/0,*$ 30,4/0,*$ 30,4/0,*$

!"#$%&'()*$+,-.*,$

/0,)12$!3*4&(0'$

!"#$%&'()*$+,-.*,$

5678*)$91'1:*)*'8$90;*$

90;-<*;$=#>5$

5678*)$91'1:*)*'8$90;*$

90;-<*;$=#>5$

/0,)12$!3*4&(0'$

