
Dependable Systems

Trends in Software Dependability

Dr. Peter Tröger

Most pictures (C) IBM

Dependable Systems | Advanced Software PT 2010

Autonomic Computing

• Initiative started by IBM in October 2001 with manifesto

• Main obstacle for future IT is looming software complexity crisis

• Applications with tens of millions lines of code, require skilled personal

• System complexity approaches limit of human capability

• System become more interconnected and diverse

• Create self-managing computer systems capable of coping with growing complexity,
based on high-level objectives from administrators

• New paradigm for design and implementation of systems

• Term derives from body‘s autonomic nervous system, which controls key functions
without conscious awareness

2

Dependable Systems | Advanced Software PT 2010

Credo

• Exhibit basic fundamentals - from a user perspective

• Flexible - Sift data with a platform- and device-agnostic approach

• Accessible - ,Always on‘ nature

• Transparent - Adapt to user needs

• Perform tasks without involving the user into operational details

• Minimize human interference

• Policies (goals or objectives) govern the behavior of intelligent control loops

3

Dependable Systems | Advanced Software PT 2010

8 Elements [IBM]

• Characteristics of an autonomic system

• Computing system needs to know itself, having a system identity

• Detailled knowledge of components, their current status, and capacity

• Knowledge about connections to other systems

• Knowledge about extend of owned resources, those it can borrow or lend,
those that can be shared or should be isolated

• Goal: To govern itself

• Computing system must perform self-configuration automatically

• Under varying and (future) unpredictable conditions

• Setup must occur automatically, constant dynamic adjustment to environment

• Example: Installing software when a pre-requisite is missing

4

Dependable Systems | Advanced Software PT 2010

8 Elements [IBM]

• Computing system always looks for ways for self-optimization

• System never settles for status quo, tries to achieve optimum of predefined
goals with minimum resources

• Monitor important parts, fine-tune workflow for best functioning

• Example: Adjust workload according to available resources

• Computing system must aim at automated self-healing

• Discover (potential) problems, find alternate way of using resources

• Recover from such extraordinary events that might cause malfunction

• Example: Correcting a configured path to correctly load software

5

Dependable Systems | Advanced Software PT 2010

8 Elements [IBM]

• Computing system should act in an adaptive fashion

• Must know its environment and the surrounding context activity

• Find and generate rules for how best to interact with neighbours

• Changing both itself and its environment

• Computing system cannot be a proprietary solution

• Autonomic system cannot exist in a hermetic environment - open standards

• Independent in its ability to manage itself, but must function in
a heterogeneous world

• Implementation of open standards

6

Dependable Systems | Advanced Software PT 2010

8 Elements [IBM]

• Computing system must be an expert in self-protection

• Detect, identify and protects itself against arbitrary attacks

• Pro-active and reactive behavior

• Example: Take resource offline if intrusion attempt is detected

• Computing system must keep complexity hidden

• Marshal IT resources to shrink the gap between

• Business / user goals and

• IT implementation necessary to achieve those goals

• Do not involve the user in this activity

7

Dependable Systems | Advanced Software PT 2010

Concepts

• CHOP Features

• Self-Configuration

• Self-Healing

• Self-Optimization

• Self-Protection

• MAPE Loop

• Monitor -> Analyze ->
Plan -> Execute

• Base for autonomic
management by a control
loop concept

8

Managed Resource

Dependable Systems | Advanced Software PT 2010

System Layers

9

• Autonomic Manager - Manages other software and hardware, using a control loop

• Touchpoint - Interface to an instant of a managed resource (OS, server, hardware)

• Includes manageability interface for monitoring and control0

• Also expose sensor and
effector

• Event - Significant change in
system state

• Sensor - Exposes information
about managed resource state
and state transitions

• Effector - Enables state changes

• Interaction based on
Enterprise Service Bus

Dependable Systems | Advanced Software PT 2010

MAPE Cycle in the Autonomic Manager

10

Server PoolDevices +
Servers

Organized
resource
collection

• Administrators can decide to
realize only parts of the
control loop

• Evolutionary process

• Monitor - Correlates sensor
values into symptoms

• Analyze - Determine need
for some change

• Plan - Creates or selects
procedure to enact resource
alteration

• Execute - Carry out the
actions, update internal
knowledge

Dependable Systems | Advanced Software PT 2010

Autonomic Computing Adoption Model

11

Extend of automation for
the IT and business

process management

What is
managed

Dependable Systems | Advanced Software PT 2010

Standards - Some Examples

12

• Sensors and effectors should confirm to standards

• Distributed Management Task Force (DMTF)

• Common Information Model (CIM)

• Web Services Common Information Model (WS-CIM)

• Internet Engineering Task Force (IETF)

• Policy - Core Information Model (RFC3060)

• Simple Network Management Protocol (SNMP)

• Java Community Process (JCP)

• Java Agent Services (JSR87)

• Java Management Extensions (JSR3, JMX)

Dependable Systems | Advanced Software PT 2010

Level 5 - Policy Example

13

Dependable Systems | Advanced Software PT 2010

Level 5 - SLA Example

• Agreed SLA

• From 9:00 a.m. - 5:00 p.m., users of the trading application "MyApp" will not
average more than 1 second response time

• The application "MyApp" is always available

• I can run reports without interrupting MyApp

• System administrator derives according goal policy

• Goal (from SLA): On average, users will not wait more than 1 second

• Policy Scope: trading application "MyApp"

• Policy Condition: 9:00 a.m. to 5:00 p.m.

• Policy Decision: Average Response Time < 0.9 second

• Policy Business Value: 500

14

Dependable Systems | Advanced Software PT 2010

Level 5 - SLA Example

• Individual goal policies for resources derived

• Policy Scope: Storage

• Policy Condition: Average CPU utilization > 66%

• Policy Decision: Increase cache allocation for MyApp by 10%

• Policy Business Value: 500

• Policy Scope: Application

• Policy Condition: Average Response Time > 200 ms

• Policy Decision: Reduce priority of all low priority queries

• Policy Business Value: 600

• Policy Scope: Network

• Policy Condition: Network Response Time > 100 ms

• Policy Decision: Increase Quality of Service parameters for MyApp's IP address

• Policy Business Value: 400

15

Dependable Systems | Advanced Software PT 2010

Real Projects

• Network Solutions (domain registration company)

• Tivoli Management Framework

• Adaptors on resources convert to common log format

• Self-recovery for server cluster - automated startup / shutdown

• Close connection to other IBM products

• Tivoli Enterprise Console

• Beyond simple filtering, allows root cause analysis

• Pre-configured rules for event management

• Comparable activities with competitors

16

Dependable Systems | Advanced Software PT 2010

IBM Tivoli

17

Dependable Systems | Advanced Software PT 2010

Microsoft MOM

18

Solaris Fault Manager

External Slide Set

!"#$%&'()*
+%,-&./&0,(!,#123,$#&456
7$8#/(9$4$5,:,4/

!"#$%&'()"*+
!"#$#%&'()!****+,,-.//01)2#'#%&'()!/!"#/

3)1456#*785&81*98:81)-!8&,;*3%&*<6(5)#=#,8!#

Dependable Systems | Advanced Software PT 2010

Software Rejuvenation

• Software faults

• Testing and debugging aims at Bohrbugs

• Heisenbugs: Non-deterministic manifestation, depend on rare states and timing

• Some problems come from software aging

• Data corruption, numerical error accumulation, OS resource exhaustion

• Error conditions accumulate over time

• Example faults: Memory leaks, algorithmic data corruption, fragmentation

• Example errors: Crash, application hang, performance degradation, transient
problems, computational failures due to accumulated non-urgent issues

20

Dependable Systems | Advanced Software PT 2010

Example: Patriot Missile Launcher

• Mobile missile launcher, designed for a few hours of operation

• February 1991 - Battery in Dharan, Saudi Arabia failed to intercept Scud missile

• Software aging problem in system‘s weapon control computer

• Target velocity and time demanded as real values, stored as 24-bit integer

• Inaccurate tracking computation
due to overlong operation
(> 100 hours)

• Modified software reached the base
one day after the accident

• Missile launcher was never designed
for Scud defense operation

21

Dependable Systems | Advanced Software PT 2010

Approaches
• Use time redundancy to deal with transient software bugs

• Restart, rollback, roll-forward, progressive retry, occasional reboot

• Proactive fault management

• Postpone and or prevent crashes (decrease failure rate) and prevent performance
degradation (increase service rate)

• Software rejuvenation

• Stop software regularly, clean internal state and / or environment, restart it

• Counteracts aging problem - resources are freed, accumulated errors are gone

• Several approved cleaning techniques - Garbage collection, defragmentation,
table flushing, graceful restart

• Major research issue in optimal rejuvenation interval, due to overhead

• Different escalation levels: Process restart, application restart, node restart
22

Dependable Systems | Advanced Software PT 2010

Example: Microreboot [Candea et al.]

• Idea: Establish micro-reboots for Java EE beans

• Implemented in Java EE, fault model from real-world feedback

• Evaluated on auction system, all state externalized

• Micro-reboot of EJB and its transitive closure of deployment dependencies

• Based on concept of crash-only software

• Programs that can be safely crashed and recover quickly every time

• Fine-grained components with explicit boundaries

• State segregation

• Retryable requests - Callers should be able to gracefully recover

• Resources should be leased - CPU time, network bandwidth, request TTL

23

Dependable Systems | Advanced Software PT 2010

Example: Microreboot [Candea et al.]

24

Recovery-Oriented Computing

External Slide Set

!"#$%&'

!"#$%"&'()&*"+,"-(.$/01,*+2

34%"(54,,"&6$+
!"#$%&'#()*+,*-./#,+&"#.*.(*0%&1%/%)

2.((%&'+"34'56%&1%/%)5%78

7,,0899&$#:.;:<"&=">"':?3@9

9%:(%;6%&*<==>

