Dependable Systems

Case Studies

Dr. Peter Troger

Boeing 77/

e $4 billion-plus development, expected half-century of service, 1994 first lift-off
¢ Fresh start for Boeing in plane design and building
¢ 100% ,paper-less’ design with 3D modeling on computer

¢ 2200 designer work stations, hooked to 8-node cluster of IBM3090-600
mainframe, 3 TB data

e Saving in engineering mock-ups due to simulation (cable and wire runs)

¢ First time complete involvement of the airlines, shifted from streamlined
development model to parallel design teams

e Concepts adopted in re-newed 737, F-22 fighter and ISS

e Constant development of new versions (6 models so far)

Dependable Systems | Case Studies 2

Boeing 777 - Reliability

¢ Mechanical maintainability - /ine-replacable unit
¢ Sealed modular component of an airplane, ship, or spacecraft
¢ Designed to be replaced quickly at an operation location for cost reduction

¢ Designed to a common specification: plugs, installation tools, bulk, weight,
flammability, resistance to radio emissions and damage from environment

e Hardware faults vs. software errors
® I[ncreasing problem in LRU's

e Hardware MTBF steadily got better, but MTBUR (Mean Time Between
Unscheduled Removals) has not kept pace

¢ Replacing ,good’ with ,good’ in the hope to solve a problem

e Reasoned by software or design errors that did not anticipate flight conditions

Dependable Systems | Case Studies 3 PT 2010

Boeing 777 - Design Diversity

¢ Based on Boeing experience, the most likely design errors are
¢ Requirement errors and implementation misunderstanding
e Software design or coding error
e Future process errors in previously qualified procedures
e Semiconductor parts
e Non-deterministic modern circuit design
¢ Dissimilarity design through
e Dissimilar software / hardware architectures, based on different designs

e Ada remains accepted standard for embedded programming

Dependable Systems | Case Studies 4

PT 2010

Boeing 777 - Common Mode Fault Model

¢ Electrical faults or electrical power failure, hydraulic failure, structural damage
e Impact of objects, electromagnetic environment, lightning strike

¢ Radiation or ash cloud environment in the atmosphere

¢ Rough or unsafe installation and maintenance

e Basic counter-measures

e Triple redundancy for all hardware resources: computing system, airplane
electrical power, hydraulic power, communication paths

¢ Fail-passive electronics

e Computer architecture must consider common mode faults and dissimilarities

Dependable Systems | Case Studies 5 PT 2010

Boeing 777 - Electromagnetic Threats

® |ncreasing threat from electromagnetic energy
® Increased reliance on electronic systems for safe flight and landing
e Reduction of operating power of electronic devices
* Increased percentage of composite materials with less inherent shielding
¢ | ightning produces the most intense EME - large inducted voltages
* Increased probability of digital circuit upset resp. ,soft fault’ occurrence
e Options:

e Distributed bus architecture, error detection and corrective schemes, fiber optic
data transfer, computation recovery

Dependable Systems | Case Studies 6 PT 2010

Boeing 777 - Software

e First digital airliner - only partial use of digital avionics until then

¢ More than 2.5 million lines of code (400.000 in the 747-400),
iIncluding avionics and cabin-entertainment

¢ 600.000 lines for Airplane Information Management System (AIMS) by Honeywell
e Dual cabinets, each with 4 core processors and 4 I/O modules; can operate with 3

e Handles flight management, cockpit displays, central maintenance, condition
monitoring, communication management, engine data interface

e Functions share processors, memory system, operating system, utility software,
hardware test-equipment, and I/O ports

¢ Reliability based on software partitioning and standardized hardware modules

e Interfaces with airplane through standardized busses - ARINC 629 and ARINC 429

Dependable Systems | Case Studies 7 PT 2010

Boeing 777 - AIMS Approach

e Hardware monitoring on every CPU clock

cycle RECOVERY
CONTROL
e All computing and I/O resources are self- CPU
checking based on lock-step
_ _ PROCESSOR
¢ [mmediate trap on error detection to avoid MONITOR
further data exchange
e Critical functions have shadowing standby MEMORY
resource r 1
. . MEMORY
e Master self-checking pair is decoupled by |
SafeBUS on detected error -> M Hiﬁggc:égzl
shadow output is shown instead L =
¢ Duplicated state data allows automated SATARUSNG
recovery on soft error C69-5370-004/2#

Dependable Systems | Case Studies 8 PT 2010

Boeing 777 - Fly-By-Wire

¢ First with Airbus 320 in 1988
¢ Fly-by-wire is now standard in all airplanes

e | ighter wing and tail structures, since no more need for complex and heavy
mechanical cables, pulleys, and brackets

e Three primary flight control computers (PFCs)

e Each PFC with 132.000 lines of Ada code

e Calculates control commands for actuators, trim system, and control column feel
system (haptical feedback as in mechanical steering)

e Input from control yoke (manual mode) or triplex autopilot
¢ Airbus A320 fly-by-wire additionally performs flight envelope protection

¢ Electrical command transmission demands heavy shielding, fly-by-light in future

Dependable Systems | Case Studies 9 PT 2010

Boeing 777 - PFC

¢ Flight computer controls electric and hydraulic actuators by sending commands

® Three data buses, physically and electrically isolated, not synchronized

e Three internal computational lanes per PFC, compiled with different Ada compilers

e Each lane receives from all busses, but a PFC sends only to one of them

® Processors: Intel 80486, Motorola 68040, AMD 29050

¢ \Wiring separation and protection
from foreign object collision

LEFT PFC

e [eft - Center - Right distribution
for critical components -
power, busses, flight controller,
hydraulics

LANE 1 LANE 2 LANE 3

POWER I POWER
SUPPLY SUPPLY

POWER
SUPPLY

MICRO-

MICRO- MICRC—

® THREE IDENTICAL CHANNELS: LEFT, CENTER, RIGHT

® THREE DISSIMILAR LANES IN EACH CHANNEL: ONE IN
COMMAND, TWO FUNCTIONING AS MONITORS

® TWO PFCs IN THE E/E BAY, ONE PFC FORWARD OF THE
FORWARD CARGO DOOR

CENTER PFC RIGHT PFC

PROCESSOR
AMD 29050

PROCESSOR

MOTOROLA

63040 INTEL 80486

4

!

.

ARINC ARINC ARINC

629 €29

INTEAFALCS

629
INTEAFACES

PROCESSOR l

INTERrACCe I

L
c
R

Dependable Systems | Case Studies

-

Flight Controls ARINC 629 Data Buses

SR

Boeing 777 - Median Value Select

e Three lanes per PFC, one in command mode, the others in monitoring mode

e Command lane sends proposed command output to PFC-assigned output bus
e Performs median select between two other PFC results and own result
e Send chosen result on the bus
e Ensures fault blocking until PFC reconfiguration

¢ Monitoring lanes monitor their own command lane

¢ Cross-lane inhibit hardware logic for automated fault treatment

e Channel outages are detected by cross-channel comparison

Dependable Systems | Case Studies 11 PT 2010

Fight Controls
a

LCR
ADIRU
SAARU _
Input Signal
(1SM)
Air Dats
PSA
LEFT PFC-COMMAND LANE
AFOC
Input Signal
Management
Left 1 AC S
a
| enter ACE
CENTER PFC-COMMAND LANE
SYSTENS > Input Signal A :
suses *1Management Laws Management
A A - —>1 (Sw) ulation (OSM) p—
Solect
NEPLANE L’ (COPS)
| RIGHT
e PCO
| RIGHT PFC-COMMAND LANE 200 et

12

sSCO IGHT LOWER
ACE * AGIATOR
* AN theot SCO's are avallable
40 sach ACE bt only one SCO s used
for contol by each ACE. The
SCO s (wéached from a
priodty 0 hedute
| NOOLE
o i S T
sco ACTUATOR
-
sCo
SCO ENTER e R
> .CE. AUOCER
ACTUATOR

PCO = Proposed Command Output
SCO = Selected Command Output

Boeing 777 Fly-By-Wire

¢ On total PFC failure, backup analog path is available through actuator electronics
e A/D converts transfer stick input into a ,mechanical link‘-alike direct command
e Multi-redundant power system needed for PFC operation
® Three constant-speed drive generators at engines, based on hydraulics
e Backup power shaft per engine, also based on hydraulics availability
e Backup ram-air turbine in the wing root, drops into airstream on demand
¢ 12 data bus networks (ARINC real-time bus system, 2Mbps, TDMA)

e Data conversion units for analog bus connectivity to low volume devices

Dependable Systems | Case Studies 13 PT 2010

Diverse
command paths, diverse
hydraulics

OPTIONAL
WING FOLD %
&
(L2)

* @10
ONa 6\ r° i
QR RIT
18 SPOILERS IB SPOILERS
U /mmaaon @ @

ORe
L\
\\

OB AIL

L1, L2, C, R DENOTES ACE SOURCE

ACE SOURCE /@

L
HYDRAULC SOURCE / LEFT ELEVATOR RIGHT ELEVATOR

NOTE: SPOILERS 4 AND 11 ARE COMMANDED VIA CABLES FROM THE
CONTROL WHEEL AND VIA THE ACES FROM THE SPEED BRAKE
LEVER. THE STABIUZER IS COMMANDED VIA THE CABLES
THROUGH THE AISLE STAND LEVERS ONLY AND OTHERWISE IS
COMMANDCD THROUGH TIIC ACLS. —

14

Boeing 777 - Fault Diagnosis
e Fault diagnosis and isolation capabilities with On-Board Diagnostic & Maintenance
System (OMS) - optimized to deal with system complexity
e Major problem: Visual inspections is not enough to perform root cause analysis
e Maintenance crew deals with a set of black boxes full of microelectronics
e Heavy need for Built-In Test Equipment (BITE) to find faulty module reliably
e Central Maintenance Function (CMF)
¢ Assist in the analysis of flight deck effects and crew complaints

¢ Diagnose reasons behind symptoms, isolate to the Line Replacable Module (LRM),
bring airplane back to full operation within allocated time

e Airplane Condition Monitoring Function (ACMF)

e Captures parameters based on trigger conditions for long term analysis

Dependable Systems | Case Studies 15 PT 2010

Boeing 777 - OMS

MAINTENANCE EVENT DATA DATA LOADER PORTABLE
#ES.E.S NSAL PRINTER BUTTON |UNKS DATA RETRIEVER MATS
(BEHIND D
AND TO QO
THE SIDE
OF PILOT)
LAN
ELECTRONIC | I y D
CENTRAL ’ J|ocooooo
LIBRARY MAINTENANCE 8886000
SYSTEM — COMPUTER oooooool
(OMD DATA) -
[Cooooool
[AcMs D T
SENSORS SITE Wmcs 9980950
- ENGINES SYSTEM AREAS:
- APU . e.g.
- ENVIR BRAKES)
l - OTHERS BITE MEMBER SYSTEMS

Dependable Systems | Case Studies 16 PT 2010

Boeing 777 - OMS Engineering Approach

e OMS implementation based on model of the

airplane, instead of many logical equations —
INTERCONNECT
. INFORMATION
e Individual sub-system models for fault- — = = -
response behavior TITOSPLAYSMODEL KA B amamino 1 1 avosTic

TT7FCSMODEL [B—p | {1 MODEL

e Alignment with BITE coverage reuswoveL er—ab |
specifications -

¢ Results in diagnostic model

|
|
e Model maps symptoms to faults at runtime , !
|
_ I
¢ Maintenance personnel has to trust CMF, : — 1
. . REMOVE PPRE
rather than replacing boxes under suspicion || oo | e[o | wuswe I- S]!
— |
: : |
¢ Reduction of nuisance messages extremely o - o - - - - - - —- — — - — I
important for credibility of solution
PT 2010

Dependable Systems | Case Studies 17

Boeing 777 - Central Maintenance Function

¢ Central reasoning system consolidates symptoms from multiple LRUs

e Suppresses secondary symptoms from downstream LRUs, which are not aware of
the global airplane state that might render their information invalid

e Correlation of flight deck effects to fault reports possible
® Modules store fault information in non-volatile memory, analyzed by Honeywell

e Flight number, date, airplane ID, LRU position (center, left, right), software part
number, selected options, fault code, temperature, number of times occurred,
flight phase and UTC when the first fault occurred

e Sending in a black box, instead of traditional custom repair

Dependable Systems | Case Studies 18 PT 2010

elephone Switching Systems

¢ Classical field for high-availability systems since the 60°‘s
e 24/7 availability expectation from customer, designed for long-range operation
e Expected downtime less than 1 hour for 20 years (USA)
¢ Allowed to interrupt 1 out of 10.000 calls, dial tone within 1 sec
¢ Database, software and configuration changeable without affecting call processing
* |nitiation of new calls might be delayed, calls in progress should never be interrupted
e Popular examples and publications for AT&T SESS system
e Statistics: 30%-60% hardware failures, 20%-25% software, 30% operational

e Traditional strategies: High reliance on defect elimination and fault recovery

Dependable Systems | Case Studies 19 PT 2010

Outcomes after 10 years of operation

e Software defects tend to concentrate in specific parts of the system
e Eliminating clusters of defects is more economical than eliminating isolated defects
e Knowledge of clustering can help in placing test code
¢ | arge class of software bugs is caused by human inability to catch complexity
¢ Many software bugs arise from design incompleteness
e Design holes are reduced with increasing software maturity
® 38% of software deals with recovery
* Increased utilization of reusable robust software blocks

e Distribute when appropriate, move from hardware to software (cost effectivness)

Dependable Systems | Case Studies 20 PT 2010

Commercial Fault- Tolerant Systems

e Few major players since the 60°s

¢ |IBM: From S/360 to zSeries, Tandem / HP NonStop, Stratus, Marathon

e Application examples: automatic teller systems, credit card authorization, retall

point-of-sale, stock trading, funds transfer, cellular phone tracking and billing, 911
emergency calls, electronic medical records, travel and hotel reservations

e Different availability demands

e No downtime at all (ATM,
three-shift manufacturing)

¢ 100% availability within given time frame
(stock market)

¢ Infrequent short interruptions are allowed
(medical records)

Dependable Systems | Case Studies 21

0%

Scheduled Outage

Dimensions of Availability

s

Continuous
Operations

.

7 N

Continuous
Availability

)

Basic
Availability

High Availability
| Fault Tolerant

Unscheduled Outage 0%

[Bartlett & Spainhower]

PT 2010

Stratus

echnologies

e Founded in 1980, competitor to Tandem

e Product line originally based on Motorola MC68000, then HP PA-RISC, now Xeon

e Multics-inspired operating system VOS for fault-tolerant OLTP

e Entry-level fault tolerance solution for Windows / Linux with ftServer product line

Duplex hardware components

Fault

[t

&

E

Byl Isolation

Fault

&

Embedded

S
2
_wﬂ
=
=

Dependable Systems | Case Studies

Detection

Detection

Iyl¢ B Isolation

—

22

Fault
Detectlon

Isolatlon

Fault
Detection
&
Isolation

Chipset

SNdD paddajs»po

PT 2010

= - N o
5
Stratus ftServer = - e e -
3] Embedded1/0 [FPNTNY N T vemory |

¢ | ogic separation between CPU / memory subsystem and |/O subsystem
e Custom chipset as PCI bridge between CPU and |/O
¢ Rely on custom backplane for message exchange
e Provides error detection, fault isolation, and lockstep synchronization
e Custom logic within the CPU / memory subsystem
e Primary PCI interfaces, interrupt management, transaction ordering logic
e Standard DMR mode
e Custom logic within /O subsystem
e \/oting logic compares I/O output from all motherboards

e Fault-tolerant I/0O through replicated busses, I/0O adapters, and devices

Dependable Systems | Case Studies 23 PT 2010

Stratus ftServer Software

e Unmodified standard Windows Server / Linux
e Only hardened drivers for PCI devices in use, supporting hot-pluggability
e On problem, PCI I/O adapter is isolated from the rest of the system
e Software is shielded from transient hardware errors
e Automatic Reboot
e On reboot, OS crash information is kept in replicated CPU memory
¢ Failsafe System Software
e System software tracks configuration and revision levels
¢ Active Upgrade - split redundant system online, apply patches to one side,

re-sync physical servers to act as one logical server again

Dependable Systems | Case Studies 24 PT 2010

Stratus ftServer Software

¢ Protection of in-memory data against hardware failures by lockstep approach

* Quick dump

e On OS failure, only one half is restarted, the other is used for crash dump analysis

o Unit fails. System isolates
fault and continues operation
with redundant unit.

O "“Call home”

technology
O The ftServer system reports fault
synchronizes with to Stratus
replacement and Cus'tomer
continues operation Remote Assistance
Access Center.

New customer-

replaceable
o Customer easily component is
replaces faulty shipped for
unit. next-day
delivery

Dependable Systems | Case Studies o5 PT 2010

NonStop

¢ 1974: James Treybig + some HP people founded
Tandem Computers

e Business goal to build fault-tolerant computer
systems for transaction processing
(banks, stock market)

e NonStop architecture - Independent processors
and storage devices, hardware-based fast failover

¢ 1997 taken over by Compaqg (Himalaya servers),
which was bought by HP in 2002

¢ \Well-maintained system manage 5 nines

e [inear scalability and fault intolerance resp. fail fast
behavior as design goals

Dependable Systems | Case Studies 26

PT 2010

NonStop

e NonStop architecture
¢ Independent nodes communicate with each other and with shared I/O modules
¢ Self-checked processor modules - either provide correct result, or stop silently
e Shift from custom processors (Cyclone, ‘91) to commodity (MIPS R3000,’91)

e Custom solutions had dual path redundancy for duplicated CPU parts and
according redundancy codes

¢ \With commodity processors, lock-step operation was introduced to form a logical
processor from one clock

¢ Redundancy codes in memory and caches to stop on memory errors

e Supported by operating system error detection and task migration capabilities

Dependable Systems | Case Studies 27 PT 2010

NonStop

Dependable Systems

Self-Checked
Processor

HuP || uP
[—
=~ HMEM

— g

Self-Checked
Processor

uP | uP
/

-MEM

l

- —

Storage | |
Adapter [@

Storage
Adapter

S%If-Checked S%If-Checked
rocessor rocessor
uP | uP uP || uP
| [.~
= HMEM = HMEM

e L ——
Redundant
ServerNet
System Area
Networks
Network| |[Network
Adapter| |Adapter

PT 2010

NonStop

e Fach hardware component is self-checking and has ,fail-fast’ behavior
¢ Improves fault containment and makes isolation of fault easier
e Custom operating system Guardian / NonStop Kernel (NSK)
e Special programming paradigm for ,always’ fail-safe transaction processing
e Standard OS services, optimized messaging system, task migration support
e Applications run in primary / backup copy mode
e State changes are communicated to backup instance with system mechanisms
e Automated routing of messages to backup system
e Today application implementation typically on-top-of Tuxedo transaction monitor

e Example: NonStop SQL database with linear scaling

Dependable Systems | Case Studies 29 PT 2010

NonStop

e ServerNet emory e
. 2
e Hiah-
ngh s.peed, low latency, packet — e—
switching network for IPC and I/O transfer transfer
engines engines
1 1
e DMA transfers — '\y/ —
moauiar
ServerNet ___ ServerNet ServerNet _ServerNet
 Two independent fabrics used at oxpans on | - - \ . o
the same time / \
e CRC recalculation at every router, scsi |[scsi] [scsi][scsi
to isolate link failures SCSI SCS!
e Fault tolerance for storage data by LE
end-to-end checksums and —
mirroring communications
or external I/0O
° ' communications
Support for long distance T
Dependable Systems | Case Studies 30 PT 2010

NonStop Advanced Architecture

e Updated approach: Bernick, D. et al., 2005. NonStop Advanced Architecture. In:
International Conference on Dependable Systems and Networks.

e Duplication and tight lock-stepping no longer works
e Power management with variable frequencies do not work with lockstepping
e Multiple clocks and asynchronous interfaces on one die
e Higher soft error rate through density is fixed with low-level fix-up routines
e Modern processors with CMP design - disruption of multiple processor TMR
e Market price pressure

e New approach retains the logical structure, but introduces new error detection

e Compare IPC and I/O output from multiple servers

Dependable Systems | Case Studies 31 PT 2010

NonStop Advanced Architecture

e Modular redundant servers, built from standard 4-way Itanium systems

¢ Unigue synchronization mechanism for fully compared operations -
loose lockstep

e Different clock rates, independent error retries and fixup routines, independent
cache hit / miss, independent instruction streams

e All two / three server outputs

Slice A Slice B Slice C Each Slice is an
are compared ce co — Each Sico
and docked 4-way

e Partitioned memory, based PE,, PEs, PE, | | SMPserver
on Itanium protection key mechanism SHChFfOcORME
Element is an individual
_ _ PE PE, PE,, |« rriaoqmsqmnning
e \/oting units compare output from " ‘ its own instruction

pProcessor

different slices for one logical [e

elements running the
same instruction stream

on three loosely lock
PE,g PEg, PEq 4

stepped Processor
Dependable Systems | Case Studies : Elements

NonStop Advanced Architecture

— PE, PE, PE,
Independent 4-way ltanium node
PE, PE, PE, (Slice) j
PE, PE, PE,

(LSU)

Logical Synchronization Unit j

1Network

Redundant
eaunean Adapter

ServerNet
System Area
Networks

Network|
Adapter

Storage Storage
Adapter Adapter

Dependable Systems | Case Studies 33 PT 2010

NonStop Advanced Architecture

e Each logical processor has one or two LSU's

e |_SU failure does not affect the slices

e Two LSUs in TMR protects against any two hardware faults
¢ All PEs of a logical processor must take page faults at the same point

e Different cache states and TLB entries do not influence voting

e Data and control speculation in Itanium disabled for symmetric behavior
¢ |nput data from SAN is written into slice memory

¢ |/O complection notification to all PEs to make data readable
(ensured by operating system through page fault mechanisms)

e Same for active outbound I/0O buffer

Dependable Systems | Case Studies 34

PT 2010

NonStop Advanced Architecture

e | SU is designed with complete self-checking design
e Can be replaced online without affecting any logical processor
e First implementation with FGPA voter and ASIC ServerNet interface

e With DMR, error might be self-identifying (e.g. bus), otherwise logical processor
shutdown, which is accepted by the NonStop architecture

¢ Probation bit
e Simple heuristic to disambiguate a DMR voter miscompare
® Probation vector with one bit per slice, voter against slice with bit set

e Set for short time after slice restart (on error) or exceeding correctable error rate

Dependable Systems | Case Studies 35 PT 2010

NonStop Advanced Architecture

¢ Reintegration of processing elements
e Copies state of running PE into memory
e Happens while logical processors are online
e <10 min for 32 GB logical processor

¢ Based on reintegration link hardware between
processor chip set and main memory

e Slice in normal operation ignores memory
writes announced on the link

e CRC-protected, checked always
e Copying by background process

e Source PE flushes caches as part of the process

Dependable Systems | Case Studies 36

Reintegration Links

L -

Vv 30lIS
g 921IS
J IS

LSU W LSU
Voter Voter Voter

| |
saN ||| san || ®®® || san

Intfc Intfc Intfc

T

System Area Networks

PT 2010

IBM zSeries

¢ The flag ship in Mainframe technology, own ,world‘ of concepts and terminology
¢ Founding concepts of original S/360

e Ease assembling of redundant I/O, storage, and CPUs

e Built-in checking against hardware malfunction, regardless of application

¢ Built-in hardware fault-locating aids are essential
* How to react on faults

e Ensure system integrity

¢ Provide uninterrupted applications

¢ Repair without disruption

¢ Fail fast philosophy, transparent retry and recover

Dependable Systems | Case Studies 37 PT 2010

IBM zSeries Facts

e Memory hierarchy uses write-through cache design and ECC on all levels
e Transient L1 cache error is recovered by CPU instruction retry
e Shared L2 cache is ECC-protected
e Cache delete capability for treating permanent faults

¢ Redundant paths to I/0 modules, all used at normal operation

e Complex inline error checking circuitry

e Support for different operating systems - z/OS (MVS successor), Linux

e Half of the z/OS code is devoted to error handling

Dependable Systems | Case Studies 38 PT 2010

IBM zSeries Processor

¢ [nstruction fetch and execution units are

replicated

W . o
ol e [=" * 1 o |0 ® Error check at the end of the pipeline
: . l _.-— —) I :
: : : ¢| R-unit keeps CPU registers and processor
Ly ; ; | Cache _lﬂ._i checkpoint
§ =Unt) J| = § e E-units have shadow copy of registers for
' l | - speed improvement

| | e All register / cache writes are compared,

L o _ iInstruction retry in case

* ECC on saved state

— = Address e On fault, overwrite with R unit state
=i Cache data

--- Instructions
e o Results / state updates

«=@» Saved state data ¢ Since z6, reverted to non-lockstepping and
many fault sensors

Dependable Systems | Case Studies 39 PT 2010

IBM zSeries

¢ | ogical partitioning (LPAR)

e Multiple operating system instances on one mainframe

e Splitting through Processor Resource / system manager (PR/SM) in firmware

¢ Depending on operating system, repartitioning support at runtime

e Support for micro-partitions on one CPU, capped vs. uncapped mode

Hardware partitioning

Hypervisor - Type 1

Apps Apps

Hypervisor - Type 2

0S OS

Apps Apps

0S 0S

I l

Hypervisor/VMM

Hypervisor/VMM

|

Apps Apps
OS 0S
Adpstable
. 1 partitions
Partition ' >
controller > .
SMP server,

Host OS

Dependable Systems | Case Studies

' Typer 1 hypervisors are predicted to become predominant for

SMP server

servers due to higher efficiency and availability

40

SMP server

PT 2010

IBM zSeries -

IBM System

CF02
CF

Parallel Sysplex

2/0S

CFO01
CF

Sysplex LPARs

IBM System

Sysplex LPARS

Z/OS

Dependable Systems | Case Studies

41

e Multi-system data sharing facility

e No single point of failure, cluster-wide
coherency and locking protocols

e Coupling facility (CF) works as shared
memory, running on separate machine

e Custom CPU commands to talk to CF
* Node clocks are synchronized
¢ Single operator interface

e Software / hardware updates supported
at runtime

¢ | PARs can act as participants

PT 2010

IBM zSeries - Parallel Sysplex

PROCESSING e
NODE J

UP TO A 10-WAY
SYMMETRIC
MULTIPROCESSOR
(SMP)

ES/S000 BIPOLAR SYSTEM
PROCESSING NODE 1

ESCON = ENTERPRISE SYSTEMS CONNECTION
J4k = 32

Dependable Systems | Case Studies

PROCESSING
NODE K 1
SHARED DATA VIA LOCK
AND CACHE TECHNOLOGY
UP TO A 10-WAY
WORKLOAD DISTRIBUTION SYMMETRIC
AND MESSAGE PASSING MULTIPROCESSCR
VIA QUEUE TECHNOLOGY (SMP)
COUPLING
FACILITY
‘ pr——————
' ——
SYSPLEX TIMER

ESCON DIRECTOR (SWITCH)
&390 CVIOS SYSTEM

PROCESSING NOOE 1

SHARED DATA

42

PT 2010

Comparison

IBM zSeries HP (Tandem) NonStop
General purpose server Integrated system
(Supports multiple OSs: zOS | (Server, disk, comm, OS, DB,
VM, TPF, Linux) Txn monitor)
Sco Integrated zOS Cluster (Parallel Specific classes of target
. Sysplex) applications
Loosely-coupled cluster of
systems (ServerNet Clusters)
Two types: transient, permanent | Two types: recoverable,
Fault Model nonrecoverable
Explicit redundancy in support Multiple hardware components
subsystems; implicit redundancy | and paths
in computational subsystems Process pairs, mainly at lower
Parallel Sysplex: no SPOF, levels of the system
FT Operation distributed applications, data Persistent processes plus
sharing transactions at application level
ServerNet Clusters: Distributed
applications
Begin with local retry Takeover by backup processes in
Recover from transient case of processor failure caused
Recoverv Techniaues Spare cache, memory, CPUs by either hardware or software
ry q Spare or degrade from permanent | Restart of persistent processes
Parallel Sysplex: Transaction- Transaction backout
level restart Switch paths
Redundant CPU logic, Inline Lockstepped microprocessors,
Data Integrity checking in I/O subsystem, ECC | ECC, end-to-end disk checksums,
CRC

Dependable Systems | Case Studies

43

[Bartlett & Spainhower]

PT 2010

HP Superdome

e Up to 128 cores (64 x Itanium 2 Dual Core),
up to 2 TB of memory, 192 PCI slots

e Up to 16 hardware partitions
e Hot-swapping, redundant fans / power supply

e HP-UX operating system, support for other operating Systems
in partitions (Windows Server, Linux, OpenVMS)

e 1200 kg

¢ > 99.99% system availability reported - finance, airlines, ...

e Maximizing transaction throughput in SAP and database
systems

Dependable Systems | Case Studies 44 PT 2010

HP Integrity Cell Board

I Cell Board i
[')fM"h;Is” DOR-2 . PCI-X / PCle Busses
8 or 12 Slots
2x Mem
UL PCI-X PCle

Bridge Bridge

16 links

Host Host

Controller
2x Mem R
Buffer

PCEX/PCle System
Bus Adapter

/0 System

2x Mem -
Buffer

: Cell

Crossbar
Switch 2

Dependable Systems | Case Studies 45 PT 2010

HP Superdome

LELL O CPU |« [CPU |
, CPU_ |={ t=[cPu]
= § - *'r /O Chassis
o -‘ v
= S - System [«—»{ Host Bridge [-CPCI-X/PCle>
s [ra - | Bus - -
2 - s
E = Cell Controller - '/ Adapter - -
==L a——
gfu
E ?. 4J o
2
H—2 /0
) Ay
! CELL
1

Dependable Systems | Case Studies 46 PT 2010

P Superdome

_(PCLX/PCID

Dependable Systems | Case Studies

47

(A]

(C) HP

CELLO | CPU =4 | CPU
e | CPU [={ |»{ CPU
- g 1 I/0O Chassis
yv
= - System [«—{ Host Bridge
5 > —~ Bus -
: —F :
Cell Controller Adapter
-
§ »-
=
T | 85483
§ 7 VO
) Ay
) CELL
1
\ S~
Xbar Xbar
) S
CELL CELL
2 3

PT 2010

P Superdome

| CPU CPU
, - | CPU = CPU -
: 1z [/O Chassis
: —— _‘ . System [<—m=| Host Bridge <PCI-X/ PCle
: és - C = —~ - Bus ~ -
: —— Cell Controller e *
1 5 |- >
= ~
S=all BT
I = CELLO) /0 /0 o)) /0 /0
’ Ay Ay Ay Ay Ay Ay Ay o
7 CELL CELL CELL CELL CELL CELL CELL T
1 2 3 8 9 10 11 —
Xbar Xbar Xbar
\ AN NS
/ 7

Dependable Systems | Case Studies

f

PT 2010

HP Superdome vPar Partitioning

SAP Mfg. Database Database Web application
server Dept. Server 1 Server 2 Servers space

| ® ®
. ® 2o
[global] Worklnad Manager

[g]WLM automatically
resizing partitions

HPUX E : HPUX I HPUX :
PRM : PRM | | Resource partition
@F CPU I F I and/or
cpPulcPU : CPU | CPU i | guest VMs
: ! |
| ' Virtual
vPar 1 | VvPar?2 Integrity VM Hypervisor Pa;ml:jns

B0 |RARd & K2
nPar1 EL u u nPar 2 *32330852
icar 7]

hardware plattorm | 7

Dependable Systems | Case Studies 49 PT 2010

e
<

/4 1CAP B/

-1 CO

q

SA

¢ |_ast version for CORBA 2.5 in 2001

e Several implementations: ACE ORB, DOORS, Q/CORBA,Nile, MIGOR, ...

¢ Applications must actively participate, provides only framework

e Object monitoring, fault detection, operation style

¢ 3 foundations

e Entity redundancy - replication of CORBA objects with strong consistency

e Fault detection - discover that a processor / process / object failed

e Fault recovery - re-instantiate a failed processor / process / object

e FT CORBA services must also be fault tolerant

Dependable Systems | Case Studies 50

PT 2010

Server vs. Client

¢ Fault tolerance for the server
e Object replication (passive vs. active)
e Object group properties (Property Manager interface)

e Creating fault-tolerant objects (Generic Factory interface, Object Group Manager
interface)

e Fault detection and state transfer

¢ Fault tolerance for the client
e Failover (try again with another address, duplicate prevention)
e Addressing (server supplies an updated address)

¢ | oss of connection (client ORB should be informed properly)

Dependable Systems | Case Studies 51 PT 2010

Object Replication

¢ Replicas of an CORBA object form an object group

e Referenced using an Interoperable Object Group Reference (IOGR)
e FTDomainld, ObjectGroupld
e Members identified by FTDomainld, ObjectGroupld, Location

e Strong replica consistency, simplifies system design

e Common interface for all replicas

¢ Clients remain unaware and invoke operations as if it were a single object
¢ Replication transparency and failure transparency

e Object group can be created and managed by the infrastructure

Dependable Systems | Case Studies 52 PT 2010

Interoperable Object Group Reference

Dependable Systems | Case Studies 53 PT 2010

Interoperable Object Group Reference

¢ |OGR usage by client
¢ Direct connection to primary
¢ Profile addresses gateway
¢ |OGR might not reference to latest membership status
e TAG_GROUP_VERSION received by server
e Server GVN == client GVN: Process request
e Server GVN > client GVN: Throw LOCATE_FORWARD_PERM

e Server GVN < client GVN: Get new IOGR from ReplicationManager

Dependable Systems | Case Studies 54 PT 2010

Replication Manager

e Fach FT domain is managed by a single replication manager
e Takes care of object groups and their FT properties

e Inherits interfaces for Property Manager, Object Group Manager and Generic
Factory

¢ Property Manager interface

e Set / get fault tolerance properties for object group, all replicated objects of a
type, for specific replicated object at creation, or for executed replicas

e Generic Factory interface
* Invoked by application to create / delete an object group

e Implemented by application and invoked by replication manager / application to
create and individual object replica

Dependable Systems | Case Studies 55 PT 2010

Generic Factory Interface

create_
object()

—v
Replication JJ
Manager
create_
object()

CORBA ORB

CORBA ORB

(C) Eternal Systems

Dependable Systems | Case Studies 56 PT 2010

Object Group Manager

e Management of object groups

e create_member(), add_member(), remove_member (),
set_primary_member (), locations_of_members(), get_object_group_ref(),
get_object_group_id(), get_member_ref()

create_
member()

—v
[
Replicationﬁ
Manager

create_
object()

Server

S1 B

CORBA ORB

Dependable Systems | Case Studies 57 PT 2010

-ault Management

e Components to monitor replicated objects
e Report faults such as a crashed replica or crashed host
¢ Notification service which distributes fault reports
e fault Detector - part of infrastructure, supplier of fault reports to FaultNotifier
¢ Fault Notifier - receives fault reports from fault detectors and fault analyzer
e Fault Analyzer - specific to application, both consumer and supplier of fault reports

¢ Propagation of fault event through
notification interfaces Domain_name = FT_CORBA
(CosNotification::StructuredEvent, Type_name = ObjectCrashFault
CosNotification::EventBatch) FTDomainld mydomain

Location myhost/myprocess

e Different types of fault events (ObjectCrashFault)

Typeld IDL:Bank:1.0
ObjectGroupld 1

Dependable Systems | Case Studies 58 PT 2010

—ault Management

push_structured_event()
push_sequence_event()

is_alive()

\d
.
P

push_structured_fault()
push_sequence_fault()

Application Object

Dependable Systems | Case Studies 59 PT 2010

-T Corba Example - Hello World

Publish
Hello Server Obtain Invoke

object group Hello Serve
reference reference

set_type_properties() roate

Hello Server

create_object() object

Return
Hello Server
object group
reference

Invoke
create_object()

Replication
Manager

Return
Hello Server
replica
references

Dependable Systems | Case Studies 60 PT 2010

Server Launcher Implementation

1. Initialize the ORB
2. Obtain a reference to the replication manager
3. Narrow the reference to the Property Manager interface
4. Invoke set_type_properties() to configure the settings
®c.g. initial and minimum number of replicas, replication style
5. Narrow the reference to the Generic Factory interface
6. Invoke create_object() to create the replicated object

7. Publish IOGR in a file for the client to read

Dependable Systems | Case Studies 61

PT 2010

Server Factory Implementation

® create_object() invoked by FT CORBA environment
1. Extract ObjectID, check type_id for the object to be created
2. Create the object and activate it
3. Record object identity locally to enable deletion
4. Return object reference
emain()
e |nitialize ORB and POA, create the Factory object
e |nitialize FT CORBA

® Connects to Replication Manager, invokes factory to create objects

Dependable Systems | Case Studies 62 PT 2010

-1 Corba Example - Client

// Obtain the Hello Server Object Reference: obj

// Narrow the object to a Hello Server

HelloServer varserver =HelloServer:: narrow (obj);
1f (!CORBA::1s nil((HelloServer ptr)server))

{

CORBA::String varreturned;

const char* hellostring= "client";

// Invoke the hello() method of the remote server
returned = server->hello(hellostring);

cout << returned << endl;

J

Dependable Systems | Case Studies 63 PT 2010

