
Dependable Systems

Definitions and Metrics

Dr. Peter Tröger

Sources: 

J.C. Laprie. Dependability: Basic Concepts and Terminology
Eusgeld, Irene et al.: Dependability Metrics. 4909. Springer Publishing, 2008
Echtle, Klaus: Fehlertoleranzverfahren. Heidelberg, Germany : Springer Verlag, 1990.
Pfister, Gregory F.: High Availability. In: In Search of Clusters. , S. 379-452



Dependable Systems Course PT 2011

Dependability

• Umbrella term for operational requirements on a system

• IFIP WG 10.4: "[..] the trustworthiness of a computing system which allows reliance 
to be justifiably placed on the service it delivers [..]"

• IEC IEV: "dependability (is) the collective term used to describe the availability 
performance and its influencing factors : reliability performance, maintainability 
performance and maintenance support performance"

• Laprie: „ Trustworthiness of a computer system such that 
reliance can be placed on the service it delivers to the user “

• Adds a third dimension to system quality

• General question: How to deal with unexpected events ?

• In German: ,Verlässlichkeit‘ vs. ,Zuverlässigkeit‘

2



Dependable Systems Course PT 2011

System Type Examples

• Dependable (reliable) system

• Delivers a required service during its lifetime

• Fault-tolerant computer system

• Continues correct service provisioning in the presence of faults

• Real-time computer system

• Deliver a service within given time constraints (physical time, duration, ...)

• Responsive computer system

• Fault-tolerant real-time system

3



Dependable Systems Course PT 2011

System Integration Levels

4

Application Modules

Java EE Application

Application Server

Virtual Runtime Environment

Operating System

Operating System

Virtualization Environment

Compute Blade

Blade Center

Integrated Circuits

• Dependability has to be considered at every level

• Decomposition approach influences dependability success



Dependable Systems Course PT 2011

Dependability Stakeholders

• System - Entity with function, behavior, and structure

• A number of components or subsystems, which interact under the control of a 
design [Robinson]

• Service - System behavior abstraction, as perceived by the user

• User - Human or physical system that interacts with the systems service

• Specification - Definition of expected service and delivery conditions 

• On different levels, can lead to specification fault

• Reliance demands assessment of non-functional dependability attributes

• Provide ability for trustworthy service delivery by dependability means

• Undesired (maybe expected) circumstances form dependability threats

5



Dependable Systems Course PT 2011

Dependability Tree (Laprie)

6



Dependable Systems Course PT 2011

Dependability Threats

• System failure - ,Ausfall‘

• Event that occurs when the service no longer complies with the specification / 
deviates from the correct service.

• System error - ,Fehler(zustand)‘

• Part of system state that can lead to subsequent failure

• Some sources define errors as active faults - not in this course ... 

• System fault - ,Fehler(ursache)‘

• Adjudged or hypothesized cause of an error

• Failure occurs when error state alters the provided service

• Systems are build from connected components, which are again systems

• Fault is the consequence of a failure of some other system to deliver its service

7

Fault 
Error 

Failure 



Dependable Systems Course PT 2011

Chain of Dependability Threats (Avizienis)

8

Fault

Error

Failure

Activation

Propagation

Causation
Fault



Dependable Systems Course PT 2011

Faults

• High diversity in possible sources and types

• Fault nature

• Accidental faults (,Zufallsfehler‘) vs. intentional faults (,Absichtsfehler‘)

• Intentional faults are created deliberately, presumably malevolently

• Fault origin viewpoints (not exclusive)

• Phenomenological causes: Physical / natural faults vs. human-made faults

• System boundaries: Internal faults (part of system state that produces an error) 
vs. external faults (interference with the environment)

• Phase of creation: Design faults vs. operational faults

• Temporal persistence

• Permanent faults vs. temporary faults

9



Dependable Systems Course PT 2011

Observations on Faults

• An external fault is a design fault - inability or refusal to foresee all situations

• Design faults are created during system development, system modification, or 
operational procedure creation and establishment

• Just replacing broken version of the same component leads to recurrent faults

• Physical faults are accidental faults

• Temporary external accidental physical faults are also called transient faults

• Temporary internal accidental faults are also called intermittent faults

• Examples: Pattern-sensitive memory hardware, system overload

• Arbitrary concept - Permanent faults with unknown activation condition

• Intentional and design faults are human-made faults, might be malicious faults

• Hardware production defects are typically physical faults
10



Dependable Systems Course PT 2011

Observations on Faults

• A fault is active when it produces an error

• A non-active internal fault is a dormant / passive fault (,inaktive Fehlerursache‘)

• Origin in hardware fault analysis - often cycling between dormant and active

• Many specialized versions of the term ,fault‘, e.g. bug

• Heisenbug - Intermittent software fault, Bohrbug - Permanent software fault

• Mandelbugs - Appear chaotic due to many dependencies

• Fault-tolerant system design is a contradiction

• Design demands specification, faults are non-specified cases

• Solution: Specification for fault-free case + additional fault specification

• Fault can mean performance or timing faults (derivation from expected load / timing)

11



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

12



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

13



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

14



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

15



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

16



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

17



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

18



Dependable Systems Course PT 2011

Fault Characterization (Laprie & Kanoun)

19



Dependable Systems Course PT 2011

Fault Model

• Faults can be classified into different categories on different abstraction levels

• Physics

• Circuit level / switching circuit level

• Interesting for hardware design research (not this course)

• Investigate logical signals on connections 

• stuck-at-zero, stuck-at-one, bridging faults, stuck-open

• Register transfer level

• Processor-memory-switch (PMS) level

• Hardware system level

• ... (Software) ...

20



Dependable Systems Course PT 2011

Physical Faults [Goloubeva]

• Highly energized particles originate from space, atmospheric, or ground radiation

• Cosmic radiation, solar heavy ions, solar protons, ...

• Interaction of particle that strikes a circuit - atomic displacement, direct ionization, 
indirect ionization created by nuclear reactions

• Smaller structures are sensitive to ionization effects from all kinds of particles

• Single Event Upset (SEU) - injected charge changes content of a memory bit

• Dynamic random access memory (DRAM) - typical building blocks for main memory

• No inherent refreshing, influence on storage capacitor changes value

• Static random access memory (SRAM), for caches, registers, pipeline, ...

• Impact on restoring transistor leads to invalid refresh operation

21



Dependable Systems Course PT 2011

Physical Faults [Goloubeva]

• Logic circuits: Shrinking size, reduction of power supply, increase of frequency

• Noise margin is extremely reduced, single-event strike impacts circuit lines

• Single Event Transient (SET): Particles modify voltage in a combinational circuit

• Can be modeled at gate level as erroneous transition on the gate output

22

g1

g2

g3

g4

g5

1
1

1
1

1 / 0 / 1

1 / 0 / 1



Dependable Systems Course PT 2011

Fault Model for Semiconductor Memories

• Stuck-at-1 or stuck-at-0 (hard) faults, transition / bit-flip faults (0->1, 1->0)

• Open and short circuits - Too much or too little metallization; Also open bonds

• Input and output leakage - Leakage current in excess of the specified limit

• Multiple writing - Data written into more than one cell when writing into one cell

• Pattern sensitivity - Device does not perform reliably with certain test pattern(s)

• Refresh dysfunction - Data are lost during the specified minimum refresh time

• Write recovery - Write followed by reading/writing at different location resulting in 
reading/writing at same location

• Sense amplifier recovery - Data accessed for a number of cycles are the same and 
then suddenly changed, sense amplifier tends to stay in the same state

• Sleeping sickness - Memory loses information in less than the stated hold time 
(typically tens of milliseconds)

23



Dependable Systems Course PT 2011

Fault Model for Semiconductor Memories

• Decoder malfunction - Inability to address same portions of the array

• No cell accessed by certain address, multiple cells accessed by certain address

• Certain cell not accessed by any address

• Certain cell accessed by multiple addresses

• Bridging fault  - Short between cells, AND type or OR type

• State coupling fault - Coupled (victim) cell is forced to 0 or 1 if coupling (aggressor) 
cell is in given state

• Inversion coupling fault - Transition in coupling cell inverts coupled cell

• Idempotent coupling fault - Coupled cell is forced to 0 or 1 if coupling cell transits 
from 0 to 1 or 1 to 0

• Disturb fault - Victim cell forced to 0 or 1 if we read or write aggressor cell (may be 
the same cell)

24



Dependable Systems Course PT 2011

System-Level Fault Model 

• Idea from hardware background, meanwhile also in software

• Usage: How many faults of different classes can occur ? 
What do I tolerate ?

• Process as black box, only look on input and output messages

• Link faults are mapped to the participating components

• Timing of faults: Fault delay, repeat time, recovery time, reboot time, ...

• Every participating component 
would need a fault model - 
pick the most urgent ones

25



Dependable Systems Course PT 2011

System-Level Fault Model [Cristian]

• Fail-Stop Fault : Processor stops all operations, notifies the other ones

• Crash Fault : Processor looses internal state or stops without notification

• Omission Fault : Processor will break a deadline or does not react to some task at all

• Send / Receiver Omission Fault: Necessary message was not not sent / not 
received in time

• Timing Fault / Performance Fault : Processor stops / reacts to a task before its time 
window, after its time window, or never

• Incorrect Computation Fault : No correct output on correct input

• Byzantine Fault / Arbitrary Fault : Every possible fault

• Authenticated Byzantine Fault : Every possible fault, but authenticated messages 
cannot be tampered

26



Dependable Systems Course PT 2011

Errors

• State of the system, not an event !

• Escalates to failure depending on

• Intentional / unintentional redundancy

• System activity

• User‘s definition of a failure

• Examples: Maximum outage time, acceptable delay, retransmission rate

• System activity can overwrite the error state before damage is happening

• Latent (not recognized) vs. detected error coming from an active fault

• Hardware often contains unintentional redundancy, makes it difficult to test

27



Dependable Systems Course PT 2011

Hardware Error Models [Goloubeva]

• Hardware faults effect state information, e.g. register values

• Stuck-at and other hardware faults therefore can also be denoted as error

• More interesting to investigate resulting effects on system-level

• Single data error - Program data is corrupted (in cache, memory, or register)

• Single code error - Effect on one instruction of the code

• Type 1/2 - Instruction modification without / with change of control flow

• Nature of error state can confirm to the nature of the originating fault

• Transient vs. permanent, static vs. dynamic, single vs. multiple

• Influence from utilized dependability means

28



Dependable Systems Course PT 2011

Hardware Error Models [Goloubeva]

• Mapping of hardware-level single bit-flip error to other layers

• Memory data segment, processor data cache: System-level single data error

• Memory code segment, processor code cache: System-level single code error 
of type 1 (modification of target register) or type 2 (modification of branch target)

• Memory stack segment: System-level data error or type 2 code error

• Processor register: Depending on processor architecture and register type

• Single data error if register holds data interpreted by the application

• Single type 1 code error, if register holds address used by load/store operation

• Single type 2 code error, if register holds address of a branch target

• Processor control register: Everything could happen ...

29



Dependable Systems Course PT 2011

Hardware Error Models - Code Errors [Goloubeva]

30

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: SUB R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1
BNZ FOOBAR 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BZ LOOP 



Dependable Systems Course PT 2011

Software Error Models [Goloubeva]

31

• Similar terminology, but completely different semantics

• Syntactical errors are handled by compiler, semantical errors occur at runtime

• Static vs. dynamic, permanent vs. temporary errors

• Example for C programming language

• Errors affecting assignments (missing / wrong local variable values)

• Errors affecting conditional instructions (wrong boolean or iteration condition)

• Errors affecting function call / return (wrong parameters, return statement)

• Errors affecting algorithms (missing statements or function calls, wrong operators)

• Under research in the software engineering field - field studies, automated code 
analysis, developer interviews



Dependable Systems Course PT 2011

Error Propagation

32

(C) Avizienis



Dependable Systems Course PT 2011

Error Propagation [Goloubeva]

33

CPU

Instruction 
Cache

Data 
Cache

Pipeline
Registers

Input

Output



Dependable Systems Course PT 2011

Error Message Occurrence (Hansen & Siewiorek)

• Same fault can lead to different (detected or undetected) errors

• Errors become detected by error detection mechanisms

• Some undetected errors are detected by several detectors

• Some detectors report several undetected errors together

• Some undetected errors are not detected at all 

• Detected errors might not be logged, if the system stops too fast

34



Dependable Systems Course PT 2011

Failures

• Non-compliance with the specification - arbitrary failure (‘willkürlicher Ausfall‘)

• System failures can be further categorized in failure modes

• Fail-silent / crash failure mode - incorrect results are not delivered

• Fail-stop mode -  constant value is delivered

• Failure mode view points

• Failure mode domain - what is influenced

• Service result - value failures, service timeliness - timing failures

• Service availability - stopping failures

• User perception in this mode - consistent / inconsistent for all users

• Failure consequences in this mode - allow ordering of failure modes

35



Dependable Systems Course PT 2011

Failure Severity (,Schweregrad des Ausfalls‘)
• Denotes consequences of failure 

• Benign failures (,unkritische Ausfälle‘)

• Failure costs and operational benefits are similar

• Sometimes also umbrella term for failures only detected by inspection

• A system with only such failures is fail-safe

• Catastrophic failures (,kritische Ausfälle‘)

• Costs of failure consequences are much larger than service benefit

• Significant / serious failures - Intermediate steps expressing reduced service

• Grading of failure consequences on overall system depends on application

• Flying airplane - Catastrophic stopping failure, Train - Benign stopping failure

• Criticality - Highest severity of possible failure modes in the system
36



Dependable Systems Course PT 2011

Criticality Levels Example: DO-178B Standard

• Software Considerations in Airborne Systems and Equipment Certification

• Mature document, developed for more than 20 years

• Definition of severity of failure conditions for airplane, crew, and passengers

• Catastrophic - Loss of ability to continue safe flight and landing

• Major - Reduced airplane or crew capability to cope with operating conditions

• Reduction in safety margins and functional capabilities

• Higher workload or physical distress for the crew

• Minor - Not significantly reduced airplane safety, slight increase in workload 

• No effect - Failure results in no loss of operational capabilities and no increase in 
crew workload

37



Dependable Systems Course PT 2011

Example: DO-178B Standard

38



Dependable Systems Course PT 2011

Failure Types
• Duration of the failure

• Permanent failures - no possibility for repairing or replacement

• Recoverable failures - back in operation after a fault is recovered

• Transient failures - short duration, no major recovery action

• Effect of the failure

• Functional failures - system does not operate according to its specification

• Performance failures - performance or SLA specifications not met

• Scope of the failure

• Partial failure - only parts of the system become unavailable

• Total failure - all services go down

39



Dependable Systems Course PT 2011

Swiss Cheese Model (Prof. Reason)

• Origins in medical research

• Defenses, barriers, and safeguards might be penetrated by fault trajectory

40

(C
) F

er
na

nd
o 

B
er

na
l



Dependable Systems Course PT 2011

Observations on Failures

• Failures vs. Load

• Typically positive correlation

• Increasing load can lead to wear-out - increasing failure rate

• Higher load can show up failure causes

• Detected faults lead to recovery activities - load increases

• Feedback effects possible

• Related faults (attributed to a common cause) can lead to common-mode failures

41



Dependable Systems Course PT 2011

Chain of Dependability Threats

42



Dependable Systems Course PT 2011

Security - Vulnerability Assessment [Johnston]

• Different dependability attribute targets might lead to different terminology

• Example: Vulnerability assessment for nuclear security

• Threat: Who might attack against what asset, using what resources, with what 
goal in mind, when / where / why, with what probability

• Threat assessment (TA): Attempting to predict the threats - proactive security

• Vulnerability: Specific weakness in security that could be exploited

• Vulnerability assessment (VA): Attempting to discover / demonstrate them

• Risk management: Deploy, modify, and re-assign security resources, based on 
TA results, VA results, assets, security breach consequences, and costs 
(time, money, human resources)

• Attack: Attempt to harm valuable asset by exploiting one or more vulnerabilities

43



Dependable Systems Course PT 2011

Security - Vulnerability Assessment [Johnston]

• Threats and vulnerabilities are different concepts, and must be treated separately

• Vulnerabilities without threats are not interesting

• Vulnerabilities do not define threats (bad locks do not imply thieves to show up)

• No one-to-one mapping, different attacks can exploit the same vulnerability

• TA involves mostly speculation about unknown people, so VA is more important

• Correct VA should identify large amount of issues with cheap countermeasures

• System features can become a vulnerability only in combination with an attack

• TA and VA are not pass / fail certifications 

44



Dependable Systems Course PT 2011

Means for Dependability

• Fault prevention - Prevent fault occurrence or introduction

• Fault tolerance - Provide service matching the specification under faults

• Fault removal - How to reduce the presence of faults

• Fault forecasting- Estimate the present number, future incidence, and the 
consequences of faults

• Combined utilization

45



Dependable Systems Course PT 2011

Dependability Means (Laprie)

• Offline / online techniques

• Fault intolerance techniques

• Fault prevention - Prevent fault occurrence or introduction

• Fault removal - Reduce the presence of faults

• 100% fault-free servicing for the whole life time is not possible

• Fault tolerance techniques

• Fault forecasting - Estimate the present number, future incidence, and the 
consequences of faults

• Fault tolerance - Provide service complying with specification in spite of faults

• Problems with coverage and validation of the validator

46



Dependable Systems Course PT 2011

Dependable System Design (Echtle)

47



Dependable Systems Course PT 2011

Fault Prevention

• Specific approaches for avoiding faults

• Specialized specification formalisms and techniques

• Specialized development / manufacturing process to prevent design faults

• Shielding

• Only use ultra-reliable components

• General engineering approaches

• Software engineering procedures

• Quality management regulations and enforcement

• Training and organization of maintenance departments

48



Dependable Systems Course PT 2011

Fault Removal

• Make faults disappear before fault tolerance becomes relevant

• Step 1: Verification

• Check if the system adheres to verification conditions; if not, take next steps

• Static verification: Static analysis, data flow analysis, compiler checks

• Dynamic verification: Symbolic execution or verification testing

• Step 2: Diagnosis

• Find the faults that influenced the verification conditions

• Step 3: Correction

• Fix the problem, repeat the steps (regression)

• Fault removal during operation: Corrective maintenance (curative / preventive)

49



Dependable Systems Course PT 2011

Testing

• Selecting test inputs is driven from different view points

• Testing purpose: conformance testing, fault-finding testing

• System model: functional testing (with functional model) or structural testing

• Fault model: enables fault-based testing

• Deterministic testing vs. random testing

• Structural testing of hardware is fault-finding, fault-based, structural testing

• Structural testing of software is fault-finding, non-fault-based, structural testing

• Golden unit: Reference system for comparison of output for a given input

50



Dependable Systems Course PT 2011

Fault Tolerance

• Fault tolerance is the ability of a system to operate correctly in presence of faults. 

or

• A system S is called k-fault-tolerant with respect to a set of 
algorithms {A1, A2, ... , Ap} and a set of faults {F1, F2, ... , Fp} 
if for every k-fault F in S, Ai is executable by a subsystem of system S with k faults. 
(Hayes, 9/76)

or

• Fault tolerance is the use of redundancy (time or space) to achieve the desired level 
of system dependability - costs !

• Accepts that an implemented system will not be fault-free

• Implements automatic recovery from errors

• Is a recursive concept (voter replication, self-checking checkers, stable memory)

51



Dependable Systems Course PT 2011

Fault Tolerance

• Typical design methodology in many technical and biological systems

• Spare wheel in cars, redundant organs, ...

• Fault tolerance mechanisms need to be evaluated by dependability attributes

• Minimum, maximum, average reliability and availability

• Easy to formulate and understand, hard to prove - failure rate remains unknown

• Quantitative limits based on fault model (which faults in which components)

• Typically ,one-fault-at-a-time‘ assumption

• Different attributes of fault tolerance implementation to be checked

• Functional verification, sensitivity analysis, minimum amount of resource resp. 
computational overhead, implementation performance, transparency, portability

52



Error Processing

Dependable Systems Course PT 2011

Phases of Fault Tolerance (Hanmer)

53

Latent 
Fault

Error Normal 
OperationFault

Activation

Error Recovery

Error Mitigation

Error
Detection

Fault
Treatment



Dependable Systems Course PT 2011

Decomposition of Fault Tolerance (Lee & Anderson)

• Error detection

• Presence of fault is deducted by detecting an error in some subsystem

• Implies failure of the according component

• Damage confinement

• Delimit damage caused due to the component failure

• Error processing - recovery / compensation

• System recovers from the effect of an error

• Fault treatment 

• Ensure that fault does not cause again failures

54



Dependable Systems Course PT 2011

Fault Tolerance - Error Detection

• Replication check

• Output of replicated components is compared / voted

• Independent failures, physical causes -> many replicas possible (e.g. HW)

• Finds also design faults, if replicated components are from different vendors

• Timing checks (‚watchdog timers‘)

• Timing violation often implies that component output is also incorrect

• Typical solution for node failure detection in a distributed system

• Reasonableness checks - Run-time range checks, assertions

• Structural and coding checks, diagnostics checks, algorithmic checks

• Ideal: Self-checking component with clear error confinement areas

55



Dependable Systems Course PT 2011

Fault Tolerance - Error Detection

• Replication checks are powerful and expensive, examples:

• Execute identical copies on different hardware (component failures)

• Execute separate and different versions (assumes independent design faults)

• Execute same copies different times (transient faults)

• Replicate only portion of the system

• Works for both hardware and software

• Signaling aspect in the error detection task

• Typical software model are exceptions, a way for implementing forward recovery

• Combination fault detection and fault location

56 (C) IEEE



Dependable Systems Course PT 2011

Fault Tolerance - Damage Confinement (Taylor)

• System decomposition

• Every communication link might enable damage spreading

• Introduce mutual suspicion

• Hardware-based separation of software components

• OS-based separation (processes, runtime monitors, special shells)

• Law-governed architecture

• Externalize contrains on interaction by runtime rules

• Strongly-typed language

• Language guarantees the absence of unintended control flows

57



Dependable Systems Course PT 2011

Preventing Error Propagation

• Especially relevant when single components communicate their data

• Single-source information - local clock, sensor data, transaction status ...

• Non-failed component must find an agreement how to treat received information

• Special topic in distributed systems

• Atomic broadcast, clock synchronization, membership protocols

58



Dependable Systems Course PT 2011

Fault Tolerance - Error Processing Through Recovery

• Forward error recovery

• Error is masked to reach again a consistent state (fault compensation)

• Corrective actions need detailled knowledge (damage assessment)

• New state is typically computed in another way

• Examples: error correcting codes, non-journaling file system check, 
advanced exception handlers, (voters)

• Backward error recovery

• Roll back to previous consistent state (recovery point / checkpoint) 

• Very suitable for transient faults

• Computation can be re-done with same components (retry), with alternate 
components (reconfigure), or can be ignored (skip frame)

59



Dependable Systems Course PT 2011

Fault Tolerance - Fault Treatment

• Fault diagnosis - determine error cause‘s location and nature

• Fault passivation - (remove faulty component &) reconfigure system

• Error processing might already remove the fault - ,soft fault‘

• Typical example are temporary faults

• Fault tolerance manager

• Careful diagnosis with hardware support

• Damage assessment by disabling faulty components automatically

• Example: IBM mainframe architecture

• Software rejuvenation

• Gracefully terminating an application and immediately restarting it at a 
clean internal state

60



Dependable Systems Course PT 2011

Fault Tolerant Mindset (Hanmer)

• What can go wrong in any given situation ?

• Mindset to be applied in all development stages

• „Every problem in computer science boils down to tradeoffs“ [Henschen]

• Fault prevention vs. fault tolerance vs. failure severity

• KISS principles, leave out „bells and whistles“

• Incremental additions of reliability - long-term products

• Defensive Programming

• Simple error handling; fix root cause, not symptoms; make data auditble; 
make code maintainable; 

61



Dependable Systems Course PT 2011

Fault Tolerant Design Methodology (Hanmer)

• Assess things that can go wrong with the system  (e.g. fault trees).

• Find potential risks and according system failures.

• Define strategies to mitigate the identified risks.

• Failure avoidance options, prevent faults from activation

• Create a mental model of the system design with redundancy.

• Design error detection and error processing capabilities.

• Design in the failure mitigation capabilities.

• Design human-computer interactions and modes of management.

62



Dependable Systems Course PT 2011

Dependable Design Strategies (Malek)

• Decompose the system 

• Identify fault classes, fault latency and fault impact for the components

• Identify “weak spots” and assess potential damage

• Integrate partial recovery / reintegration / restart 

• Determine qualitative and quantitative specs for fault tolerance and evaluate your 
design in specific environment 

• Develop / utilize fault and error detection techniques and algorithms 

• Develop / utilize fault isolation techniques and algorithms 

• Refine fault tolerance, iterate for improvement

• Re-use proven components, but be aware of integration issues

63



Dependable Systems Course PT 2011

Attributes of Dependability

• Non-functional attributes such as reliability and maintainability

• Complementary nature of viewpoints in the area of dependability

• In comparison to functional properties

• ... hard to define

• ... hard to abstract

• ... ,Divide and conquer‘ does not work as good

• ... difficult interrelationships

• ... often probabilistic dependencies

64



Dependable Systems Course PT 2011

Attributes of Dependability

• Reliability (,Funktionsfähigkeit‘) - Continuity of service

• Initial goal for computer system trustworthiness; other disciplines have different 
understanding

• „Reliability is not doing the wrong thing.“ [Gray85]

• „Reliability: Ability of a system or component to perform its required functions 
under stated conditions for a specified period of time“ [IEEE]

• „Reliability is the probability that an item will not fail.“ [Misra]

• Availability (,Verfügbarkeit‘) - Readiness for usage

• „Probability that a system is able to deliver correctly its service at any given 
time.“ [Goloubeva]

• „Maintainability is the probability that the item can be successfully restored to 
operation after failure; and availability ... is a function of reliability and 
maintainability .“ [Misra]

65

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/System


Dependable Systems Course PT 2011

Observations on Dependability Attributes

• Availability is always required

• Reliability, safety, and security may be optional

• Reliability might be analyzed for hardware / software components

• Availability is always from the system view point

66



Dependable Systems Course PT 2011

Attributes of Dependability

• Safety - Avoidance of catastrophic consequences on the environment

• Critical applications

• Specification needs to describe things that should not happen

• Security - Prevention of unauthorized access and / or information handling

• Became especially relevant with distributed systems

• Confidentiality - Absence of unauthorized disclosure of information

• Integrity - Absence of improper system alteration

• With respect to either accidental or intentional faults

• Maintainability - Ability to undergo modifications 
and repairs

67



Dependable Systems Course PT 2011

In Detail

• Reliability - Function R(t) 

• Probability that a system is functioning properly and constantly over time period t

• Assumes that system was fully operational at t=0

• Denotes failure-free interval of operation

• Availability - Fraction of / points in time were a system is operational

• Describe system behavior in presence of error treatment mechanisms 
(fault tolerance, repairing) 

• Instantaneous availability (at t) -  Probability that a system is performing 
correctly at time t; equal to reliability for non-repairable systems: Ai(t) = R(t)

• Steady-state availability - Probability that a system will be operational at any 
random point of time,  expressed as the fraction of time a system is operational 
during its expected lifetime: As(t) = Uptime / Lifetime

68



Dependable Systems Course PT 2011

Reliability Definition: PDF & CDF

• Probability density function pdf for random variable X

• Discrete variable: Probability that X will be x

• Continuous variable: Probability that X is in [a, b] 

• Computed as area under the density function in 
this range

• Cumulative distribution function cdf(x): Probability that 
the value of X is at most x

• Limits of integration depend on the nature of the distribution function

• Value of cdf at x is always area under pdf up to x

69

(C) weibull.com



Dependable Systems Course PT 2011

PDF Examples

• Well-known statistical distributions, each describing a random variable behavior

• Parameters of the distribution derived from data, complete description then by pdf

70

Normal distribution
(mean, variance)

Exponential distribution
(rate parameter)

Probability
density
function

Cumulative 
distribution

function



Dependable Systems Course PT 2011

The Reliability Function R(t)
• Reliability: Probability R(t) that a component 

works for time period [0,t]

• Idea: Express time period of correct operation
as continuos random variable X 
-> time to failure

• cdf(t) of this variable: Describes probability of 
failure before t -> Unreliability Function F(t)

• 1-cdf(t): Describes probability of a 
failure after t -> time to failure -> Reliability Function R(t)

• This works because working / non-working is a binary decision

• Typically, failures are modeled as Poisson process

• Poisson properties lead to exponential distribution for the time between events

• This time therefore only depends on failure rate parameter 

71

(C) weibull.com



Dependable Systems Course PT 2011

Failure Rate

• Treat pdf for time-to-failure random variable X as failure density function

• Can be computed as derivative of the unreliability function

• Failure rate / hazard rate function - mean frequency of failures at time t

• Conditional probability of a failure between a and b, given the survival until t

72

f(t) = dF (t)/dt

λ(t) = f(t)
R(t) = λ for constant failure rate



Dependable Systems Course PT 2011

Why Exponential ?

• Distribution function that models (beside others) the memoryless property of the 
Poisson process

• P(T > t + s|T > t) = P(T > s), e.g. PFailure(5 years|T > 2 years) = PFailure(3 years)

• Failure is not the result of wear-out

• Models ,intrinsic failure‘ part of the bath-tube curve, were most components 
spend the majority of their life time

• Weibull distribution can also model tear-in and wear-out

• Some natural phenomena have constant failure rate (e.g. cosmic ray particles)

• Example: Product support determines an outage rate of 0.5% per day, 
independent from age

• Failure rate is 0.005, so mean time to failure = 200 days

• Numerical formulation for „law of small numbers“

73



• Failures occur continuously and 
independently at a constant 
average rate (Poisson process)

• Increasing probability of failure 
with increasing t - cdt function

• Failure rate    from experience
or complexity measures

• Cumulative distribution function:

• Reliability function (survival probability) for exponential failure distribution:

Dependable Systems Course PT 2011

The Reliability Function R(t)

74

R(t) = P (X > t) = 1− F (t) = e−λx with F (x) = 1− e−λx

C
D

F:
 P

ro
ba

bi
lit

y 
of

 a
 

fa
ilu

re
 b

ef
or

e 
t

λ



Dependable Systems Course PT 2011

Variable Failure Rate in Real World

75

Burn in Use Wear out Integration
& Test

Use Obsolete

Hardware Software

• Failure rate is treated as constant parameter of the exponential distribution

• (maybe invalid) simplification, mostly combined solution in practice:

• Exponential distribution when failure rate is constant

• Weibull distribution when failure rate is monotonic decreasing / increasing



Dependable Systems Course PT 2011

Hardware Failure Rate

76



DS – SR&C - 6

SW Failure Rates – Industrial Practice

Dependable Systems Course PT 2011

Software Failure Rate

• Industrial practice

• When do you stop testing ?   -   No more time, or no more money ...

77

(C
) M

al
ek



Dependable Systems Course PT 2011

Failure Rate Examples

• Standards from experience provide base data for component reliability

• Society of Automotive Engineers (SAE) reliability model

• Predicted failure rate

• Base failure rate for the component

• Various modification factors

• Component composition

• Ambient temperature

• Location in the vehicle

78

λp = λbΠb
i=1πi

λp

λb

πi



Dependable Systems Course PT 2011

Example: Item-Level Sparing Analysis [Misra]

• Sparing analysis challenges

• How many spares do you need to keep the system available at the desired rate ?

• When are you going to need to spares (manufacturing time) ?

• Where the spares should be kept ?

• What system level you want to spare at ?

79



• Mean time to failure (MTTF) - 
Average time it takes to fail

• Mean time to recover / repair (MTTR) - 
Average time it takes to recover

• Mean time between failures (MTBF) - 
Average time between two successive 
failures

Dependable Systems Course PT 2011

Steady-State Availability

80

up down up

MTBF

down up

up

C1

up

C3

up

C2

MTTF



• Expressing reliability with MTBF ,should‘ imply a repairable system

• If all failures can be repaired, the MTBF estimate can become constant as time 
tends to infinity

• In reliable systems, the downtime is short in comparison to uptime, 
so the steady-state condition holds earlier

• MTBF = MTTF + MTTR

• Availability = MTTF (accumulated up time) / MTBF (accumulated life time) = 
MTTF / (MTTF + MTTR)

• Expressing reliability with MTTF ,should‘ imply a non-repairable system

• MTBF (mean time BEFORE failure) = MTTF -> typical source of confusion

• If time to failure is exponentially distributed, then the reciprocal of the rate parameter 
is equivalent to the distribution mean

Dependable Systems Course PT 2011

Steady-State Availability and MTBF

81

λ = 1
MTTF



λ = − ln0.98
100 = 0, 000202

MTTF = 1
λ = 4949, 831hours

Dependable Systems Course PT 2011

Example

• Test population with 50 HDDs and 100 hours of testing, 2 drives fail during the test

• As usual, we assume exponential distribution of the time to failure

• Reliability at t=100 is known to be 98%

• Reciprocal of the according failure rate is the MTTF

82

R(t) = P (X > t) = 1− F (t) = e−λx with F (x) = 1− e−λx

R(100hours) = e−λ100 = 0.98



Dependable Systems Course PT 2011

MTBF / MTTF in Practice

• Often express average failure behavior (statistics) for a component population

• Good for relative comparison, not for expected life time expectation of one unit

• Example: Hard disk with MTTF of 500.000 hours and 5 years of expected operation 
(,service life‘)

• Drive of this type is expected to run 5 years without problems

• Large group of such drives will (on average) have one failed drive after 500.000 
hours of accumulated life time

• What to buy: Model with longer MTBF or longer warranty time ?

83



Dependable Systems Course PT 2011

Operational Availability Calculation [Misra]

• Uptime elements:  Standby time, operating time

• Downtime elements

• Logistic: Spares availability, spares location, transportation of spares

• Preventive maintenance: Inspection, servicing

• Administrative delay

• Finding personnel, reviewing manuals, complying with supply procedures, 
locating tools, setting up test equipment

• Corrective maintenance

• Preparation time, fault location diagnosis, getting parts, correcting faults, 
testing

84



Dependable Systems Course PT 2011

MTTR Examples

• Hardware MTTR with spares onsite

• Operator available - 30min

• Operator on call - 2 hours

• Operator available during working hours - 14h

• Without spares - at least 24h

• SW MTTR with watchdog

• Reboot from ROM - 30s

• Reboot from disk - 3 min

• Reboot from network - 10 min

85



Dependable Systems Course PT 2011

Steady-State Availability

86

Availability Downtime per year Downtime per week

90.0 % (1 nine) 36.5 days 16.8 hours

99.0 % (2 nines) 3.65 days 1.68 hours

99.9 % (3 nines) 8.76 hours 10.1 min

99.99 % (4 nines) 52.6 min 1.01 min

99.999 % (5 nines) 5.26 min 6.05 s

99.9999 % (6 nines) 31.5 s 0.605 s

99.99999 % (7 nines) 0.3 s 6 ms

A = Uptime
Uptime+Downtime = MTTF

MTTF+MTTR



Dependable Systems Course PT 2011

MTTR >> MTTF [Fox]

• Armando Fox on ,Recovery-Oriented Computing‘

• A = MTTF / (MTTF + MTTR)

• 10x decrease of MTTR as good as 10x increase of MTTF ?

• MTTF‘s are not claimable, but MTTR claims are verifiable

• Proving MTTF numbers demands system-years of observation and experience

• Lowering MTTR directly improves user experience of one specific outage, since 
MTTF is typically longer than one user session

• HCI factor of failed system

• Miller, 1968: >1sec “sluggish”, >10sec “distracted” (user moves away)

• 2001 Web user study: ~5sec „acceptable”, ~10sec „excessively slow“

87



Dependable Systems Course PT 2011

MTTR >> MTTF [Fox]

• Proposal: Utility curve for recovery time

• Factors: Length of recovery time, level of service availability during error state

• Key distinction between interactive (session-based) and non-interactive systems

• If error state leads to some steady-state latency

• For how long will users tolerate temporary degradation ?

• How much degradation is acceptable ?

• Do they show a preference for increased latency vs. worse QOS vs. being turned 
away and incentivized to return?

• Long recovery times are often reasoned by stateful components

• Utilize alternative architecture concepts

88



Dependable Systems Course PT 2011

Availability

89


