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Dependability

• Umbrella term for operational requirements on a system

• IFIP WG 10.4: "[..] the trustworthiness of a computing system which allows reliance 
to be justifiably placed on the service it delivers [..]"

• IEC IEV: "dependability (is) the collective term used to describe the availability 
performance and its influencing factors : reliability performance, maintainability 
performance and maintenance support performance"

• Laprie: „ Trustworthiness of a computer system such that 
reliance can be placed on the service it delivers to the user “

• Adds a third dimension to system quality

• General question: How to deal with unexpected events ?

• In German: ,Verlässlichkeit‘ vs. ,Zuverlässigkeit‘
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System Type Examples

• Dependable (reliable) system

• Delivers a required service during its lifetime

• Fault-tolerant computer system

• Continues correct service provisioning in the presence of faults

• Real-time computer system

• Deliver a service within given time constraints (physical time, duration, ...)

• Responsive computer system

• Fault-tolerant real-time system
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System Integration Levels
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Application Modules

Java EE Application

Application Server

Virtual Runtime Environment

Operating System

Operating System

Virtualization Environment

Compute Blade

Blade Center

Integrated Circuits

• Dependability has to be considered at every level

• Decomposition approach influences dependability success
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Dependability Stakeholders

• System - Entity with function, behavior, and structure

• A number of components or subsystems, which interact under the control of a 
design [Robinson]

• Service - System behavior abstraction, as perceived by the user

• User - Human or physical system that interacts with the systems service

• Specification - Definition of expected service and delivery conditions 

• On different levels, can lead to specification fault

• Reliance demands assessment of non-functional dependability attributes

• Provide ability for trustworthy service delivery by dependability means

• Undesired (maybe expected) circumstances form dependability threats
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Dependability Tree (Laprie)
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Dependability Threats

• System failure - ,Ausfall‘

• Event that occurs when the service no longer complies with the specification / 
deviates from the correct service.

• System error - ,Fehler(zustand)‘

• Part of system state that can lead to subsequent failure

• Some sources define errors as active faults - not in this course ... 

• System fault - ,Fehler(ursache)‘

• Adjudged or hypothesized cause of an error

• Failure occurs when error state alters the provided service

• Systems are build from connected components, which are again systems

• Fault is the consequence of a failure of some other system to deliver its service
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Chain of Dependability Threats (Avizienis)
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Faults

• High diversity in possible sources and types

• Fault nature

• Accidental faults (,Zufallsfehler‘) vs. intentional faults (,Absichtsfehler‘)

• Intentional faults are created deliberately, presumably malevolently

• Fault origin viewpoints (not exclusive)

• Phenomenological causes: Physical / natural faults vs. human-made faults

• System boundaries: Internal faults (part of system state that produces an error) 
vs. external faults (interference with the environment)

• Phase of creation: Design faults vs. operational faults

• Temporal persistence

• Permanent faults vs. temporary faults
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Observations on Faults

• An external fault is a design fault - inability or refusal to foresee all situations

• Design faults are created during system development, system modification, or 
operational procedure creation and establishment

• Just replacing broken version of the same component leads to recurrent faults

• Physical faults are accidental faults

• Temporary external accidental physical faults are also called transient faults

• Temporary internal accidental faults are also called intermittent faults

• Examples: Pattern-sensitive memory hardware, system overload

• Arbitrary concept - Permanent faults with unknown activation condition

• Intentional and design faults are human-made faults, might be malicious faults

• Hardware production defects are typically physical faults
10
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Observations on Faults

• A fault is active when it produces an error

• A non-active internal fault is a dormant / passive fault (,inaktive Fehlerursache‘)

• Origin in hardware fault analysis - often cycling between dormant and active

• Many specialized versions of the term ,fault‘, e.g. bug

• Heisenbug - Intermittent software fault, Bohrbug - Permanent software fault

• Mandelbugs - Appear chaotic due to many dependencies

• Fault-tolerant system design is a contradiction

• Design demands specification, faults are non-specified cases

• Solution: Specification for fault-free case + additional fault specification

• Fault can mean performance or timing faults (derivation from expected load / timing)
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Fault Characterization (Laprie & Kanoun)
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Fault Characterization (Laprie & Kanoun)
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Fault Characterization (Laprie & Kanoun)
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Fault Characterization (Laprie & Kanoun)
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Fault Characterization (Laprie & Kanoun)
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Fault Characterization (Laprie & Kanoun)
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Fault Characterization (Laprie & Kanoun)
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Fault Characterization (Laprie & Kanoun)

19



Dependable Systems Course PT 2011

Fault Model

• Faults can be classified into different categories on different abstraction levels

• Physics

• Circuit level / switching circuit level

• Interesting for hardware design research (not this course)

• Investigate logical signals on connections 

• stuck-at-zero, stuck-at-one, bridging faults, stuck-open

• Register transfer level

• Processor-memory-switch (PMS) level

• Hardware system level

• ... (Software) ...
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Physical Faults [Goloubeva]

• Highly energized particles originate from space, atmospheric, or ground radiation

• Cosmic radiation, solar heavy ions, solar protons, ...

• Interaction of particle that strikes a circuit - atomic displacement, direct ionization, 
indirect ionization created by nuclear reactions

• Smaller structures are sensitive to ionization effects from all kinds of particles

• Single Event Upset (SEU) - injected charge changes content of a memory bit

• Dynamic random access memory (DRAM) - typical building blocks for main memory

• No inherent refreshing, influence on storage capacitor changes value

• Static random access memory (SRAM), for caches, registers, pipeline, ...

• Impact on restoring transistor leads to invalid refresh operation
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Physical Faults [Goloubeva]

• Logic circuits: Shrinking size, reduction of power supply, increase of frequency

• Noise margin is extremely reduced, single-event strike impacts circuit lines

• Single Event Transient (SET): Particles modify voltage in a combinational circuit

• Can be modeled at gate level as erroneous transition on the gate output
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Fault Model for Semiconductor Memories

• Stuck-at-1 or stuck-at-0 (hard) faults, transition / bit-flip faults (0->1, 1->0)

• Open and short circuits - Too much or too little metallization; Also open bonds

• Input and output leakage - Leakage current in excess of the specified limit

• Multiple writing - Data written into more than one cell when writing into one cell

• Pattern sensitivity - Device does not perform reliably with certain test pattern(s)

• Refresh dysfunction - Data are lost during the specified minimum refresh time

• Write recovery - Write followed by reading/writing at different location resulting in 
reading/writing at same location

• Sense amplifier recovery - Data accessed for a number of cycles are the same and 
then suddenly changed, sense amplifier tends to stay in the same state

• Sleeping sickness - Memory loses information in less than the stated hold time 
(typically tens of milliseconds)
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Fault Model for Semiconductor Memories

• Decoder malfunction - Inability to address same portions of the array

• No cell accessed by certain address, multiple cells accessed by certain address

• Certain cell not accessed by any address

• Certain cell accessed by multiple addresses

• Bridging fault  - Short between cells, AND type or OR type

• State coupling fault - Coupled (victim) cell is forced to 0 or 1 if coupling (aggressor) 
cell is in given state

• Inversion coupling fault - Transition in coupling cell inverts coupled cell

• Idempotent coupling fault - Coupled cell is forced to 0 or 1 if coupling cell transits 
from 0 to 1 or 1 to 0

• Disturb fault - Victim cell forced to 0 or 1 if we read or write aggressor cell (may be 
the same cell)
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System-Level Fault Model 

• Idea from hardware background, meanwhile also in software

• Usage: How many faults of different classes can occur ? 
What do I tolerate ?

• Process as black box, only look on input and output messages

• Link faults are mapped to the participating components

• Timing of faults: Fault delay, repeat time, recovery time, reboot time, ...

• Every participating component 
would need a fault model - 
pick the most urgent ones
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System-Level Fault Model [Cristian]

• Fail-Stop Fault : Processor stops all operations, notifies the other ones

• Crash Fault : Processor looses internal state or stops without notification

• Omission Fault : Processor will break a deadline or does not react to some task at all

• Send / Receiver Omission Fault: Necessary message was not not sent / not 
received in time

• Timing Fault / Performance Fault : Processor stops / reacts to a task before its time 
window, after its time window, or never

• Incorrect Computation Fault : No correct output on correct input

• Byzantine Fault / Arbitrary Fault : Every possible fault

• Authenticated Byzantine Fault : Every possible fault, but authenticated messages 
cannot be tampered
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Errors

• State of the system, not an event !

• Escalates to failure depending on

• Intentional / unintentional redundancy

• System activity

• User‘s definition of a failure

• Examples: Maximum outage time, acceptable delay, retransmission rate

• System activity can overwrite the error state before damage is happening

• Latent (not recognized) vs. detected error coming from an active fault

• Hardware often contains unintentional redundancy, makes it difficult to test
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Hardware Error Models [Goloubeva]

• Hardware faults effect state information, e.g. register values

• Stuck-at and other hardware faults therefore can also be denoted as error

• More interesting to investigate resulting effects on system-level

• Single data error - Program data is corrupted (in cache, memory, or register)

• Single code error - Effect on one instruction of the code

• Type 1/2 - Instruction modification without / with change of control flow

• Nature of error state can confirm to the nature of the originating fault

• Transient vs. permanent, static vs. dynamic, single vs. multiple

• Influence from utilized dependability means
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Hardware Error Models [Goloubeva]

• Mapping of hardware-level single bit-flip error to other layers

• Memory data segment, processor data cache: System-level single data error

• Memory code segment, processor code cache: System-level single code error 
of type 1 (modification of target register) or type 2 (modification of branch target)

• Memory stack segment: System-level data error or type 2 code error

• Processor register: Depending on processor architecture and register type

• Single data error if register holds data interpreted by the application

• Single type 1 code error, if register holds address used by load/store operation

• Single type 2 code error, if register holds address of a branch target

• Processor control register: Everything could happen ...
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Hardware Error Models - Code Errors [Goloubeva]
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MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: SUB R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1
BNZ FOOBAR 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BNZ LOOP 

MOV R0, 10
MOV R1,  1

LOOP: ADD R1, R1
SUB R0,  1

BZ LOOP 
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Software Error Models [Goloubeva]
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• Similar terminology, but completely different semantics

• Syntactical errors are handled by compiler, semantical errors occur at runtime

• Static vs. dynamic, permanent vs. temporary errors

• Example for C programming language

• Errors affecting assignments (missing / wrong local variable values)

• Errors affecting conditional instructions (wrong boolean or iteration condition)

• Errors affecting function call / return (wrong parameters, return statement)

• Errors affecting algorithms (missing statements or function calls, wrong operators)

• Under research in the software engineering field - field studies, automated code 
analysis, developer interviews
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Error Propagation
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Error Propagation [Goloubeva]
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Error Message Occurrence (Hansen & Siewiorek)

• Same fault can lead to different (detected or undetected) errors

• Errors become detected by error detection mechanisms

• Some undetected errors are detected by several detectors

• Some detectors report several undetected errors together

• Some undetected errors are not detected at all 

• Detected errors might not be logged, if the system stops too fast
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Failures

• Non-compliance with the specification - arbitrary failure (‘willkürlicher Ausfall‘)

• System failures can be further categorized in failure modes

• Fail-silent / crash failure mode - incorrect results are not delivered

• Fail-stop mode -  constant value is delivered

• Failure mode view points

• Failure mode domain - what is influenced

• Service result - value failures, service timeliness - timing failures

• Service availability - stopping failures

• User perception in this mode - consistent / inconsistent for all users

• Failure consequences in this mode - allow ordering of failure modes
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Failure Severity (,Schweregrad des Ausfalls‘)
• Denotes consequences of failure 

• Benign failures (,unkritische Ausfälle‘)

• Failure costs and operational benefits are similar

• Sometimes also umbrella term for failures only detected by inspection

• A system with only such failures is fail-safe

• Catastrophic failures (,kritische Ausfälle‘)

• Costs of failure consequences are much larger than service benefit

• Significant / serious failures - Intermediate steps expressing reduced service

• Grading of failure consequences on overall system depends on application

• Flying airplane - Catastrophic stopping failure, Train - Benign stopping failure

• Criticality - Highest severity of possible failure modes in the system
36
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Criticality Levels Example: DO-178B Standard

• Software Considerations in Airborne Systems and Equipment Certification

• Mature document, developed for more than 20 years

• Definition of severity of failure conditions for airplane, crew, and passengers

• Catastrophic - Loss of ability to continue safe flight and landing

• Major - Reduced airplane or crew capability to cope with operating conditions

• Reduction in safety margins and functional capabilities

• Higher workload or physical distress for the crew

• Minor - Not significantly reduced airplane safety, slight increase in workload 

• No effect - Failure results in no loss of operational capabilities and no increase in 
crew workload
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Example: DO-178B Standard
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Failure Types
• Duration of the failure

• Permanent failures - no possibility for repairing or replacement

• Recoverable failures - back in operation after a fault is recovered

• Transient failures - short duration, no major recovery action

• Effect of the failure

• Functional failures - system does not operate according to its specification

• Performance failures - performance or SLA specifications not met

• Scope of the failure

• Partial failure - only parts of the system become unavailable

• Total failure - all services go down
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Swiss Cheese Model (Prof. Reason)

• Origins in medical research

• Defenses, barriers, and safeguards might be penetrated by fault trajectory
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Observations on Failures

• Failures vs. Load

• Typically positive correlation

• Increasing load can lead to wear-out - increasing failure rate

• Higher load can show up failure causes

• Detected faults lead to recovery activities - load increases

• Feedback effects possible

• Related faults (attributed to a common cause) can lead to common-mode failures
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Chain of Dependability Threats
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Security - Vulnerability Assessment [Johnston]

• Different dependability attribute targets might lead to different terminology

• Example: Vulnerability assessment for nuclear security

• Threat: Who might attack against what asset, using what resources, with what 
goal in mind, when / where / why, with what probability

• Threat assessment (TA): Attempting to predict the threats - proactive security

• Vulnerability: Specific weakness in security that could be exploited

• Vulnerability assessment (VA): Attempting to discover / demonstrate them

• Risk management: Deploy, modify, and re-assign security resources, based on 
TA results, VA results, assets, security breach consequences, and costs 
(time, money, human resources)

• Attack: Attempt to harm valuable asset by exploiting one or more vulnerabilities
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Security - Vulnerability Assessment [Johnston]

• Threats and vulnerabilities are different concepts, and must be treated separately

• Vulnerabilities without threats are not interesting

• Vulnerabilities do not define threats (bad locks do not imply thieves to show up)

• No one-to-one mapping, different attacks can exploit the same vulnerability

• TA involves mostly speculation about unknown people, so VA is more important

• Correct VA should identify large amount of issues with cheap countermeasures

• System features can become a vulnerability only in combination with an attack

• TA and VA are not pass / fail certifications 
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Means for Dependability

• Fault prevention - Prevent fault occurrence or introduction

• Fault tolerance - Provide service matching the specification under faults

• Fault removal - How to reduce the presence of faults

• Fault forecasting- Estimate the present number, future incidence, and the 
consequences of faults

• Combined utilization
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Dependability Means (Laprie)

• Offline / online techniques

• Fault intolerance techniques

• Fault prevention - Prevent fault occurrence or introduction

• Fault removal - Reduce the presence of faults

• 100% fault-free servicing for the whole life time is not possible

• Fault tolerance techniques

• Fault forecasting - Estimate the present number, future incidence, and the 
consequences of faults

• Fault tolerance - Provide service complying with specification in spite of faults

• Problems with coverage and validation of the validator
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Dependable System Design (Echtle)
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Fault Prevention

• Specific approaches for avoiding faults

• Specialized specification formalisms and techniques

• Specialized development / manufacturing process to prevent design faults

• Shielding

• Only use ultra-reliable components

• General engineering approaches

• Software engineering procedures

• Quality management regulations and enforcement

• Training and organization of maintenance departments
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Fault Removal

• Make faults disappear before fault tolerance becomes relevant

• Step 1: Verification

• Check if the system adheres to verification conditions; if not, take next steps

• Static verification: Static analysis, data flow analysis, compiler checks

• Dynamic verification: Symbolic execution or verification testing

• Step 2: Diagnosis

• Find the faults that influenced the verification conditions

• Step 3: Correction

• Fix the problem, repeat the steps (regression)

• Fault removal during operation: Corrective maintenance (curative / preventive)
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Testing

• Selecting test inputs is driven from different view points

• Testing purpose: conformance testing, fault-finding testing

• System model: functional testing (with functional model) or structural testing

• Fault model: enables fault-based testing

• Deterministic testing vs. random testing

• Structural testing of hardware is fault-finding, fault-based, structural testing

• Structural testing of software is fault-finding, non-fault-based, structural testing

• Golden unit: Reference system for comparison of output for a given input
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Fault Tolerance

• Fault tolerance is the ability of a system to operate correctly in presence of faults. 

or

• A system S is called k-fault-tolerant with respect to a set of 
algorithms {A1, A2, ... , Ap} and a set of faults {F1, F2, ... , Fp} 
if for every k-fault F in S, Ai is executable by a subsystem of system S with k faults. 
(Hayes, 9/76)

or

• Fault tolerance is the use of redundancy (time or space) to achieve the desired level 
of system dependability - costs !

• Accepts that an implemented system will not be fault-free

• Implements automatic recovery from errors

• Is a recursive concept (voter replication, self-checking checkers, stable memory)
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Fault Tolerance

• Typical design methodology in many technical and biological systems

• Spare wheel in cars, redundant organs, ...

• Fault tolerance mechanisms need to be evaluated by dependability attributes

• Minimum, maximum, average reliability and availability

• Easy to formulate and understand, hard to prove - failure rate remains unknown

• Quantitative limits based on fault model (which faults in which components)

• Typically ,one-fault-at-a-time‘ assumption

• Different attributes of fault tolerance implementation to be checked

• Functional verification, sensitivity analysis, minimum amount of resource resp. 
computational overhead, implementation performance, transparency, portability
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Phases of Fault Tolerance (Hanmer)
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Decomposition of Fault Tolerance (Lee & Anderson)

• Error detection

• Presence of fault is deducted by detecting an error in some subsystem

• Implies failure of the according component

• Damage confinement

• Delimit damage caused due to the component failure

• Error processing - recovery / compensation

• System recovers from the effect of an error

• Fault treatment 

• Ensure that fault does not cause again failures
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Fault Tolerance - Error Detection

• Replication check

• Output of replicated components is compared / voted

• Independent failures, physical causes -> many replicas possible (e.g. HW)

• Finds also design faults, if replicated components are from different vendors

• Timing checks (‚watchdog timers‘)

• Timing violation often implies that component output is also incorrect

• Typical solution for node failure detection in a distributed system

• Reasonableness checks - Run-time range checks, assertions

• Structural and coding checks, diagnostics checks, algorithmic checks

• Ideal: Self-checking component with clear error confinement areas
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Fault Tolerance - Error Detection

• Replication checks are powerful and expensive, examples:

• Execute identical copies on different hardware (component failures)

• Execute separate and different versions (assumes independent design faults)

• Execute same copies different times (transient faults)

• Replicate only portion of the system

• Works for both hardware and software

• Signaling aspect in the error detection task

• Typical software model are exceptions, a way for implementing forward recovery

• Combination fault detection and fault location
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Fault Tolerance - Damage Confinement (Taylor)

• System decomposition

• Every communication link might enable damage spreading

• Introduce mutual suspicion

• Hardware-based separation of software components

• OS-based separation (processes, runtime monitors, special shells)

• Law-governed architecture

• Externalize contrains on interaction by runtime rules

• Strongly-typed language

• Language guarantees the absence of unintended control flows
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Preventing Error Propagation

• Especially relevant when single components communicate their data

• Single-source information - local clock, sensor data, transaction status ...

• Non-failed component must find an agreement how to treat received information

• Special topic in distributed systems

• Atomic broadcast, clock synchronization, membership protocols
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Fault Tolerance - Error Processing Through Recovery

• Forward error recovery

• Error is masked to reach again a consistent state (fault compensation)

• Corrective actions need detailled knowledge (damage assessment)

• New state is typically computed in another way

• Examples: error correcting codes, non-journaling file system check, 
advanced exception handlers, (voters)

• Backward error recovery

• Roll back to previous consistent state (recovery point / checkpoint) 

• Very suitable for transient faults

• Computation can be re-done with same components (retry), with alternate 
components (reconfigure), or can be ignored (skip frame)
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Fault Tolerance - Fault Treatment

• Fault diagnosis - determine error cause‘s location and nature

• Fault passivation - (remove faulty component &) reconfigure system

• Error processing might already remove the fault - ,soft fault‘

• Typical example are temporary faults

• Fault tolerance manager

• Careful diagnosis with hardware support

• Damage assessment by disabling faulty components automatically

• Example: IBM mainframe architecture

• Software rejuvenation

• Gracefully terminating an application and immediately restarting it at a 
clean internal state
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Fault Tolerant Mindset (Hanmer)

• What can go wrong in any given situation ?

• Mindset to be applied in all development stages

• „Every problem in computer science boils down to tradeoffs“ [Henschen]

• Fault prevention vs. fault tolerance vs. failure severity

• KISS principles, leave out „bells and whistles“

• Incremental additions of reliability - long-term products

• Defensive Programming

• Simple error handling; fix root cause, not symptoms; make data auditble; 
make code maintainable; 
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Fault Tolerant Design Methodology (Hanmer)

• Assess things that can go wrong with the system  (e.g. fault trees).

• Find potential risks and according system failures.

• Define strategies to mitigate the identified risks.

• Failure avoidance options, prevent faults from activation

• Create a mental model of the system design with redundancy.

• Design error detection and error processing capabilities.

• Design in the failure mitigation capabilities.

• Design human-computer interactions and modes of management.
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Dependable Design Strategies (Malek)

• Decompose the system 

• Identify fault classes, fault latency and fault impact for the components

• Identify “weak spots” and assess potential damage

• Integrate partial recovery / reintegration / restart 

• Determine qualitative and quantitative specs for fault tolerance and evaluate your 
design in specific environment 

• Develop / utilize fault and error detection techniques and algorithms 

• Develop / utilize fault isolation techniques and algorithms 

• Refine fault tolerance, iterate for improvement

• Re-use proven components, but be aware of integration issues
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Attributes of Dependability

• Non-functional attributes such as reliability and maintainability

• Complementary nature of viewpoints in the area of dependability

• In comparison to functional properties

• ... hard to define

• ... hard to abstract

• ... ,Divide and conquer‘ does not work as good

• ... difficult interrelationships

• ... often probabilistic dependencies
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Attributes of Dependability

• Reliability (,Funktionsfähigkeit‘) - Continuity of service

• Initial goal for computer system trustworthiness; other disciplines have different 
understanding

• „Reliability is not doing the wrong thing.“ [Gray85]

• „Reliability: Ability of a system or component to perform its required functions 
under stated conditions for a specified period of time“ [IEEE]

• „Reliability is the probability that an item will not fail.“ [Misra]

• Availability (,Verfügbarkeit‘) - Readiness for usage

• „Probability that a system is able to deliver correctly its service at any given 
time.“ [Goloubeva]

• „Maintainability is the probability that the item can be successfully restored to 
operation after failure; and availability ... is a function of reliability and 
maintainability .“ [Misra]
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Observations on Dependability Attributes

• Availability is always required

• Reliability, safety, and security may be optional

• Reliability might be analyzed for hardware / software components

• Availability is always from the system view point
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Attributes of Dependability

• Safety - Avoidance of catastrophic consequences on the environment

• Critical applications

• Specification needs to describe things that should not happen

• Security - Prevention of unauthorized access and / or information handling

• Became especially relevant with distributed systems

• Confidentiality - Absence of unauthorized disclosure of information

• Integrity - Absence of improper system alteration

• With respect to either accidental or intentional faults

• Maintainability - Ability to undergo modifications 
and repairs
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In Detail

• Reliability - Function R(t) 

• Probability that a system is functioning properly and constantly over time period t

• Assumes that system was fully operational at t=0

• Denotes failure-free interval of operation

• Availability - Fraction of / points in time were a system is operational

• Describe system behavior in presence of error treatment mechanisms 
(fault tolerance, repairing) 

• Instantaneous availability (at t) -  Probability that a system is performing 
correctly at time t; equal to reliability for non-repairable systems: Ai(t) = R(t)

• Steady-state availability - Probability that a system will be operational at any 
random point of time,  expressed as the fraction of time a system is operational 
during its expected lifetime: As(t) = Uptime / Lifetime
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Reliability Definition: PDF & CDF

• Probability density function pdf for random variable X

• Discrete variable: Probability that X will be x

• Continuous variable: Probability that X is in [a, b] 

• Computed as area under the density function in 
this range

• Cumulative distribution function cdf(x): Probability that 
the value of X is at most x

• Limits of integration depend on the nature of the distribution function

• Value of cdf at x is always area under pdf up to x
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PDF Examples

• Well-known statistical distributions, each describing a random variable behavior

• Parameters of the distribution derived from data, complete description then by pdf
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Normal distribution
(mean, variance)

Exponential distribution
(rate parameter)

Probability
density
function

Cumulative 
distribution

function



Dependable Systems Course PT 2011

The Reliability Function R(t)
• Reliability: Probability R(t) that a component 

works for time period [0,t]

• Idea: Express time period of correct operation
as continuos random variable X 
-> time to failure

• cdf(t) of this variable: Describes probability of 
failure before t -> Unreliability Function F(t)

• 1-cdf(t): Describes probability of a 
failure after t -> time to failure -> Reliability Function R(t)

• This works because working / non-working is a binary decision

• Typically, failures are modeled as Poisson process

• Poisson properties lead to exponential distribution for the time between events

• This time therefore only depends on failure rate parameter 
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Failure Rate

• Treat pdf for time-to-failure random variable X as failure density function

• Can be computed as derivative of the unreliability function

• Failure rate / hazard rate function - mean frequency of failures at time t

• Conditional probability of a failure between a and b, given the survival until t
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f(t) = dF (t)/dt

λ(t) = f(t)
R(t) = λ for constant failure rate
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Why Exponential ?

• Distribution function that models (beside others) the memoryless property of the 
Poisson process

• P(T > t + s|T > t) = P(T > s), e.g. PFailure(5 years|T > 2 years) = PFailure(3 years)

• Failure is not the result of wear-out

• Models ,intrinsic failure‘ part of the bath-tube curve, were most components 
spend the majority of their life time

• Weibull distribution can also model tear-in and wear-out

• Some natural phenomena have constant failure rate (e.g. cosmic ray particles)

• Example: Product support determines an outage rate of 0.5% per day, 
independent from age

• Failure rate is 0.005, so mean time to failure = 200 days

• Numerical formulation for „law of small numbers“
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• Failures occur continuously and 
independently at a constant 
average rate (Poisson process)

• Increasing probability of failure 
with increasing t - cdt function

• Failure rate    from experience
or complexity measures

• Cumulative distribution function:

• Reliability function (survival probability) for exponential failure distribution:
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The Reliability Function R(t)
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R(t) = P (X > t) = 1− F (t) = e−λx with F (x) = 1− e−λx
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Variable Failure Rate in Real World
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Burn in Use Wear out Integration
& Test

Use Obsolete

Hardware Software

• Failure rate is treated as constant parameter of the exponential distribution

• (maybe invalid) simplification, mostly combined solution in practice:

• Exponential distribution when failure rate is constant

• Weibull distribution when failure rate is monotonic decreasing / increasing
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Hardware Failure Rate
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DS – SR&C - 6

SW Failure Rates – Industrial Practice
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Software Failure Rate

• Industrial practice

• When do you stop testing ?   -   No more time, or no more money ...
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Failure Rate Examples

• Standards from experience provide base data for component reliability

• Society of Automotive Engineers (SAE) reliability model

• Predicted failure rate

• Base failure rate for the component

• Various modification factors

• Component composition

• Ambient temperature

• Location in the vehicle
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λp = λbΠb
i=1πi
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Example: Item-Level Sparing Analysis [Misra]

• Sparing analysis challenges

• How many spares do you need to keep the system available at the desired rate ?

• When are you going to need to spares (manufacturing time) ?

• Where the spares should be kept ?

• What system level you want to spare at ?
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• Mean time to failure (MTTF) - 
Average time it takes to fail

• Mean time to recover / repair (MTTR) - 
Average time it takes to recover

• Mean time between failures (MTBF) - 
Average time between two successive 
failures
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Steady-State Availability
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• Expressing reliability with MTBF ,should‘ imply a repairable system

• If all failures can be repaired, the MTBF estimate can become constant as time 
tends to infinity

• In reliable systems, the downtime is short in comparison to uptime, 
so the steady-state condition holds earlier

• MTBF = MTTF + MTTR

• Availability = MTTF (accumulated up time) / MTBF (accumulated life time) = 
MTTF / (MTTF + MTTR)

• Expressing reliability with MTTF ,should‘ imply a non-repairable system

• MTBF (mean time BEFORE failure) = MTTF -> typical source of confusion

• If time to failure is exponentially distributed, then the reciprocal of the rate parameter 
is equivalent to the distribution mean
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Steady-State Availability and MTBF
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λ = 1
MTTF



λ = − ln0.98
100 = 0, 000202

MTTF = 1
λ = 4949, 831hours
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Example

• Test population with 50 HDDs and 100 hours of testing, 2 drives fail during the test

• As usual, we assume exponential distribution of the time to failure

• Reliability at t=100 is known to be 98%

• Reciprocal of the according failure rate is the MTTF
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R(t) = P (X > t) = 1− F (t) = e−λx with F (x) = 1− e−λx

R(100hours) = e−λ100 = 0.98
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MTBF / MTTF in Practice

• Often express average failure behavior (statistics) for a component population

• Good for relative comparison, not for expected life time expectation of one unit

• Example: Hard disk with MTTF of 500.000 hours and 5 years of expected operation 
(,service life‘)

• Drive of this type is expected to run 5 years without problems

• Large group of such drives will (on average) have one failed drive after 500.000 
hours of accumulated life time

• What to buy: Model with longer MTBF or longer warranty time ?

83



Dependable Systems Course PT 2011

Operational Availability Calculation [Misra]

• Uptime elements:  Standby time, operating time

• Downtime elements

• Logistic: Spares availability, spares location, transportation of spares

• Preventive maintenance: Inspection, servicing

• Administrative delay

• Finding personnel, reviewing manuals, complying with supply procedures, 
locating tools, setting up test equipment

• Corrective maintenance

• Preparation time, fault location diagnosis, getting parts, correcting faults, 
testing
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MTTR Examples

• Hardware MTTR with spares onsite

• Operator available - 30min

• Operator on call - 2 hours

• Operator available during working hours - 14h

• Without spares - at least 24h

• SW MTTR with watchdog

• Reboot from ROM - 30s

• Reboot from disk - 3 min

• Reboot from network - 10 min
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Steady-State Availability

86

Availability Downtime per year Downtime per week

90.0 % (1 nine) 36.5 days 16.8 hours

99.0 % (2 nines) 3.65 days 1.68 hours

99.9 % (3 nines) 8.76 hours 10.1 min

99.99 % (4 nines) 52.6 min 1.01 min

99.999 % (5 nines) 5.26 min 6.05 s

99.9999 % (6 nines) 31.5 s 0.605 s

99.99999 % (7 nines) 0.3 s 6 ms

A = Uptime
Uptime+Downtime = MTTF

MTTF+MTTR
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MTTR >> MTTF [Fox]

• Armando Fox on ,Recovery-Oriented Computing‘

• A = MTTF / (MTTF + MTTR)

• 10x decrease of MTTR as good as 10x increase of MTTF ?

• MTTF‘s are not claimable, but MTTR claims are verifiable

• Proving MTTF numbers demands system-years of observation and experience

• Lowering MTTR directly improves user experience of one specific outage, since 
MTTF is typically longer than one user session

• HCI factor of failed system

• Miller, 1968: >1sec “sluggish”, >10sec “distracted” (user moves away)

• 2001 Web user study: ~5sec „acceptable”, ~10sec „excessively slow“
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MTTR >> MTTF [Fox]

• Proposal: Utility curve for recovery time

• Factors: Length of recovery time, level of service availability during error state

• Key distinction between interactive (session-based) and non-interactive systems

• If error state leads to some steady-state latency

• For how long will users tolerate temporary degradation ?

• How much degradation is acceptable ?

• Do they show a preference for increased latency vs. worse QOS vs. being turned 
away and incentivized to return?

• Long recovery times are often reasoned by stateful components

• Utilize alternative architecture concepts
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Availability
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