
Visual Studio .NET DCL Add-In
— User Guide —

Hasso Plattner Institut for Software Systems Engineering
Chair for Middleware and Operation Systems

Alexander Klimetschek
alexander.klimetschek@hpi.uni-potsdam.de

Alexander Saar
alexander.saar@hpi.uni-potsdam.de

Marc Assmann
marc.assmann@hpi.uni-potsdam.de

Hasso Plattner Institut for Software Systems Engineering GmbH
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam

P.O. Box 900460, 14440 Potsdam

Contents

1 Introduction 5
1.1 Distributed Control Lab (DCL) . 5

2 User Guide 6
2.1 Installation . 6
2.2 Tool Bar and Code Editor Context Menu . 6
2.3 DCL Job View . 7
2.4 Options . 8

2.4.1 Polling Options . 8
2.4.2 Compiler Errors Options . 8
2.4.3 Code Lines Overhead Options . 9
2.4.4 Result Codes Options . 9

2.5 Task Window . 10
2.6 Message Window . 10

3 Developer Guide 11
3.1 DCL Web-Service Front-end Control . 11

3.1.1 DCL Web-Service Interface . 12
3.2 Implementation Overview . 12

3.2.1 Observer Pattern with Events and Delegates 13
3.2.2 Static Structure . 13
3.2.3 Configuration and Logging . 15
3.2.4 Tree Model . 15
3.2.5 Parsing Compiler Errors . 15
3.2.6 Usage of the DCL Control . 18

3.3 Visual Studio .NET Add-In Integration . 20
3.3.1 Add-In Registration . 20
3.3.2 Connect Class Overview . 20
3.3.3 Integration into the User Interface . 20
3.3.4 Serialization . 22
3.3.5 More Information . 22

3.4 Building the Solution and Projects . 23

3

4

1 Introduction

The guide at hand introduces the architecture, implementation and usage of theDistributed
Control Lab (DCL) Add-In for Visual Studio .Net. The add-in enables the creation, execu-
tion and management of DCL jobs. It was implemented during a project of theDIStributed
& COllaborative UniversityResearch &Study Environment(DISCOURSE, [3]) block lecture
2004.

1.1 Distributed Control Lab (DCL)

The DCL [2] is situated at theOperating Systems & Middleware Chair[1] of theHasso Plattner
Institute(HPI, [5]) and deals with software paradigms and design patterns that allow an intercon-
nection of middleware-based components and embedded mobile systems. The primary point of
interest is how to reach a predictable system behaviour (regarding to timing behaviour, fault tol-
erance or resource usage) in an unstable environment. The evaluation of the different approaches
is done with the help of case studies, one example is a web-based control of mobile robots in the
lab.

Publishing experiments over the web causes problems that deal especially with non-functional
application properties such as fault tolerance, security or realtime. Several methods are devel-
oped to deal with these problems. One possible solution is the usage of dynamic reconfiguration
as a safe-guard mechanism for user code downloaded from the Internet. Damage to the experi-
ment can be avoided. A configuration framework with mechanism for dynamic reconfiguration
are also developed.

5

2 User Guide

This section focuses on the use of the DCL Add-In for Visual Studio .Net 2003. Users should be
familiar with the DCL project and concepts before starting here.

To work with the Add-In, an account for the DCL lab is necessary.

2.1 Installation

The DCL Add-In for Visual Studio .Net 2003 is distributed with an MSI-installer. There is only
one additional manual step necessary to complete the installation: Please run

$VS_HOME\Common7\IDE\devenv.exe /setup

from command line to register the add-in icons in the Visual Studio .Net environment.

2.2 Tool Bar and Code Editor Context Menu

Figure 1: DCL Add-In Toolbar

Figure 2: DCL Add-In Context Menu

The DCL tool bar as well as the code editor context menu allow to access to the Add-In’s
features.

Send Job When a source file is opened in Visual Studio, this opens a dialog to choose an exper-
iment from the DCL to send the source file to. After choosing an experiment, the source
file is is submitted as a new DCL job. To enable observation of this new job, the Job View
is opened and the new job is highlighted yellow.

DCL Job View Opens the DCL Job View.

DCL options dialog Opens the options dialog.

6

2.3 DCL Job View

(a) Overview (b) Context Menu of Jobs

Figure 3: DCL Add-In Job View

The DCL Job View allows to manage all jobs a user sent to DCL. The control lists all ac-
cessible DCL experiment types in a tree view. For every experiment type, the current job-queue
length at the DCL lab is displayed. The context menu of an experiment allows to submit the
currently opened document in the code editor as a new job.

Below experiment types, all previously sent jobs of a user are listed, as long as they are still
registered with a ticket from the DCL ticketing service. Jobs are sorted by submission time and
their status is displayed. Below a job, various aspects can be accessed:

• The source code that was submitted to start a job can be opened in read-only mode in the
code editor.

• The console output of the job after execution can be opened in the code editor.

• Various job results available at the website. A double click opens a browser to display
these results like state graphs, flash movies, etc.

The jobs context menu allows the following:

Show Results in WebpageOpens the results or status of a job in a browser within Visual Studio
.Net

Cancel Job Only available before the execution of a job is finished.

Delete Ticket Only available after the execution of a job is finished. Deletes a jobs ticket. This
removes all information about a job from server and Job View.

7

Show Ticket ID Displays the GUID that a job is registered with at the server.

2.4 Options

Figure 4: DCL Add-In Options Window

The options window allows to enter account information (user and password). The URLs to

• DCL Experiment service

• DCL Ticket service

• DCL Web Frontend

can be adjusted, but this is mostly not necessary as these values default to the DCL installa-
tion at HPI. On connecting to the web server, the Web Frontend URL will be suffixed with
/jobdetails.aspx?ticket=TICKET where TICKET will be replaced with the ticket
GUID string (if this is subject of change, the source code must be modified).

2.4.1 Polling Options

The Add-In requests the status about experiments and jobs in intervals that can be set here. To
reduce traffic, it can be set to a higher value then the default of 5. Setting it to a lower value is
not recommended as this increases traffic a lot.

2.4.2 Compiler Errors Options

To fill the task items with error messages containing file and line number information, compiler
output must be parsed. These errors are recognized by regular expressions that can be adjusted

8

(a) Polling Options (b) Compiler Errors Options

Figure 5: Advanced Options Part One

here. The error patterns are tried in the same order as they are listed. You can change the order
with the ”Move Up” and ”Move Down” buttons at the bottom left.

Adjusting these settings should only be necessary when experiments with other languages
are added to DCL.

2.4.3 Code Lines Overhead Options

This settings only need to be adjusted when new experiment types are added to the DCL or the
line numbering information in task items is incorrect.

When submitting a job to the DCL the source code is embedded into code templates at the
DCL server. Therefore, information about line numbers in the compiler output is not correct for
the submitted code. To display correct line numbering information in task items, the code lines
overhead must be adjusted correct.

2.4.4 Result Codes Options

The Result Codes options allow to customize the coloring of job display for different kind of
status codes.

9

(a) Code Lines Overhead Options (b) Result Codes Options

Figure 6: Advanced Options Part Two

2.5 Task Window

The task window displays tasks that are generated from compilation errors in jobs that were
submitted to the server. This allows to easily track down source errors as with source code
compiled and executed on the local system: A double-click on a task item opens the failed
jobs code in the editor and places the cursor in the line an error was encountered. If the last
sent job (the one that is highlighted yellow) generates compilation errors, they will be displayed
automatically in the task window.

2.6 Message Window

The message window displays a log of the Add-In. Start of new jobs is logged here.

10

Figure 7: Task Window

Figure 8: DCL Add-In Message Window

3 Developer Guide

This section shows an overview on the considerations and steps that has been carried out within
the development process of this project.

3.1 DCL Web-Service Front-end Control

The following list describes the identified requirements for the Add-In, in other words what
should the add-in be able to do.

1. The add-in have to provide a configuration. The configuration should include:

• user name

• password

• URL of DCL ticket service

• URL of DCL experiment service

11

• URL of DCL web front-end

2. The add-in have to enable the remote controlling of the DCL. This includes the

• creation

• execution

• cancellation and

• deletion

of DCL jobs.

3. The add-in have to enable the display of DCL job results like

• compiler output

• flash movies

• diagrams or

• job code.

3.1.1 DCL Web-Service Interface

The DCL provides a Web-Service API that can be used to interact with it over a simple and cross-
platform available interface. The DCL Web-Service interface consists of two main components.
On the one hand the ticket service provides basic functionality for user authentication. This
means that valid users can acquire ticket from the ticket service. This tickets are used to create
new jobs and to find all jobs of a specific user.

On the other hand the experiment service gives an API for the creation, execution and man-
agement of DCL jobs. The tickets acquired from the ticket service are necessary work with the
experiments service, because every job is assigned and identified by a ticket.

Both services are implemented in ASP.NET and at the time they are available in version 2.
For more informations about the service APIs take a look at [2] or at the folder dcl-doku at the
root of the CD.

3.2 Implementation Overview

The core of the add-in was designed as a .NET user control. This control manages the web-
service calls and the visualization of the DCL experiments, jobs and results. These are displayed
in a tree where jobs are child nodes of experiments and results child nodes of jobs. The option
forms are integrated into the user control.

12

3.2.1 Observer Pattern with Events and Delegates

To use the control in an application it is necessary to get notified about events in the control, e.g.
a double-click on a result node. This was implemented with the observer pattern [4], by using
C# events and delegates. The following events are available:

LogMessageIndicates when a logging message occurs.

SendJobClicked Indicates when the “Send Job” button in the toolbar of the control or in the
context menu of an experiment node has been clicked.

ShowStringResultClicked Indicates when the “Show Result” menu item in a result context
menu has been clicked and the result is a string result.

ShowCompilerResultClicked Indicates when the “Show Result” menu item in a result context
menu has been clicked and the result is a compiler result.

ShowBinaryResultClicked Indicates when the “Show Result” menu item in a result context
menu has been clicked and the result is a binary result like diagrams or flash movies.

ShowWebResultClicked Indicates when the “Show Results in Webpage” button in the toolbar
menu item in a result context menu has been clicked.

3.2.2 Static Structure

The diagram in figure 9 shows an overview of the main classes. These areJobViewControl
itself as well as configuration classes (Configuration andConfigurationManager),
option form classes (OptionsForm andAdvancedOptionsForm), as well as the
ExperimentSelectionForm which is displayed on sending a job.

The most important public methods ofJobViewControl are listed below. These methods
enable the use of the control in a programmatical manner.

startUpdateProcess()Starts the background thread that regularly ret rieves the jobs of the user
and updates the tree view accordingly.

stopUpdateProcess()Stops the background thread.

sendJob() Allows to send a job as code in a single string to be sent to the DCL. This method
is overloaded and has two variants: One to explicitly name the experiment and another
one which takes the currently selected experiment in the tree view or otherwise pops up an
ExperimentSelectionForm .

showOptions() Shows theOptionsForm .

13

JobViewControl

+ «property» ExpService : DCLJobView.DCLExperimentService.DCLExperimentService
+ «property» TicketService : DCLJobView.DCLTicketServer.DCLTicketServer

+ JobViewControl ()
+ loadConfiguration ()
+ showOptions ()
+ showTicket ()
+ cancelJob ()
+ deleteJob ()
+ sendJob ()
+ sendJob ()
+ DoLogMessage ()
+ startUpdateProcess ()
+ stopUpdateProcess ()

Configuration

+ «property» Login : string
+ «property» Password : string
+ «property» DCLExperimentService : string
+ «property» DCLTicketService : string
+ «property» WebFrontEndURL : string
+ «property» ConfigFile : string
+ «property» RefreshInterval : int

+ Configuration ()

- config

ConfigurationManager

+ load ([in] file : FileInfo) : object
+ store ([in] obj : object , [in] file : FileInfo) : bool

ExperimentSelectionForm

+ «property» SelectedExperiment : string

+ ExperimentSelectionForm ()

- jvc

AdvancedOptionsForm

+ AdvancedOptionsForm ()- config

OptionsForm

+ OptionsForm ()

- jvc

- config

Figure 9: JobViewControl Overview

14

3.2.3 Configuration and Logging

TheConfigurationManager is used to load and store the user specific add-in configuration
in the users home directory which is specified by the environment variable %HOME%. The
configuration is serialized by the .Net SOAP formatter. As opposed to that the handling of log
messages is delegated to the application that uses the control by a specific event.

3.2.4 Tree Model

For the visualization of DCL experiments, jobs and results a tree view with modified nodes was
used. An overview of the classes used in the tree view is illustrated in figure 10.

The tree view is regularly updated by a background thread. We decided not to rebuild the
entire tree from the scratch every time. The problem with this approach would be that the state
of expanded nodes would be lost and an annoying flicker would occur. Thus our implementation
includes an intelligent update mechanism which is partly visible in the UML sequence diagram
in figure 11.

The first step is to update the experiments, which are the top level nodes. This is done by
retrieving the list of experiments. This list is passed to every experiment node (HandleExperi-
mentList()) which has to take care of either updating itself or removing itself from the tree view
if it cannot find its name in that list. After that it removes its name from the list to ensure that
all expriments left in the list after that process are new experiments. These are added as new
experiment nodes.

The updating of jobs works in the same way. The list of tickets is retrieved and then passed
to each job (HandleTicketList()). The experiment node class and the job node class both inherit
from the JobViewTreeNode class which defines the HandleTicketList() method. The implemen-
tation in the experiment node simply passes it to all its child job nodes, the imlementation in job
node takes care of the updating.

Depending on the status of the job the Update() method looks for results belonging to this job
and updates them in the same way as experiments and jobs are updated. The result node class
contains a method HandleResultList() accordingly.

All types of nodes encapsulate information about their specific properties, for example job
status, job extended result code or result type (string or binary).

3.2.5 Parsing Compiler Errors

Compiler errors are parsed with regular expressions that are tried line by line on the compiler
output. There are three kinds: error, warning and extra line. An error regexp for a certain
compiler should match for lines with an error, a warning regexp for warnings and the extra line
regexp is tried at the lines following a successful match of one of the three kinds (some compilers
pass additionial information on a second line). Error patterns can be fully configured. They are
tried in the order of their priority.

The implementation of this was inspired from the Console plugin of the java-based text editor
jEdit (http://www.jedit.org), released under the GNU General Public License (GPL).

15

http://www.jedit.org

JobViewTreeNode

+ HandleTicketList ()

ExperimentType

+ «property» Name : string
+ «property» QueueCount : int
+ «property» Exists : bool

+ ExperimentType ()
+ HandleTicketList ()
+ HandleExperimentList ()
- Update ()

Job

+ «property» Ticket : string
+ «property» FullStatus : string
+ «property» BasicStatus : string
+ «property» ExtendedResultCode : string
+ «property» Status : StatusKind
+ «property» Finished : bool
+ «property» QueueTime : int
+ «property» UsageStart : DateTime

+ Job ()
+ HandleTicketList ()
- Update ()

Result

+ «property» Name : string
+ «property» ResultType : string
+ «property» IsBinary : bool
+ «property» Job : Job

+ Result ()
+ HandleResultList ()

TreeNode

Figure 10: DCL Add-In Tree Model Overview

16

 : Job : DCLTicketServer : DCLExperimentService : JobViewControl : ExperimentType

1 : updateExperiments ()

2 : ListExperiments ()

3 : HandleExperimentList (experiment
List , jvc)

4 : updateJobs ()

5 : GetTicketList (username ,
password , viewAll)

6 : HandleTicketList (ticketList , jvc)
7 : HandleTicketList (ticketList , jvc)

8 : Update (jvc)

Figure 11: DCL Add-In Tree Model Update

17

Figure 12: Standalone DCL Front-End

3.2.6 Usage of the DCL Control

As shown in the previous section the of the add-in was focused on one main component, the job
view and control component. The advantages of the approach is the re-usability of the control
in every type of application that supports Windows Forms or ActiveX components. Additional
advantages are encapsulation of the core functionality and the easy usage in the add-in with the
CreateToolWindow()method, provided by the Visual Studio extension API.

The main important disadvantage of this approach is the higher programming effort necessary
for the implementation of the control.

To show the re-usability of the control, a standalone DCL front-end application that uses the
control was also part of the project. This application, in addition to the add-in implementation,
can be used to understand the usage of the control. A screenshot of the standalone front-end is
shown in figure 12.

The usage of the control (in the add-in) is illustrated in figure 13.

18

 : Connect

 : JobViewControl

 : DTEClass

1 : Connect ()

2 : OnConnection (application ,
connectMode , addInInst , custom)

4 : JobViewControl ()
3 : OnStartupComplete (custom)

5 : loadConfiguration ()

6 : Exec (commandName , execute
Option , varIn , varOut , handled)

7 : startUpdateProcess ()

8 : Exec (commandName , execute
Option , varIn , varOut , handled)

9 : showOptions ()

10 : Exec (commandName , execute
Option , varIn , varOut , handled) 11 : sendJob (jobCode , useSelected

Node)

Figure 13: JobViewControl Usage

19

3.3 Visual Studio .NET Add-In Integration

3.3.1 Add-In Registration

An add-in is a COM component which implements the IDTExtensibility2 interface. Visual Stu-
dio .NET looks for add-ins in the registry under ”Software/VisualStudio/7.1/AddIns”. The ver-
sion number is important, only add-ins installed in the same registry key as Visual Studio are
loaded. If there will be a newer version of the IDE, the version key must be changed in the
installer (DCLAddinSetup project).

Each add-in has a subkey which is named after the ProgID of the add-in COM component.
There can be several values in this key with LoadBehavior (DWORD) as the minimum require-
ment. It must have a value of 1 initially (this value is modified by Visual Studio). Command-
Preload (DWORD) should be set to 1 to automatically start the add-in. FriendlyName, Descrip-
tion and AboutBoxDetails are strings that should describe the add-in, these are displayed in the
add-in manager and in the about box of Visual Studio.

3.3.2 Connect Class Overview

As noted, the entry point for an add-in is a COM component that implements the IDTExtensibil-
ity2 interface. This is done by the Connect class of the add-in. Additionally it should implement
the IDTCommandTarget interface to get triggered for the execution of actions. Figure 14 shows
a static structure of the classes in the add-in.

There are four important methods:

OnConnection Called when loading the add-in. This can happen in a different context as identi-
fied by the connectMode parameter. In this method we create all the user interface elements
and register for certain events to interact with the task list and text documents. (Part of the
IDTExtensibility2 interface).

OnDisconnection Called when the add-in is unloaded. (Part of the IDTExtensibility2 interface).

QueryStatus Asks for the availability of a command which is identfied by name. This can
be used to set custom commands (that are accessible through a toolbar for example) as
enabled or disabled. (Part of the IDTCommandTarget interface).

Exec Called when a custom command belonging to this add-in should be executed. In this
method the three commands execute job, show DCL tool window and show option window
are implemented. (Part of the IDTCommandTarget interface).

Most parts of the class control the JobViewControl in the tool window. The UML sequence
diagram in figure 13 shows the calls made.

3.3.3 Integration into the User Interface

The add-in is accessible throughout four user interface elements inside Visual Studio. There is
a standard MS Office toolbar with three commands. The same commands are also available in

20

Connect

+ Connect ()
+ OnConnection ()
- getCommand ()
- getCommandBarControl ()
- getCommandBar ()
+ OnDisconnection ()
+ OnAddInsUpdate ()
+ OnStartupComplete ()
- RegisterToolWindow ()
+ OnBeginShutdown ()
+ QueryStatus ()
+ Exec ()
- JobView_LogMessage ()
- JobView_SendJobClicked ()
- JobView_ShowWebResultClicked ()
- JobView_ShowBinaryResultClicked ()
- JobView_ShowStringResultClicked ()

LoggingManager

+ log ([in] message : string , [in] pane : OutputWindowPane)

JobViewControl- JobView

Figure 14: DCL Add-In Overview

21

the context menu of text document windows. The main interface is found in a separate dockable
tool window. Finally there is a DCLAddin pane in the standard output tool window.

To add buttons to toolbars it is necessary to createCommandobjects. These need to have a
name (which can be also used in Visual Studio’s command window), contain an icon and can be
reused multiple times in differentCommandBars (toolbars and menus).

The removal of these UI components is necessary on installation. ThoughCommands for
non-existing add-ins are automatically removed by Visual Studio, toolbars are not. This requires
a custom uninstaller to be run during uninstalling the add-in, which opens a Visual Studio in-
stance via COM and removes the toolbar (along with the commands).

A logging window is created by adding a new OutputWindowPane to the output window
object.

The registration of a tool window is a bit difficult. There is a method CreateToolWindow()
which accepts the ProgID of an ActiveX component which is displayed inside the window (in
our case this is the JobViewControl). For convenience, the position of the tool window should
be saved between two runs of the IDE. The CreateToolWindow() method must be called on each
startup, what requires Visual Studio to recognize an earlier registered tool window with the same
custom GUID. Normally the first call to that method fails with an NotImplementedException. A
second call (in the catch block) will work but now the position and dock status of the window is
lost. The exception can be avoided with a ”hack” (found at the beginning of the RegisterTool-
Window() method in the Connect class).

To be able to open new windows for the code of older messages as well as recognizing already
opened windows the Connect class keeps track of the windows opened. A hashtable includes a
mapping from tickets to the windows showing the code of the ticket. This requires to listen for
the WindowClosing and WindowActivated events.

Clicking on compiler errors in the task window opens the window with the code and positions
the cursor at the point of the error or warning. That requires to listen for the TaskNavigated event.

3.3.4 Serialization

Using .NET serialization in an add-in requires the assembly with the serializable classes to be
put into the ”VSNET INSTALL DIR\Common7\IDE\PublicAssemblies” folder. On deserial-
ization the .NET framework looks for the assembly of the class which is stored in the serialized
data stream. Because an add-in is just a COM component, the main application does not know
about the exact locations of the .NET assemblies behind it. Visual Studio looks into the Private-
Assemblies and PublicAssemblies folders for .NET assemblies.

3.3.5 More Information

For more information about Visual Studio Add-In development we found the following resources
very useful:

• The yahoo groupvsnetaddin(a mailing list).
http://groups.yahoo.com/group/vsnetaddin

22

http://groups.yahoo.com/group/vsnetaddin

• http://www.knowdotnet.com

• MSDN online.http://msdn.microsoft.com

More links can be found in the folder vsaddin-doku at the root of the CD.

3.4 Building the Solution and Projects

Before you build or work on the sources, please add the file DCLJobViewControl/res/ MagicLi-
brary.dll (contains Cronwood controls) to the toolbox. The DCLController MainForm uses the
TabControl found in this assembly.

The DCLAddin solution contains the following seven projects:

DCLAddin The actual add-in which realizes the integration into Visual Studio.

DCLJobView A Windows Forms user control implementing all DCL frontend functionality.

DCLAddinIconLibrary This library is used to create a DLL which contains the toolbar icons.
This is required for Microsoft Office Toolbars. The DLL is installed with the add-in in-
staller. See the files CUSTOMBITMAP HOW-TO.TXT and README.TXT inside this
project for detailed information.

DCLAddinInstallerClassLibrary This is an installer class which is used by the DCLAddin-
Setup on uninstalling. It is responsible for removing commands and especially the toolbar
of the DCLAddin.

DCLController A small standalone application to show the usage of the JobViewControl in a
different environment.

DCLAddinSetup The setup project for the add-in. Contains critical settings for the registration
of the add-in.

DCLControllerSetup The setup project for the standalone application DCLController.

Rebuilding the DCLAddinSetup project creates a new up-to-date installer. All required
projects are automatically built before.

For debugging the add-in it is possible to run it in a second Visual Studio IDE while the
first one acts as the debugger. To enable this you first have to modify the path to the ”de-
venv.exe” on your system. Open the properties of the DCLAddin project, go to the configuration
properties and change the application start command line for debugging. This path is typically
”VS NET INSTALL DIR\Common7\IDE\devenv.exe”.

To setup the registry for the add-in the first time, build the DCLAddinSetup and run the
installer. It is not necessary to re-run the installer if the DCLAddin sources are modified (because
after building the add-in the new assembly is registered as COM object overriding the link to the
installed assembly). Unfortunately this is not the case with the DCLJobView. It is advised to
test modifications of the control in the standalone application because rebuild and startup time is
notably shorter.

23

http://www.knowdotnet.com
http://msdn.microsoft.com

References

[1] Operating Systems & Middleware Chair. http://www.dcl.hpi.uni-potsdam.de.

[2] DCL. Distributed control lab. http://was.discourse.de.

[3] DISCOURSE. Distributed & collaborative university research & study environment.
http://www.discourse.de.

[4] Gamma et al.Design Pattern. Addison-Wesley, 1996.

[5] Hasso Plattner Institute for Software Systems Engineering GmbH. http://hpi.uni-potsdam.de.

24

	Introduction
	Distributed Control Lab (DCL)

	User Guide
	Installation
	Tool Bar and Code Editor Context Menu
	DCL Job View
	Options
	Polling Options
	Compiler Errors Options
	Code Lines Overhead Options
	Result Codes Options

	Task Window
	Message Window

	Developer Guide
	DCL Web-Service Front-end Control
	DCL Web-Service Interface

	Implementation Overview
	Observer Pattern with Events and Delegates
	Static Structure
	Configuration and Logging
	Tree Model
	Parsing Compiler Errors
	Usage of the DCL Control

	Visual Studio .NET Add-In Integration
	Add-In Registration
	Connect Class Overview
	Integration into the User Interface
	Serialization
	More Information

	Building the Solution and Projects

