
Dependable Systems

Software Dependability

Dr. Peter Tröger

Sources:

Wilfredo Torres-Pomales. Software Fault Tolerance: A Tutorial.

Brian Randell and Jie Xu. The Evolution of the Recovery Block Concept.

Lui Sha. Using Simplicity to Control Complexity.

Several publications by Avizienis et al.

Dependable Systems | Software PT 2010

Software Dependability

• Four inherent properties that make software hard [Brooks 87]

• Complexity - Huge number of states with non-linear interactions

• Conformity - Software must fulfill outside / inside system expectations

• Changeability - New and revised system functionality is appealing

• Invisibility - Real activity reasoned by the code is mostly not obvious

2

Dependable Systems | Software PT 2010

Forget Hardware ...

• In 1990 there were an estimated 120 billion lines of source code being maintained
(Ulrich, 1990).

• In 2000 there are already about 250 billion lines of source code being maintained,
and that number is increasing (Sommerville, 2000).

• As a result, the amount of code maintained doubles in size every 7 years
(Müller et al., 1994).

• Older languages are not dead. E.g. 70% or more of the still active business
applications are written in COBOL (Giga Information Group).

• There are at least 200 billion lines of COBOL-code still existing in mainframe
computers alone (Gartner Group).

• Source: http://www.cs.jyu.fi/~koskinen/smcosts.htm

• Some collected reference data and fault models for software available, e.g.

• http://hissa.nist.gov/effProject/ , http://www.amber-project.eu/

3

http://www.cs.jyu.fi/~koskinen/smcosts.htm
http://www.cs.jyu.fi/~koskinen/smcosts.htm
http://hissa.nist.gov/effProject/
http://hissa.nist.gov/effProject/
http://www.amber-project.eu
http://www.amber-project.eu

Dependable Systems | Software PT 2010

Software Dependability

• Software testing

• Reduce number of dormant faults at development time

• Fault-tolerant software

• Techniques to achieve fault tolerance for software faults

• Application of redundancy idea to software modules

• Software fault tolerance

• Techniques to achieve fault tolerance by software mechanisms

• Typically for hardware failures on lower levels in the system stack

• Redundancy managed by operating system, cluster framework, application code

4

Dependable Systems | Software PT 2010

Software Testing

5

(C) Ian Sommerville

Responsibility of
the component

developer, based
on experience

Responsibility of an
independent testing

team, based on
specification

Black-Box
Tests

Access to source
code, tested while
components are

integrated

Steadily
increasing

load

Excess
maximum

design load

Dependable Systems | Software PT 2010

Testing Approaches

• Integration testing

• Top-down integration: Start with system skeleton

• Better in discovering design errors in the system architecture

• Allows limited prototype at an early stage

• Bottom-up integration: Incremental integration of dependent components

• Makes test development easier

• Release resp. Acceptance testing

• Only based on system specification

• Increase vendor‘s confidence into the product readiness

6

Dependable Systems | Software PT 2010

Testing Approaches

• Component / unit testing

• Defect testing in an isolated code piece

• Component might be function, class, or composite component with interface

• Object class testing

• Complete coverage would mean to test all operations, all attribute combinations, all
possible object states

• Inheritance brings problem of localizing the test candidate

7

Dependable Systems | Software PT 2010

Test Case Design

• Aims at good validation and defect testing coverage

• Design approaches

• Requirements-based testing

• Often implemented by deriving test cases from described use cases

• Partition testing

• Often input parameters can be clustered - take one candidate from each set

• Typical applications with mathematical properies (<, >, <<, >>, even, odd, ...)

• Structural testing resp. white box testing

• Knowledge of the program is used to identify additional test cases

• Excercise all program statements (not all code paths)

8

Dependable Systems | Software PT 2010

Testing Through Software Fault Injection

• Intentionally trigger erroneous behavior of the execution environment

• Typical approach for communicating software entities

• Orientation towards implementation details - program state, functional behavior

• Several non-intrusive implementation techniques, such as AOP

• Injection can be done as part of execution under real conditions

• Huge variety of fault classes, including SWIFI fault classes

• New approaches support remote fault injection (e.g. fuzzing)

• Compile-time injection: Leads to erroneous image being executed

• Run-time injection: Demands some altering of application state during runtime

• Typical triggers: Time-out, exception, debugging trap, code insertion

9

Dependable Systems | Software PT 2010

Software Dependability

10

• Software testing

• Reduce number of dormant faults at development time

• Fault-tolerant software

• Techniques to achieve fault tolerance for software faults

• Application of redundancy idea to software modules

• Software fault tolerance

• Techniques to achieve fault tolerance by software mechanisms

• Typically for hardware failures on lower levels in the system stack

• Redundancy managed by operating system, cluster framework, application code

Dependable Systems | Software PT 2010

Fault-Tolerant Software

• Fault-tolerant software unit: Continues to deliver service in an error state

• Non-fault-tolerant software unit is called simplex unit

• Examples

• Algorithmic calculation problems

• Need to investigate units, operators, intervals, limits, ranges, FP handling, ...

• Problems with input data

• Units, ranges, change quantity or frequency, ...

• Prevention: Assertions for invalid values, checks for ranges that imply incorrect
data. Implementation of input data validation for code

• Problems with initialization, interfaces, control logic, omission of system parts,
timing /synchronization, exceptional conditions

11

Dependable Systems | Software PT 2010

Fault-Tolerant Software

• Forward-error recovery

• Feasible in control loop / real-time systems, since propagation is predictable

• Timing faults with the real-time criteria would be more severe

• Typical example: N-version programming

• Backward-error recovery

• In case of unpredictable error propagation effects

• Typically expensive in terms of time

• Ensure best-possible correctness of ultimate computational outcome

• Large variety in examples: Retry, restart, reboot, checkpointing, audit logs,
transactions, recovery blocks, exceptions, wrappers ...

12

Dependable Systems | Software PT 2010

Fault-Tolerant Software -
Another categorization [Lyu 95]

• Single version techniques

• Add mechanisms for detection, containment, and handling of errors to the
software component

• Examples: Software structure and actions approaches, error detection, exception
handling, checkpointing and restart, process pairs, data diversity

• Multi version techniques

• Rely on structured utilization of variants of the same software

• Examples: Recovery blocks, N-version programming

• Principles can be applied to any software layer

• Identify source of most design faults

• Typically no problem with parallel application, beside cost factor

13

Dependable Systems | Software PT 2010

Single-Version Approaches -
Wrapper

• Piece of software that encapsulates a given program when it is being executed

• Typical approach for operating systems and middleware stacks

• Structure: Wrapper Software and Wrapped Entity

• Inputs and outputs are checked by the wrapper

• Examples include:

• Dealing with buffer overflow, checking scheduler correctness (e.g., EDF),
bypassing known bugs, checking output correctness

• When pre- or postconditions are violated, usually an exception is being raised

• Wrappers form acceptance tests in the „rings of dependability“

• Good approach for patching efforts after product delivery

14

Dependable Systems | Software PT 2010

Dependability Rings for Fault Tolerance

15

Each dependability ring should
provide measures and mechanisms

for fault tolerance (detection, location,
testability and recovery)

Dependable Systems | Software PT 2010

Single-Version Approaches -
Software Structures and Actions

• Partitioning

• Isolate functionally independent modules

• Horizontal (n-tier architectures) vs. vertical partitioning (factoring)

• System closure

• No action is permissible unless explicitly authorized

• Any capability damaged only disables a valid action

• Temporal structuring

• Enable atomic interactions between components without disturbance

• From outside: Either terminates correctly, or is aborted upon error detection

16

• Save application state data at recovery points

• Can be reloaded on crash or any other kind
of data loss

• Possible on different levels: local per process,
partial, complete, distributed

• Optimum checkpointing interval

• Checkpointing too frequent: Majority of time spent for data saving

• Checkpointing too rare: May take long time to recover

• Several specialized solutions for C / C++ language, easier with reflection support

• Popular approach in clusters / high-performance computing

• Latest trend: In-memory checkpointing

Dependable Systems | Software PT 2010

Single-Version Approaches -
Checkpointing

17

taken from
Software Fault Tolerance: A Tutorial

Dependable Systems | Software PT 2010

Single-Version Approaches
Process Pairs [Pradhan 96]

18

taken from
Software Fault Tolerance: A Tutorial

Dependable Systems | Software PT 2010

Single Version Approaches
Data Diversity [Ammann 88]

19

ta
ke

n
fro

m

S
of

tw
ar

e
Fa

ul
t T

ol
er

an
ce

: A
 T

ut
or

ia
l

Dependable Systems | Software PT 2010

Multi-Version Approaches
Recovery Blocks

• Introduced in 1974 by Horning et. al.

• Dynamic fault tolerance approach, related to stand-by sparing in hardware

• Redundant system implementations are typically used simultaneously,
best answer is picked i.e. by voting

• Alternative way: Sequential execution of recovery blocks

20

establish Checkpoint
ensure Acceptance Test
by Primary Module
else by Alternative Module 1
else by Alternative Module 2
else by ...
else Failure Exception

Dependable Systems | Software PT 2010

Recovery Blocks
• Primary module

• Debugged and tested non-redundant software, which hopefully meets
specifications

• At the beginning, checkpointing resp. recovery cache is filled

• Acceptance test

• Reasonableness check of the calculated results

• Acceptance tests per block, might lead to final error handler

• Must be simple to not contain design faults on its own

• Alternate module is a standby software to be executed if primary module fails

• Possible primary / alternate module failure conditions

• Failure of acceptance test, detected failure to terminate, implicit error detection
(e.g. division by zero), failure exception of an inner recovery block

21

Dependable Systems | Software PT 2010

Recovery Blocks

• Limited overhead (execution only in error case), redundancy in time

• Diversity of redundancy implementation is relevant

• Even results might be different, as long as they are acceptable

• Checkpoint before first block needed to ensure same preconditions

• Make successive block more simple, maybe loose parts of the result

• Might be accompanied by a Watchdog timer for some deadline support

• Problems: Shared global data, lack of alternative algorithms, added complexity

• Can be nested, can span multiple processes

• Major impact from acceptance test

• Reasonableness checks, timing checks,
reversal tests, replication tests

22

Dependable Systems | Software PT 2010

Example: Recovery Blocks

23

(C) Laura L. Pullum

Dependable Systems | Software PT 2010

Recovery Blocks - Example

• Application of concept in Naval Command and Control system software, 1985

• 8000 lines of additional codes, utilized PDP-11 hardware extension for
checkpointing

• Failure coverage of over 70%

• 60% addition in software implementation costs for fault-tolerant version

• 33% extra code memory during runtime

• 35% extra data memory

• 40% additional run time

24

Dependable Systems | Software PT 2010

Extensions to Recovery Block Concept

• Distributed Recovery Blocks by Kane Kim

• Forward recovery scheme wit emphasis on real-time applications

• Pair of self-checking processing nodes

• Primary node and shadow node both run a recovery block scheme

• Two-phase structured cycle for less synchronization overhead -
Input acquisition and output phase

• Nodes use different modules as the primary one

• Approach for uniform treatment of hardware and software faults

• Acceptance test first checks primary, and then shadow node

25

Dependable Systems | Software PT 201026

(C) Laura L. Pullum

Dependable Systems | Software PT 2010

Extensions to Recovery Block Concept

• Retry blocks with data diversity [Ammann and Knight 1987]

• Not the algorithm is varied, but the input data

• Easy and inexpensive to implement, since only data re-expression must be added

• Recovery for concurrent systems

• Problem of cascaded rollbacks - domino effect

• Recovery and process communication are not synchronized

• Rollback affects connection partners and spreads out

27

Dependable Systems | Software PT 2010

Conversation Scheme

• Conversation scheme [Randell et al. 1975]

• Processes enter a conversation asynchronously, only communication inside

• Each process entering a conversation is check-pointed

• Global acceptance test (conversation test line)

• If any process detects an error, all participants must perform a rollback and user
their next alternative module then

• All processes leave the conversation together

• Only communication inside the conversation

• Need to prevent information smuggling -
the altering of application state outside of
the conversation

28

Dependable Systems | Software PT 2010

Multi-Version Approaches -
N-Version Programming

• Common mode errors are only catchable by design diversity

• Design diversity is a complex issue

• Design philosophies, software tools, programming languages, test philosophies

• Typical approaches try to utilize randomness - separate teams on different locations

• N-Version Programming

• Suggested by Elmendorf in 1972, developed by Avizienis & Chen in 1977

• Static approach, combination of decision mechanism and forward recovery

• At least two independently designed and functionally equivalent variants

• Variants are executed in parallel, decision mechanism selects the „best“ result

• Can support reliability, but also system security against malicious logic

29

Dependable Systems | Software PT 2010

N-Version Programming

„N-version programming is defined as the independent generation of N>=2
functionally equivalent programs from the same initial specification. The N
programs possess all the necessary attributes for concurrent execution, during which
comparison vectors (“c-vectors”) are generated by the programs at certain points.
The program state variables that are to be included in each c-vector and the cross-
check points (“cc-points”) at which the c-vectors are to be generated are specified
along with the initial specification.

“Independent generation of programs” here means that the programming efforts are
carried out by N individuals or groups that do not interact with respect to the
programming process. Wherever possible, different algorithms and programming
languages (or translators) are used in each effort. The initial specification is a formal
specification in a specification language. The goal of the initial specification is to state
the functional requirements completely and unambiguously, while leaving the widest
possible choice of implementations to the N programming efforts. The actions to
be taken at the cc-points after the exchange of c-vectors are also specified along
with the initial specification. ” (Avizienis 1977)

30

Dependable Systems | Software PT 2010

Comparison [Avizienis]

31

Dependable Systems | Software PT 2010

Example: N-Version Programming

32

(C) Laura L. Pullum

Dependable Systems | Software PT 2010

N-Version Programming

• Driver resp. control program

• Invokes each of the versions

• Waits for the versions to complete their execution

• Might also include the decision module

• Requirements for successful NVP, also hold for NMR

• Consistency of all inputs and initial conditions over the modules

• Reliable decision algorithm

• Resource and development costs / effectiveness tradeoff

• Can be solved by software - hardware combination

• Examples: Boeing 737-300, Airbus A-310, Airbus A-320 flight computers

33

Dependable Systems | Software PT 2010

N-Version Programming

• Large variety of options for the decision module, e.g.

• Basic majority voter that waits for all results first

• Perform vote whenever a new result arrives and the old vote was unsuccessful

• Method is intended for multiprocessor environments

• Attractive solution when continuity of service is a critical issue

• Relevant elements to the approach

• Approach for initial specification and parallel development efforts (process)

• Product of that process (software)

• Runtime support and decision approach (executive)

34

Dependable Systems | Software PT 2010

N-Version Programming

„The second major observation concerning N-version programming is that its
success as a method for on-line tolerance of software faults depends on whether the
residual software faults in each version of the program are distinguishable.
Distinguishable software faults are faults that will cause a disagreement between
c-vectors at the specified cc-points during the execution of the N-version set of
programs that have been generated from the initial specification. Distinguishability is
affected by the choice of c-vectors and cc-points, as well as by the nature of the
faults themselves.

It is a fundamental conjecture of the N-version approach that the independence of
programming efforts will greatly reduce the probability of identical software
faults occurring in two or more versions of the program. In turn, the distinctness of
faults and a reasonable choice of c-vectors and cc-points is expected to turn N-
version programming into an effective method to achieve tolerance of software faults.
The effectiveness of the entire N-version approach depends on the validity of this
conjecture, therefore it is of critical importance that the initial specification should
be free of any flaws that would bias the independent programmers toward
introducing the same software faults.” (Avizienis 1977)

35

Dependable Systems | Software PT 2010

NVP - Design Process

• Inconsistencies and omissions in the V-spec can bias the independent design efforts

• Simplex software specification tends to formulate „what“ and „how“

• Latter part can influence diversity aspect

• Diversity can take place in

• Training, experience and location of the developers

• Application algorithms and data structures, testing methods and tools

• Programming languages, software development methods and tools

• Random diversity (of individuals) vs. required diversity (in implementation)

• Matching features - Needed for execution as fault-tolerant module cluster

• Distinct specifications (from one requirement document) vs. formal specification

36

Dependable Systems | Software PT 2010

NVP - Programming Process

• Choice of a suitable software development process for an individual version

• Aims at maximum isolation and independence

• Encourage greatest diversity of the implementations

• Avoid fault leak links that introduce related software faults

• Rules of isolation - Ongoing process to avoid fault leak links between teams

• Communication and documentation protocol

• Supervise team information flow

• Ensures archiving of messages for later process root cause analysis

• Coordinating team

37

Dependable Systems | Software PT 2010

NVP - Coordinating Team

• Prepares and distributes specification and test data sets

• Sets up the communication and documentation protocol

• Supervises NVP process and the rules of isolation

• Collects and answers inquiries from teams

• Conduct formal reviews, coordinate synchronization points in the development

• Gather and evaluate all documentation, conduct acceptance tests

• All communication preferably in written format, to have fault leaks documented for
post-mortem analysis

38

Dependable Systems | Software PT 2010

NVP - Executive

• Set of generic functions to run multiple software variants in a coordinated fashion

• Proper matching features are defined by the specification

• High dependability, fast operation - can be hardware, software, or combination

• Basic functions

• Decision algorithm(s) and assurance of input consistency

• Inter-version communication facility, enforcement of timing constraints

• Local supervision per version

• Global decision function for version error recovery

39

Dependable Systems | Software PT 2010

N-Version Programming

• Success depends on the permanent faults in each variant being distinguishable

• Variants could also be used for improved testing

• Has danger of letting the variants progressively become closer

• Initial specification must be free of flaws, otherwise no real divergence

• Common residual design faults

• Global data structures still need to be unified

• Choosing small modules implies [Stringini and Avizienis]

• Frequent invocation -> low error latency, but high overhead

• Less computation with less data on rollback, but more data to checkpoint / vote

40

Dependable Systems | Software PT 2010

NVP Case Study

• A. Avizienis, M. R. Lyu, and W. Schuetz. In search of effective diversity: a six-
language study of fault-tolerant flight control software. In Digest of 18th FTCS, pages
15–22, Tokyo, Japan, June 1988.

• University experiment with industry support for the development of an automatic
aircraft landing system

• Real specification for a flight control computer, algorithms, control laws - pitch
control problem was taken out

• Three-member coordinating team, only minimal information to developers

• Independent programming teams, combination of required and random diversity

• Different programming languages, but not different algorithms (timing, matching)

• Procedural languages (C / Pascal), OO languages (Ada / Modula 2),
logic language (Prolog), functional language (Lisp variation)

41

Dependable Systems | Software PT 2010

NVP Case Study

• 12 week-phase of version generation, six teams of two persons

• Training phase - Meetings with all developers, explanation of isolation requirement

• Design phase - Each teams discusses with domain expert and coordination team

• Coding phase - Independent development, no communication between teams

• Unit testing phase - Same test data for all teams

• Integration testing phase - Same test data for all teams

• Acceptance testing phase - Full flight simulation, iterative debugging with teams

• Communication protocol

• Questions from programmers only to coordination team by eMail, response in 24h

• Expert consulted by coordination team

42

Dependable Systems | Software PT 2010

NVP Case Study

• 120 questions from six teams, 30 answers broadcasted

• First results after acceptance test

• Number of lines with / without comments, number of executable or arithmeitc
statements, number of modules, mean number of statements per module

43

Dependable Systems | Software PT 2010

NVP Case Study

44

Compiler
bug

Dependable Systems | Software PT 2010

NVP Case Study

• Only one identical fault, based on mis-read specification text

• All cross-checks and recovery point routines written in C

• Additional interoperability problem with diverse languages

• Evaluation performed by requirements-based stress testing and structural analysis

• One problem caused by unconsidered late specification update

• Severe structural faults by underground variables

• Introduction of new, unspecified state variables that are not considered in the
cross-check

• Some implementations did not consider corrected results from the decision module

45

Dependable Systems | Software PT 2010

NVP Case Study

• Conclusion

• Original specification contain too much implementation hints for diversity

• Order of computations has strong impact on diversity possibilities

• Use of different programming languages supports team isolation

• Failure to follow NVP design rules lead to some structural faults

• Similar and time-coincident errors were rare

46

Dependable Systems | Software PT 2010

NVP Independence Evaluation

• John C. Knight and Nancy G. Leveson. An Experimental Evaluation of the
Assumption of Independence in Multi-Version Programming.

• NVP relies on assumption that independent software version fail independently

• Faults occur at random and are unrelated

• Probability of common mode failures (identical incorrect output) assumed small

• Additional costs for multiple versions would be offset by reduced validation costs

• But: Even in mechanical systems, common design faults are a serious threat

• NVP used in crucial systems

• Slat and flap control system of the Airbus A310

• Point switching, signal control, and traffic control in Gothenburg railways

47

Dependable Systems | Software PT 2010

NVP Independence Evaluation

• Experiment

• Graduate students from two universities, 27 programs

• Requirement specification and golden unit from previous NVP experiment

• No development methodology imposed, predefined language and system

• No restrictions on reference and documentation sources

• Fifteen input data sets with given output, for debugging

• 200 randomly generated test cases for acceptance test, different sets per version
to avoid ,filtering‘ of common mode failures by the acceptance test

• Final examination with one million random tests, comparison of version result with
golden unit result

48

Dependable Systems | Software PT 2010

NVP Independence Evaluation

• Approx. one half of total software faults involved two or more versions

• All common faults involved students from different schools

• Examples for correlated faults across versions

• Misunderstandings in numerical analysis (angle comparison)

• Misunderstandings in geometry (not considering special cases)

• Some conclusion

• Common mode faults are application-specific, so NVP might be still very valuable

• Certain parts of any problem are just more difficult

• Semantic aspects, human misconception, missing details in the specification

• Unique faults tend to be more likely detected by compilers / testing

49

Dependable Systems | Software PT 2010

Comparison of Approaches

• Timothy J. Shimeall and Nancy G. Leveson. An Empirical Comparison of Software
Fault Tolerance and Fault Elimination. February 1991

• Comparison of five software fault detection approaches

• Run-time assertions

• N-version programming resp. back-to-back testing

• Vote is used as test oracle

• Varying specification language, development practices, languages

• Functional and structural testing

• Code reading by stepwise abstraction (without comments to avoid biasing)

• Static data-flow analysis with pre-defined algorithms

50

Dependable Systems | Software PT 2010

Comparison of Approaches

• Experiment setup

• Set of programs written from a single specification for combat simulation

• Tree-step data transformation, 2600-4500 input data values

• Senior-level students for software engineering, teams of two persons

• One set performed architectural designs, coding, and debugging
to pass pre-defined acceptance test

• Disjoint set of students to detect faults in the programs

• Report generation per fault, administrator acts as final arbiter for false alarms

• Acceptance test designed to execute each of the major code portions at least once

51

Dependable Systems | Software PT 2010

Comparison of Approaches

• Comparison between fault elimination and fault tolerance

• Voting tolerates faults, assertions have the potential

• Claim by Avizienis et al. - Multiversion might reduce the need for testing

• Are the same faults detected by fault elimination and voting ?

• Is a particular testing type irrelevant when voting is used ?

• Difficult comparison: One tolerated error condition does not mean that all error
conditions from this fault are handled

• Results

• 67 faults handled only by voting, 28 only by assertions, 119 only by fault
elimination; 27 detected by both voting and fault elimination

• On average, the voting triplets only tolerated 38% of the failures

52

Dependable Systems | Software PT 2010

Comparison of Approaches

• Comparison of testing techniques with respect to fault detection

• Data shows that most of the faults detected by each technique were not found by
no other technique

• Code reading

• Found incorrect formulas, missing checks, bad conditions on branches, missing
condition checks for special cases

• Did not find any globally missing code or missing application logic

• False alarms: From code that was difficult to abstract, from inconsistent
implementation strategies (e.g. variable naming), from syntactical focus

• Static data flow analysis

• Found only initialization faults, but is cheap

53

Dependable Systems | Software PT 2010

Comparison of Approaches

• Voting

• Found missing paths in the program, parameter ordering flaws, wrong variable
usage, wrong ordering of operations

• Missing check of specific conditions not found by voting approaches, more
success with boundary test cases

• Run-time assertions

• Found parameter ordering flaws, wrong variable usage

• No detection of missing code flaws

• Simple range checks detected 23 flaws not detected by any other approach

54

Dependable Systems | Software PT 2010

Comparison of Approaches

• Functional and structural testing

• Found wrong ordering of operations, missing check of specific conditions,
missing functionality or missing single program paths

• Incompleteness through module-by-module testing approach

• Best effectiveness with atypical data sets

• Variation in effectiveness mostly reasoned by

• Ability to examine internal state (problem for voting)

• Scope of evaluation (problem for assertions / code reading)

55

Dependable Systems | Software PT 2010

Comparison of Approaches

56

Dependable Systems | Software PT 2010

Damage Confinement

• Easier in hardware, due to physical isolation; Software has shared resources

• Basic principle: Interacting components have to be mutually suspicious

• Constraints on interactions are typically very implementation-specific

• Some generic models, based on security interaction work

• Bell-LaPadula model - Information flows to higher levels, but not vice versa

• Reformulation based on layer integrity demands

• Back-flow with heavy checking typically allowed

• Damage flows that bypass intended interactions are another issue

• Strongly typed languages, operating system address spaces, sandboxing,
reference monitor that mediates all data accesses

57

Dependable Systems | Software PT 2010

Damage Confinement Strategies

• Checking error conditions at interface

• Law-Governed Systems [Minsky91]

• Constraints on interactions are externalized, set of rules enforced at run-time

• Specialized approaches for message exchange between objects

• Static vs. dynamic enforcement mechanisms, power depends on language

• Rule-enforcement facilities might have their own state:

• „Method X of object Y is only invokable if this process holds a token.“

• Voting

• High costs, problems with stateful functionality

58

R(t) = e−λt = e−Ct/E

Dependable Systems | Software PT 2010

An Alternative: Simplex Approach

• Approach by Lui Sha, University of Illinois at Urbana-Champaign

• Where to spend the money: Multiple diverse versions, or one ultra-robust version ?

• Relationship between reliability, development effort, and code complexity

• Proposed model: Failure rate is proportional to software complexity C and
inversely proportional to development effort E

• Example: Assuming t=1

• Decreasing rate of reliability improvement
for increasing effort

• With more complexity comes higher
effort for same reliability

• Effort E == costs, typically constant

59

Dependable Systems | Software PT 2010

Simplex

• N-Version Programming

• Total effort E, divided by three teams; assuming C=1

• Optimistic assumption: Failure rate is inversely proportional to square of software
development effort (red)

• Pessimistic assumption:
Failure rate is inversely proportional
to square root of software
development effort (blue)

• Single-version approach always
outperforms NVP

• But multiple versions might
be obtainable much cheaper

60

RNV P = R3
M + 3R2

M (1−RM) RM = e−3/E

Dependable Systems | Software PT 2010

Simplex

• Recovery blocks

• System works as long as any alternative works (perfect acceptance test)

• For three alternatives:

61

RRV B = 1− (1−RM)3, RM = e−3/E

With two alternatives, complexity reduction
of alternative (by factor 2 resp. 10) brings

huge improvement for the same effort

With three-way divided effort, some
minimum effort is needed to get better

reliability by recovery blocks

Dependable Systems | Software PT 2010

Simplex

• Idea: Using simplicity to control complexity

• Forward recovery approach, based on feedback loop

• HAC subsystem - Simple construction, formal methods, reliable hardware

• HPC subsystem - Complex technology, advanced features

• HPC can use HAC output, but not vice versa

• Decision logic based on control loop output

• Typically performance degredation with HAC

• Example: Boeing 777 primary and secondary
flight controller

62

Dependable Systems | Software PT 2010

Software Dependability

63

• Software testing

• Reduce number of dormant faults at development time

• Fault-tolerant software

• Techniques to achieve fault tolerance for software faults

• Application of redundancy idea to software modules

• Software fault tolerance

• Techniques to achieve fault tolerance by software mechanisms

• Typically for hardware failures on lower levels in the system stack

• Redundancy managed by operating system, cluster framework, application code

Dependable Systems | Software PT 2010

Software Fault Tolerance

• Can be realized on different levels

• Operating System - Failover and / or load-balancing cluster framework

• Database, middleware stack

• Application itself

• Combination of the above methods

• Maintenance is an issue

• Failover success rate above 90% is understood as good value

• Understanding of a „major outage“ is driven by SLA

• Crashes can leave garbage behind

• New wave with fault tolerance through virtualization technologies

64

Dependable Systems | Software PT 2010

Operating System

• Basic approach: Host clustering

• Does not know about session state or transactional behavior

• Only concerned with overall availability of services, not their individual state

• Typically issues with proper
service deactivation
(e.g. mount)

• Logging, packaging

• Major improvements
with latest virtualization
technologies

65

(C) K. Schmidt

Dependable Systems | Software PT 2010

Example: Operating System Clustering

66

(C
) M

ic
ro

so
ft

Dependable Systems | Software PT 2010

VMWare HA

67

fro
m

 w
w

w
.v

m
w

ar
e.

co
m

• On failure of physical host, virtual machine is automatically restarted on another host

• Distributed scheduling ensures always available resources for failover case

• Based on mutual hardware and shared storage (e.g. iSCSI)

Dependable Systems | Software PT 2010

Databases

• Databases - ACID principle

• Atomicity and durability by write-ahead
logs

• Contain data value before (for
rollback) and after (for recovery) the
modification

• Written synchronously, so that actual
data operations can be heavily
buffered

• Can also be used for database
synchronization

• Classical shared-disk vs. shared-nothing
discussion

68

M
ul

ti-
M

as
te

r
D

at
ab

as
e

C
lu

st
er

M
as

te
r-

S
la

ve
 S

et
up

