
Dependable Systems

Definitions and Metrics (IV)

Dr. Peter Tröger

Sources:

J.C. Laprie. Dependability: Basic Concepts and Terminology

Echtle, Klaus: Fehlertoleranzverfahren. Heidelberg, Germany : Springer Verlag, 1990.

Pfister, Gregory F.: High Availability. In: In Search of Clusters. , S. 379-452

Dependable Systems | Definitions PT 2010

Dependability Tree (Laprie)

2

Dependable Systems | Definitions PT 2010

Dependability Means (Laprie)

• Offline / online techniques

• Fault intolerance techniques

• Fault prevention - Prevent fault occurrence or introduction

• Fault removal - Reduce the presence of faults

• 100% fault-free servicing for the whole life time is not possible

• Fault tolerance techniques

• Fault forecasting - Estimate the present number, future incidence, and the
consequences of faults

• Fault tolerance - Provide service complying with specification in spite of faults

• Problems with coverage and validation of the validator

3

Dependable Systems | Definitions PT 2010

Dependable System Design (Echtle)

4

Dependable Systems | Definitions PT 2010

Fault Prevention

• Specific approaches for avoiding faults

• Specialized specification formalisms and techniques

• Specialized development / manufacturing process to prevent design faults

• Shielding

• Only use ultra-reliable components

• General engineering approaches

• Software engineering procedures

• Quality management regulations and enforcement

• Training and organization of maintenance departments

5

Dependable Systems | Definitions PT 2010

Fault Removal

• Make faults disappear before fault tolerance becomes relevant

• Step 1: Verification

• Check if the system adheres to verification conditions; if not, take next steps

• Static verification: Static analysis, data flow analysis, compiler checks

• Dynamic verification: Symbolic execution or verification testing

• Step 2: Diagnosis

• Find the faults that influenced the verification conditions

• Step 3: Correction

• Fix the problem, repeat the steps (regression)

• Fault removal during operation: Corrective maintenance (curative / preventive)

6

Dependable Systems | Definitions PT 2010

Testing

• Selecting test inputs is driven from different view points

• Testing purpose: conformance testing, fault-finding testing

• System model: functional testing (with functional model) or structural testing

• Fault model: enables fault-based testing

• Deterministic testing vs. random testing

• Structural testing of hardware is fault-finding, fault-based, structural testing

• Structural testing of software is fault-finding, non-fault-based, structural testing

• Golden unit: Reference system for comparison of output for a given input

7

Dependable Systems | Definitions PT 2010

Fault Tolerance

• Fault tolerance is the ability of a system to operate correctly in presence of faults.

or

• A system S is called k-fault-tolerant with respect to a set of
algorithms {A1, A2, ... , Ap} and a set of faults {F1, F2, ... , Fp}
if for every k-fault F in S, Ai is executable by a subsystem of system S with k-faults.
(Hayes, 9/76)

or

• Fault tolerance is the use of redundancy (time or space) to achieve the desired level
of system dependability - costs !

• Accepts that an implemented system will not be fault-free

• Implements automatic recovery from errors

• Is a recursive concept (voter replication, self-checking checkers, stable memory)

8

Dependable Systems | Definitions PT 2010

Fault Tolerance

• Typical design methodology in many technical and biological systems

• Spare wheel in cars, redundant organs, ...

• Fault tolerance mechanisms need to be evaluated by dependability attributes

• Minimum, maximum, average reliability and availability

• Easy to formulate and understand, hard to prove - failure rate remains unknown

• Quantitative limits based on fault model (which faults in which components)

• Typically ,one-fault-at-a-time‘ assumption

• Different attributes of fault tolerance implementation to be checked

• Functional verification, sensitivity analysis, minimum amount of resource resp.
computational overhead, implementation performance, transparency, portability

9

Error Processing

Dependable Systems | Definitions PT 2010

Phases of Fault Tolerance (Hanmer)

10

Latent
Fault

Error Normal
OperationFault

Activation

Error Recovery

Error Mitigation

Error
Detection

Fault
Treatment

Dependable Systems | Definitions PT 2010

Decomposition of Fault Tolerance (Lee & Anderson)

• Error detection

• Presence of fault is deducted by detecting an error in some subsystem

• Implies failure of the according component

• Damage confinement

• Delimit damage caused due to the component failure

• Error processing - recovery / compensation

• System recovers from the effect of an error

• Fault treatment

• Ensure that fault does not cause again failures

11

Dependable Systems | Definitions PT 2010

Fault Tolerance - Error Detection

• Replication check

• Output of replicated components is compared / voted

• Independent failures, physical causes -> many replicas possible (e.g. HW)

• Finds also design faults, if replicated components are from different vendors

• Timing checks (‚watchdog timers‘)

• Timing violation often implies that component output is also incorrect

• Typical solution for node failure detection in a distributed system

• Reasonableness checks - Run-time range checks, assertions

• Structural and coding checks, diagnostics checks, algorithmic checks

• Ideal: Self-checking component with clear error confinement areas

12

Dependable Systems | Definitions PT 2010

Fault Tolerance - Error Detection

• Replication checks are powerful and expensive, examples:

• Execute identical copies on different hardware (component failures)

• Execute separate and different versions (assumes independent design faults)

• Execute same copies different times (transient faults)

• Replicate only portion of the system

• Works for both hardware and software

• Signaling aspect in the error detection task

• Typical software model are exceptions, a way for implementing forward recovery

• Combination fault detection and fault location

13 (C) IEEE

Dependable Systems | Definitions PT 2010

Fault Tolerance - Damage Confinement (Taylor)

• System decomposition

• Every communication link might enable damage spreading

• Introduce mutual suspicion

• Hardware-based separation of software components

• OS-based separation (processes, runtime monitors, special shells)

• Law-governed architecture

• Externalize contrains on interaction by runtime rules

• Strongly-typed language

• Language guarantees the absence of unintended control flows

14

Dependable Systems | Definitions PT 2010

Preventing Error Propagation

• Especially relevant when single components communicate their data

• Single-source information - local clock, sensor data, transaction status ...

• Non-failed component must find an agreement how to treat received information

• Special topic in distributed systems

• Atomic broadcast, clock synchronization, membership protocols

15

Dependable Systems | Definitions PT 2010

Fault Tolerance - Error Processing Through Recovery

• Forward error recovery

• Error is masked to reach again a consistent state (fault compensation)

• Corrective actions need detailled knowledge (damage assessment)

• New state is typically computed in another way

• Examples: error correcting codes, non-journaling file system check,
advanced exception handlers, (voters)

• Backward error recovery

• Roll back to previous consistent state (recovery point / checkpoint)

• Very suitable for transient faults

• Computation can be re-done with same components (retry), with alternate
components (reconfigure), or can be ignored (skip frame)

16

MODULES

1

2

n

SWITCH

OUTPUT

INPUT

HOT, WARM AND COLD SPARES

MODULES

1

2

3

OUTPUT

INPUT

COMPARATOR

SWITCH

MODULES

1

2

3

OUTPUT INPUT

COMPARATOR

4
COMPARATOR

SWITCH/COMPARATOR

Input
Voter
output

Module
A

Module
B

Module
C

Voter

Dependable Systems | Definitions PT 2010

Forward Recovery Through Redundancy (Malek)

17

Backup Sparing Duplex and Spare

Pair and Spare Triple Modular Redundancy (TMR)

Dependable Systems | Definitions PT 2010

Fault Tolerance - Fault Treatment

• Fault diagnosis - determine error cause‘s location and nature

• Fault passivation - (remove faulty component &) reconfigure system

• Error processing might already remove the fault - ,soft fault‘

• Typical example are temporary faults

• Fault tolerance manager

• Careful diagnosis with hardware support

• Damage assessment by disabling faulty components automatically

• Example: IBM mainframe architecture

• Software rejuvenation

• Gracefully terminating an application and immediately restarting it at a
clean internal state

18

Dependable Systems | Definitions PT 2010

Fault Tolerant Mindset (Hanmer)

• What can go wrong in any given situation ?

• Mindset to be applied in all development stages

• „Every problem in computer science boils down to tradeoffs“ [Henschen]

• How much MTTF do you need for the MTTR ?

• Fault prevention vs. fault tolerance vs. failure severity

• KISS principles, leave out „bells and whistles“

• Incremental additions of reliability - long-term products

• Defensive Programming

• Simple error handling; fix root cause, not symptoms; make data auditble;
make code maintainable;

19

Dependable Systems | Definitions PT 2010

Fault Tolerant Design Methodology (Hanmer)

• Assess things that can go wrong with the system (e.g. fault trees).

• Find potential risks and according system failures.

• Define strategies to mitigate the identified risks.

• Failure avoidance options, prevent faults from activation

• Create a mental model of the system design with redundancy.

• Design error detection and error processing capabilities.

• Design in the failure mitigation capabilities.

• Design human-computer interactions and modes of management.

20

Dependable Systems | Definitions PT 2010

Dependable Design Strategies (Malek)

• Decompose the system

• Identify fault classes, fault latency and fault impact for the components

• Identify “weak spots” and assess potential damage

• Integrate partial recovery / reintegration / restart

• Determine qualitative and quantitative specs for fault tolerance and evaluate your
design in specific environment

• Develop / utilize fault and error detection techniques and algorithms

• Develop / utilize fault isolation techniques and algorithms

• Refine fault tolerance, iterate for improvement

• Re-use proven components, but be aware of integration issues

21

