
Dependable Systems

Reliability Prediction

Dr. Peter Tröger

Krishna B. Misra: Handbook of Performability Engineering. Springer. 2008 (p. 265ff)

Dependable Systems Course PT 2011

Predicting System Reliability - Application Areas

• Feasability evaluation

• Comparison of competing designs

• Identification of potential reliability problems - low quality, over-stressed parts

• Input to other reliability-related tasks

• Maintainability analysis, testability evaluation

• Failure modes and effects analysis (FMEA)

• Ultimate goal is the prediction of system failures by a reliability methodology

2

Dependable Systems Course PT 2011

Predicting System Reliability - Procedure

• Procedure of system reliability prediction [Misra]

• Define system and its operating conditions

• Define system performance criterias (success, failure)

• Define system model (e.g. with RBDs or fault trees)

• Compile parts list for the system

• Assign failure rates and modify generic failure rates with an according procedure

• Combine part failure rates (see last lecture)

• Estimate system reliability

•

3

Dependable Systems Course PT 2011

Reliability Data

• Field (operational) failure data

• Meaningful source of information, experience from real world operation

• Operational and environmental conditions may be not fully known

• Service life data with / without failure

• Helpful in assessing time characteristics of reliability issues

• Data from engineering tests

• Example: Accelerated life tests

• Results from controlled environment

• Trustworthy for analysis purposes

• Lack of failure information the ,greatest deficiency‘ in reliability research [Misra]

4

Dependable Systems Course PT 2011

Reliability Prediction Models as Solution

• Economic requirements affect field-data availability

• Few customers who need a generic field data source, collection is costly

• Error prediction models look for corrective factors, so they are always focused

• Lack of confidence in understanding of environmental conditions

• Numerical reliability prediction models available for specific areas

• Hardware-oriented reliability modeling

• MIL-HDBK-217, Bellcore Reliability Prediction Program, ...

• Software-oriented reliability modeling

• Jelinski-Moranda model, Basic Execution model, software metrics, ...

• Models for infrastructure / IT management

5

Dependable Systems Course PT 2011

Reliability Prediction Models

• Several objectives

• Feasibility evaluation for given model, identification of potential problem sources

• Comparison of competing designs

• Provision of input to other reliability and maintainability tasks

• Issues with prediction models

• Reconciliation is often needed between the different values of failure data from
various sources

• Operating stresses are projected into the failure rates for the preliminary design

• Models depend on nature of component (electrical, electronic, mechanical)

6

Dependable Systems Course PT 2011

MIL-HDBK 217

• Most widely used and accepted prediction data for electronic components

• Military handbook for reliability prediction of electronic equipment

• First published by the U.S. military in 1965, last revision F2 from 1995

• Common ground for comparing the reliability of two or more similar designs

• Empirical failure rate models for various part types used in electronic systems

• ICs, transistors, diodes, resistors, capacitors, relays, switches, connectors, ...

• Failures per million operating hours

• Modification for mechanical components

• Due not follow exponential failure distribution or constant rate (e.g. wear-out)

• Change to very long investigation time to include replacement on failure

7

Dependable Systems Course PT 2011

MIL-HDBK 217 - Part Count Method

• Part count prediction in early product development cycle, quick estimate

• Prepare a list of each generic part type and their numbers used

• Assumes that component setup is reasonably fixed in the design process

• MIL 217 provides set of default tables with generic failure rate per component type

• Based on intended operational environment

• Quality factor - Manufactured and tested to military or more relaxed standard

• Learning factor - Represents number of years the component has been in
production

• Assumes constant failure rate for each component, assembly and the system

8

Dependable Systems Course PT 2011

MIL-HDBK 217 - Part Count Method

• Early estimate of a failure rate, given by

• - Number of part categories

• - Number of parts in category i

• - Failure rate of category i

• - Quality factor for category i

• Literally: Counting similar components of a product and grouping them in types

• Quality factor from MIL 217 tables

• Part count assumes all components in a series

9

λ =
n�

i=1

NiλiπQi

n

Ni

λi

πQi

• Part stress analysis prediction supporting 14 different operational conditions

• Accurate method for prediction in contrast to simulation

• Used with completed design - Detailed part lists and stress test results are known

• Demands knowledge of all stresses (temperature, humidity, vibration, ...) and their
effect on the failure rate

• Relies typically on data sheet from component manufacturer

• MIL 217 provides mathematical model for failure rate per component type

• Environment factors also influence resulting failure rate

• Emulation of environments in test chambers

• Excludes effects of ionizing radiation

Dependable Systems Course PT 2011

MIL-HDBK 217 - Part Stress Method

10

• Determine the system failiure rate from each part‘s stress level

• - Learning factor (1-2)

• - Production quality factor (1-100)

• - Temperature acceleration factor (1-100)

• - Voltage stress factor

• - Application environment factor (1-20)

• - Technology constants for complexity (1-100) and case (1-20)

• - Failure rate per million hours

• Supports quantitative assessment of relative cost-benefit of system-level tradeoffs

Dependable Systems Course PT 2011

MIL-HDBK 217 - Part Stress Method

11

λ = πLπQ(C1πTπV + C2πE)

πL

πQ

πT

πV

πE

C1, C2

λ

Dependable Systems Course PT 201112

Application Environment Factor

Dependable Systems Course PT 2011

MIL-HDBK 217

• Till today the most commonly used method for MTBF computation

• Was based on historical component failure data, assumes exponential distribution

• 1996 announced as discontinued by the U.S. Army

• „has been shown to be unreliable“

• Main driver in product reliability is no longer hardware component reliability

• Failure rates in 217 are too high for todays electronic

• Specific failure model per component

• Example: Solid tantalum fixed electrolytic capacitor

• Failure rate depends on base failure rate, series resistance factor, quality level and
environment factor

13

Dependable Systems Course PT 2011

MIL-HDBK 217 Tool Support

14

Dependable Systems Course PT 2011

MIL-HDBK 217 Examples

15

Dependable Systems Course PT 2011

MIL-HDBK 217 Examples

16

Dependable Systems Course PT 2011

Mechanical Parts

17

Dependable Systems Course PT 2011

Telcordia (Bellcore) SR-332 / TR-332

• Reliability prediction model evolved from telecom industry equipment experience

• First developed by Bellcore Communications research, based on MIL217

• Lower and more conservative values for MTBF

• Availability with relation to failures per billion component operation hours

• Factors: Static failure rate of basic component, quality, electrical load, temperature

• Often observed that calculations are more optimistic than in MIL 217

• Requires fewer parameters than MIL 217 - Four unified quality levels

• Different components supported - Printed circuit boards, lasers, tubes, magnetic
memories (217) vs. gyroscopes, batteries, heaters, coolers, computer systems

18

Dependable Systems Course PT 2011

Telcordia (Bellcore) SR-332 / TR-332

• Three methods with empirically proven data

• Method 1: Part count approach, no field data available

• Supports first year multiplier for infant mortality modeling

• Method 2: Method 1 extended with laboratory test data

• Supports Bayes weighting procedure for burn-in results

• Method 3: Method 2 including field failure tracking

• Different Bayes weighting based on the similarity of the field data components

19

λ = πgλbπSπt

Environmental
Factor Base Failure Rate from

Transistor Count

Quality Factor

Temperature Factor,
default 40 deg

Dependable Systems Course PT 2011

MIL-HDBK-217 vs. Telecordia

• Often observed that Telecordia calculations are much more optimistic

• Telecordia requires fewer parameters for components, has additional capabilities for
considering burn-in data, laboratory test data, and field data

• Helps to calculate failure rates based on historical data

• Can model infant mortality effects

• Telecordia uses Failures-In-Time (FIT) - per billion hours, MIL uses failures per million
hours

• Operating environments in Telecordia are limited, since only designed for telco users

• Telecordia quality levels are simplified

20

Dependable Systems Course PT 2011

PRISM

• PRISM released by Reliability Analysis Center (RAC) in 2000

• Can update predictions based on test data

• Adresses factors such as development process robustness and thermal cycling

• Basic consideration of system software part

• Seen as industry replacement for MIL 217

• Factors in the model: Initial failure rate, infant mortality, environment, design
processes, reliability growth, manufacturing processes, item management
processes, wear-out processes, software failure rate, ...

• Quantitative factors are determined through an interactive process

21

Dependable Systems Course PT 2011

RIAC 217Plus

• Predictive models for integrated circuits (Hermetic and non-hermetic), diodes,
transistors, capacitors, resistors and thyristors

• Based on over 2x1013 operation hours and 795,000 failures

• Includes also software model

• System level modeling part for non-component variables

• Failure rate contribution terms: Operating, non-operating, cycling, induced

• Process grading factors: Parts, Design, Manufacturing, System Management, Wear-
out, Induced and No Defect Found

• Model degree of action for failure mitigation

• Still only series calculation, no active-parallel or standby redundancy support

22

Dependable Systems Course PT 2011

Other Sources

• IEC TR62380 - Technical report of the International Electrotechnical Commission,
considers thermical behaviour and system under different environmental conditions

• IEC 61709 - Parts count approach, every user relies on own failure rates

• NPRD-95 - Failure rates for > 25.000 mechanical and electromechanical parts,
collected from 1970s till 1994

• HRD5 - Handbook for reliability data of electronic components used in Telco industry,
developed by British Telecom, similar to MIL 217

• VZAP95 - Electrostatic discharge susceptibility for 22.000 devices (e.g. microcircuits)

• RDF 2000 - Different approach for failure rates

• Cycling profiles - power on/off, temperature cycling

• Demands complex information (e.g. thermal expansion, transistor technology,
package related failure rates, working time ratio)

23

Dependable Systems Course PT 2011

Other Sources

• WASH-1400 (NUREG-75/015) - „Reactor Safety Study - An Assessment of Accident
Risks in U.S. Commercial Nuclear Power Plants“ 1975

• IEEE Standard 500

• Government-Industry Data Exchange Program (GIDEP)

• NUREG/CR-1278; „Handbook of Human Reliability Analysis with Emphasis on
Nuclear Power Plant Applications;“ 1980

• SAE model - Society of automotive engineers, similar equations to MIL 217

• Modifying factors are are specific for automotive industry

• Examples: Component composition, ambient temperature, location in the vehicle

24

Dependable Systems Course PT 2011

Failure Probability Sources (Clemens & Sverdrup)

• Original data

• Manufacturer‘s Data

• Industry Consensus Standards, MIL Standards

• Historical Evidence - Same or similar systems

• Similar product technique - Take experience from old product with similar attributes

• Similar complexity technique - Estimate reliability by relate product complexity to
well-known product

• Prediction by function technique - Part count prediction or part stress prediction

• Simulation or testing

25

Dependable Systems Course PT 2011

MIL-HDBK 217

• Naval Surface Warfare Center
(NSWC) Crane Division
established working group for
modification factors of MIL
217

• Industry survey - Reliability
predictions on tracable
sources, used methods

• From survey of 1900
components, less than 25%
had prediction

• 38% of them used MIL 217

26
(C)VMECritical.com

Dependable Systems Course PT 2011

Example Rates

• 64K DRAM in plastic, failures in time per 109 hours (FITs)

• MIL-HDBK-217D and 217E : 60,578

• Recull de Donnees de Fiabilite du CNET : 541

• Reliability Prediction Procedure (RPP) Bellcore : 550

• NIPPON TELEGRAPH and TELEPHONE	 Standard Reliability Table : 542

• Handbook of Reliability Data HRD5 (BRITISH TELECOM) : 10

27

Dependable Systems Course PT 2011

Software - A Different Story

28

Dependable Systems Course PT 2011

Software Reliability Assessment

• Software bugs are permanent faults, but behave as transient faults

• Activation depends on software usage pattern and input values

• Timing effects with parallel or distributed execution

• Software aging effects

• Fraction of system failures reasoned by software increased in the last decades

• Possibilities for software reliability assessment

• Black box models - No details known, observations from testing or operation

• Reliability growth models

• Software metric models - Derive knowledge from static code properties

• Architecture models - Perform analysis based on system architecture

29

Dependable Systems Course PT 2011

Dimensions of Black Box Models (Musa et al.)

30

Consider stress
factors, e.g.

through aging

Consider infinite
number of failures,

e.g. from
reintroduced bugs

Consider how failures
are distributed in time

Consider how
failure severity is

distributed

Good for
managers

Dependable Systems Course PT 2011

Software Reliability Growth Models

• Fundamental concept for software reliability modeling, with basic assumptions:

• Faults are removed immediately after being discovered,
based on continuous testing and debugging

• Failure frequency tends to decrease over time, so reliability increases

• Software reliability can be predicted by matching the measured reliability data (e.g.
from testing) to chosen growth model

• Typical question to the model: Time required to achieve a reliability target

• Supports planned testing and planned service operation efforts

• Hundreds of proposed models, only a few tested with sufficient field data

• Collect software failure data, analyze for distribution characteristics, choose model

• Active empirical research in software engineering

31

Dependable Systems Course PT 2011

Software Reliability Growth Models

• Classification by Singpurwalla and Wilson (1994)

• Type I: Model time between successive failures

• Should get longer as faults are removed from the software

• Time is assumed to follow a function, related to number of non-fixed faults

• Type I-1: Based on failure rate (Example: Jelinski-Moranda Model (1972))

• Type I-2: Model inter-failure time based on previous inter-failure times

• Type II: Counting process to model the number of failures per time unit

• As faults are removed, observed number of failures per unit should decrease

• Typically derivation of remaining number of defects / failures

• Example: Basic execution time model by Musa (1984)

32

• Finite number of bugs, inter-failure time has exponential distribution

• Assumptions: Faults are equal, errors occur randomly and independent from each
other, error detection rate is constant, repairs are perfect, repair time is negligible,
software operation during test is the same as in production use

• Constant function for failure rate in the i-th time interval:

• Estimation of : Number of failures in interval i / length of interval i

• Failure rate estimation based on testing efforts done so far

• Allows to reason about (remaining) number of dormant faults in the software

Dependable Systems Course PT 2011

Jelinksi-Moranda Model

33

λi

λi = Φ ∗Ni

• Time between failures 7.5 min before testing, 2h after testing

• 75 faults were removed

• Looking for number of initial faults and proportionality constant

• Reliability 10h after the end of testing

Dependable Systems Course PT 2011

Example: Jelinski-Moranda

34

λ0 = Φ ∗N λend = Φ ∗ (N − 75) λ0 ≈ 1

0, 125

λend ≈ 1

2
λ0

λend
=

N

N − 75
= 16 N = 80,Φ = 0, 1

R(10h) = e−λend10h = 7%R(ti) = e−λiti

Dependable Systems Course PT 2011

Basic Execution Time Model (Musa)

• Popular reliability growth model to predict reliability - before actual execution

• Determine cumulative number of failures by time i

• Start with estimated number of initial faults, get number of corrected fault after

• Fundamental assumption that correction of faults does not introduce new ones

• One of the first models to rely on execution time, instead of calendar time

• Resources limit execution time spent per unit calendar time

• Expression in terms of CPU time can indicate ,stress‘ on software

• Random process that represents the number of failures experienced by some time

• Exponential distribution of resulting failure intensity function

• Failure intensity changes with a constant rate, depending on the number of
observed failures

35

τ

• - Failure rate (number of failures per time unit)

• - Execution time (time since the program is running)

• - Mean number of expected failures in an execution time interval

• - Initial failure rate at the start of execution

• - Total number of failures over an infinite time period

• Assumed maximum number of
failures leads to decreasing
over time

Dependable Systems Course PT 2011

Basic Execution Time Model (Musa)

36

µ(τ) = ν0(1− e−
λ0
ν0

τ)

λ

λ0

τ

ν0

µ

λ(τ) = λ0e
−λ0

ν0
τ

µν0

Dependable Systems Course PT 2011

Reliability Growth Model Analysis by Tandem [Wood]

• Technical report 96.1 by Tandem, 1996

• Analysis of 9 different growth models in comparison with real data

• Methodology needs to be adjusted with every new release

• Execution time is the best measure for test amount, calendar time does not work

• Weekly data was sufficient for the prediction models

• Simple (exponential) models outperformed others in stability and predictive ability

• Failure count estimation relevant for planning amount of testing and customer
support levels

37

Dependable Systems Course PT 2011

Reliability Growth Model Analysis by Tandem [Wood]

38

• Concave models: Fault detection rate decreases over time with repair activities

• S-Shaped models: Early testing is more efficient than later testing

• Ramp-up phase were error detection rate increases

• Example: Early phase detects faults that prevent the application from running

• Reality check for typical assumptions

• Repair is perfect: New defects are less likely to be detected, since regression is not
as comprehensive as the original tests

• Each unit of time is equivalent: Corner tests are more likely to find defects, test
reruns for fixed bugs are less likely to find new defects

• Tests represent operational profile: Size and transaction volume of production
system is typically not reproducible

• Failures are independent: Reasonable, except for badly tested portions of code

• During testing, the model should predict additional test effort for some quality level

• After test, the model should predict the number of remaining defects in production

• Most models do not become stable until about 60% of the tests

Dependable Systems Course PT 2011

Reliability Growth Model Analysis by Tandem [Wood]

39

Dependable Systems Course PT 2011

Reliability Growth Model Analysis by Tandem [Wood]

40

• Most models become stable at the same time as the G-O model

• S-shaped models tend to underestimate the number of effects

• G-O model (which is the Musa model) is the best choice for Tandem

Dependable Systems Course PT 2011

White Box Approach - Software Metric Models

• Larger software is more complex, which brings more dormant faults

• Idea: Rank software reliability by complexity measures

• ... for the code itself

• ... for the development process

• Complexity metrics should rank degree of difficulty for design and implementation of
program structures, algorithms, and communication schemes

• Hundreds of different metrics proposed, variety of software tools

• Most basic approach - lines of code (LOC)

• Industry standard from 0,3 to 2 bugs per 1000 lines of code

• Better data for structured analysis available with large open source projects

41

42

2010

2011

43

44

Dependable Systems Course PT 201145

Example: CyVis Tool for Java

Dependable Systems Course PT 2011

Halstead Metric

• Statistical approach - Complexity is related to number of operators and operands

• Only defined on method level, OO code analysis must consider additional structure

• Program length N = Number of operators NOP + total number of operands NOD

• Vocabulary size n = Number of unique operators nOP + number of unique operands nOD

• Program volume V = N * log2(n)

• Describes size of an implementation by vocabulary and (mainly) by program length

• Less sensitive to code changes than LOC measure

• Difficulty level D = (nOP / 2) * (NOD / nOD), program level L = 1 / D

• Error proneness is proportional to number of unique operators - since most languages
only offer a few, this should be small

• Also proportional to the level of operand reuse through the code

46

x = x + 1;
NOP=nOP=3

NOD=3
nOD=2

Dependable Systems Course PT 2011

Halstead Metric

• Effort to implement / understand the program E = V * D

• Depends on volume and difficulty level of the analyzed software

• Describes mental effort to re-create the software (only implementation)

• Questioned by some researchers

• Time in seconds to implement / understand the program T = E / 18

• Stroud number 18 by John Stroud, psychologist - humans can detect between
5 and 20 discrete events per second

• Widely ignored in software metric tools

• Number of delivered bugs B = V / 3000

• Bug count correlates with the complexity / effort to understand the software

• Statistically proven for object-oriented software

47

Dependable Systems Course PT 2011

Cyclomatic Complexity

48

Thomas McCabe‘s cyclomatic complexity (1976)

• Measure based on graph representation of the control flow

• Cyclomatic number v(G) for a strongly connected graph:

• Number of directed edges - number of vertexes
+ number of connected components

• Expresses number of independent conditional
paths in the control flow

• No consideration of data structure complexity,
data flow, or module interface design

• Goal should be max. 15 for functions, 100 for files

• Studies showed correlation between fault count and
cyclomatic number

if /
for /

while /
case /
catch /

....

Phantom edge for
strongly connected graph

Dependable Systems Course PT 2011

State-Based Software Model (Cheung)

• Software modules N1 ... Nm

• States C and F denote correct and incorrect output

• Each module Ni computes the right result with probability Ri

• Pij denotes probability of control transition from module i to j, allows DTMC model

• System produces correct output if Nn is reached from N1, and Nn produces C

49

50

"All Models are Wrong - Some are Useful."
George E. P. Box

