
From J2EE to Java EE

Peter Tröger

All pictures (C) Sun Microsystems

J2EE / EE 5 PT 2007

Enterprise Application Framework

• Single-Tier: Mainframe-based, dumb terminals, centralized model,
monolithic application

• Two-Tier: Fat client talking to back-end database, standardized data access

• Three-Tier: Client communicates with presentation tier, which relies on the
middle-tier application logic, which uses the data tier

• Business logic and data model can be modified without changes for the client

• RPC-based: Tight coupling of client and middle-tier

• Object-based: business logic and data model encapsulated in objects
(CORBA, RMI)

• Current trend: Three tier model with web pages as presentation layer

• MVC is typically used in the presentation layer

2

J2EE / EE 5 PT 2007

Java EE Motivation

• Component-based distributed applications for the enterprise

• Consider security, speed, transactional and reliable behavior

• Avoid vendor-lock

• Fast application design and development

• “Write once, run everywhere”

• Problems to be solved

• (Distributed) transactions, security (authentication, authorization,
persistency (object-relational gap, caching), pooling (database
connections, threads, objects), scalability, legacy integration

3

J2EE / EE 5 PT 2007

Counting Backwards - The Java (2) Platform

11

11

The JavaTM Platform

Optional
Packages

Java 2
Enterprise

Edition

(J2EE)

Java 2
Standard
Edition

(J2SE)

JVM

Java
Card
APIs

CardVM

Optional
Packages

Personal
 Basis Profile

Personal
Profile

Foundation Profile

CDC

MIDP

CLDC

KVM

Java 2 Platform Micro Edition
(J2METM)

* Under development in JCP

This is another picture that shows three flavors of Java
technology. Java is being used at JavaCard at one end and
at the supercomputer at the other end.

The key point in this picture is that the syntax and semantics
of Java programming language is preserved regardless of
which edition you use. And regardless where it is being
used, it provides the secure, portable, and robust application
development and deployment platform.

05/15/2005

4

J2SE - Java 2 Standard Edition
(Desktop)

Meanwhile Java SE

J2ME - Java 2 Micro Edition
(Consumer device)

Meanwhile Java ME

J2EE - Java 2 Enterprise Edition
(Server)

Meanwhile Java EE

J2EE / EE 5 PT 2007

J2EE Platform

• First introduction in 1999, J2EE 1.4 approved by Java Community Process
in November 2003

• API compatibility and portability for Enterprise Application Servers

• Standardized development and deployment of portable, distributed
enterprise applications

• Multi-tier model for enterprise applications, standardized communication of
application parts, integration of existing information systems

• Replaced by Java EE 5 in 2006

• New EJB programming model based on annotations, better XML handling

• More defaults, less descriptors

• Underlying implementation of application servers remained the same

5

J2EE / EE 5 PT 2007

What Makes Up J2EE / JAVA EE

• API and technology specification

• Development and deployment platform

• Reference implementation as part of the SDK

• Sun GlassFish for EE 5

• Compatibility test suite

• Brands, blueprints and best practises

• EE 5 certified: Apache Geronimo, Bea WebLogic, Oracle
Application Server, SAP NetWeaver, Sun GlassFish, ...

• Sample codes

6

J2EE / EE 5 PT 2007

J2EE 1.4 Three Tier Architecture

73

73

Client

Client

Client

Client

Client

Client
Tier

Enterprise
Information

Tier
Middle

Tier

Enterprise
Information

Systems (EIS):

Relational
Database,

Legacy
Applications,

ERP Systems

Enterprise
JavaBeans™

Enterprise
JavaBeans

Other Services:
JNDI, JMS,
JavaMail™

J2EE

Application

Server

Web
Server
JSP,

Servlets

Firewall

J2EE is End-to-End Solution

HTML/XML

I mentioned that J2EE is about building n-tier, web-based enterprise applications. That is, J2EE
provides an end-to-end architecture covering from the client tier on the left side to the middle tier

where Web server and Application servers reside and enterprise information tier on right side
which connects the middle tier systems to the backend enterprise information systems such as

relational databases, and legacy applications.

The clients can be either a full-blown Java applications or applet running inside a browser. Or
more typically, the client could be a just regular HTML or XML browser communicating with the

web server through HTTP. Another form of client that is getting more pervasive in an enterprise
environment is 3rd-party application which performs B2B transaction with your application

typically through XML. On the other side of the spectrum, the client could be wireless phones or
cell phones with some kind of communication facilities. The clients could reside either behind the

firewall or within the firewall. The point here is that J2EE architecture accommodate these diverse

set of client types.

The middle tier typically contain web servers and application servers. In actual deployment, they
could be running in a single physical platform or on multiple platforms. In some cases where

reliability and scalability are important, there could be multiple web servers and application
servers. The web server receives HTTP requests from the clients and handle dynamic content

generation through either JSP or servlet or both. The JSP or servlet can then delegate any business
logic processing to enterprise java beans running on the application server.

The key point here is that J2EE provides an end-to-end solution and deals with all these tiers with

open and standard technologies.

05/15/2005

7

DISTRIBUTED MULTITIERED APPLICATIONS 3

Distributed Multitiered Applications
The Java EE platform uses a distributed multitiered application model for enter-

prise applications. Application logic is divided into components according to

function, and the various application components that make up a Java EE appli-

cation are installed on different machines depending on the tier in the multitiered

Java EE environment to which the application component belongs. Figure 1–1

shows two multitiered Java EE applications divided into the tiers described in the

following list. The Java EE application parts shown in Figure 1–1 are presented

in Java EE Components (page 4).

• Client-tier components run on the client machine.

• Web-tier components run on the Java EE server.

• Business-tier components run on the Java EE server.

• Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in

Figure 1–1, Java EE multitiered applications are generally considered to be

three-tiered applications because they are distributed over three locations: client

machines, the Java EE server machine, and the database or legacy machines at

the back end. Three-tiered applications that run in this way extend the standard

two-tiered client and server model by placing a multithreaded application server

between the client application and back-end storage.

Figure 1–1 Multitiered Applications

Application
Client

Java EE Application 1 Java EE Application 2

Dynamic
HTML Pages

Web Tier

Business TierEnterprise BeansEnterprise Beans

Database Database

JSP Pages

EIS Tier

Client Tier
Client
Machine

Java EE
Server

Database
Server

JavaEETutorial.book Page 3 Thursday, February 1, 2007 4:36 PM

J2EE / EE 5 PT 2007

Java EE 5 Three Tier Architecture

8

J2EE / EE 5 PT 2007

Java EE Applications
• Application logic is divided into components

• EE 5 component as self-contained functional software unit, written in Java

• Communicates with other components

• Executed and managed by application server

• Client-tier components, running on the client machine
(applications, applets)

• Web-tier components running on the Java EE server
(Java Servlet, JavaServer Faces, and JavaServer Pages)

• Business-tier components running on the Java EE server
(Enterprise JavaBeans)

• Enterprise information system (EIS)-tier software runs on the EIS server

9

J2EE / EE 5 PT 2007

Java EE Modules

• Contains of one or more Java EE components for the same container type
and one deployment descriptor

• Transaction attributes, security authentication, ...

• Technically all JAR files, with own XML deployment descriptor

• EJB modules (.JAR) - EJB class files

• Web modules (.WAR) - Servlet class files, JSP files, class files, GIFs, HTML
files

• Application client modules (.JAR) - class files

• Resource adapter modules (.RAR) - class files, native libraries,
documentation; intended for JCA (EIS tier)

10

J2EE / EE 5 PT 2007

Packaging

• Application is delivered as Enterprise Archive File (EAR)

• JAR file with new extension

• Contains of J2EE modules and optional XML deployment descriptors

• Java EE descriptor is standardized,
runtime deployment descriptor
is not

• Caching directives

• Web application context root

• ...

14 OVERVIEW

Figure 1–6 EAR File Structure

A J2EE module consists of one or more J2EE components for the same container

type and one component deployment descriptor of that type. An enterprise bean

module deployment descriptor, for example, declares transaction attributes and

security authorizations for an enterprise bean. A J2EE module without an appli-

cation deployment descriptor can be deployed as a stand-alone module. The four

types of J2EE modules are as follows:

• EJB modules, which contain class files for enterprise beans and an EJB

deployment descriptor. EJB modules are packaged as JAR files with a .jar
extension.

• Web modules, which contain servlet class files, JSP files, supporting class

files, GIF and HTML files, and a web application deployment descriptor.

Web modules are packaged as JAR files with a .war (web archive) exten-

sion.

• Application client modules, which contain class files and an application

client deployment descriptor. Application client modules are packaged as

JAR files with a .jar extension.

• Resource adapter modules, which contain all Java interfaces, classes,

native libraries, and other documentation, along with the resource adapter

deployment descriptor. Together, these implement the Connector architec-

ture (see J2EE Connector Architecture, page 22) for a particular EIS.

Resource adapter modules are packaged as JAR files with an .rar
(resource adapter archive) extension.

11

J2EE / EE 5 PT 2007

Java EE Containers

• Management of components
in containers

• Standardized runtime environment

• Interpose on all method calls

• Java EE server: runtime portion of a Java EE framework, provides containers

• Provide specific container services for each component type, which can be
expected by the component (like state management or pooling)

• Enables platform-independent deployment

• Container settings as part of the assembled application or preconfigured

12

10 OVERVIEW

The container also manages nonconfigurable services such as enterprise bean

and servlet life cycles, database connection resource pooling, data persistence,

and access to the Java EE platform APIs (see Java EE 5 APIs, page 18).

Container Types
The deployment process installs Java EE application components in the Java EE

containers as illustrated in Figure 1–5.

Figure 1–5 Java EE Server and Containers

• Java EE server: The runtime portion of a Java EE product. A Java EE server

provides EJB and web containers.

• Enterprise JavaBeans (EJB) container: Manages the execution of enterprise

beans for Java EE applications. Enterprise beans and their container run on

the Java EE server.

• Web container: Manages the execution of JSP page and servlet components

for Java EE applications. Web components and their container run on the

Java EE server.

• Application client container: Manages the execution of application client

components. Application clients and their container run on the client.

• Applet container: Manages the execution of applets. Consists of a web

browser and Java Plug-in running on the client together.

Web Browser

Web

Container

EJB

Container
Enterprise

Bean

Database

Client

Machine

Java EE

Server

Application
Client

Application Client
Container

Servlet
JSP
Page

Enterprise
Bean

JavaEETutorial.book Page 10 Thursday, February 1, 2007 4:36 PM

J2EE / EE 5 PT 2007

Responsibilities

77

77

Components
Handle

Containers and Components

! Concurrency

! Security

! Availability

! Scalability

! Persistence

! Transaction

! Life-cycle
management

! Management

! Presentation

! Business Logic

Containers
Handle

We touched upon the roles of container and components a bit in the previous slide. Now let’s compare

the tasks that are being performed by containers and the ones performed by components side by side. As

we talked about in the previous slide, the platform vendors provide containers while you, as application

developers, develop your applications in the form of components and deploy them over the containers. As

you probably will notice, many of the tasks that the containers perform are system services that a typical

enterprise application would need.

First., container handles concurrency. That is, it handles concurrent access from multiple clients to your

business component so that you don’t have to deal with it. Each platform vendor might use different

synchronization schemes to support concurrency, however. Second, containers provide built-in security

framework so that implementing secure applications can be a matter of configuring some options on

authentication and access control at the time of deployment not at the time of code development. Next,

availability and scalability. We mentioned already that platform vendors compete in their

implementations especially in the area of availability and scalability. For example, one J2EE container

vendor might provide high availability by maintaining session state on a persistent storage. Another

vendor might choose to implement it in a different way.

Persistence and transaction can be also handled by the container if you choose to do so. Or you might

want to implement them on your own in your code, if more customized behavior is desired. Life-cycle

management. Containers handle the creation and destruction of your component instances according to

its own implementation scheme. Finally management and administration, some vendors might provide

better management tool for managing and administering various resources in the container.

So what do you have to do as developers? Very little really. You handle only presentation and focus

majority of your development effort on building business components.

05/15/2005

13

J2EE / EE 5 PT 2007

J2EE 1.4 APIs

18 OVERVIEW

J2EE 1.4 APIs
Figure 1–7 illustrates the availability of the J2EE 1.4 platform APIs in each J2EE

container type. The following sections give a brief summary of the technologies

required by the J2EE platform and the J2SE enterprise APIs that would be used

in J2EE applications.

Figure 1–7 J2EE Platform APIs

Enterprise JavaBeans Technology
An Enterprise JavaBeans™ (EJB™) component, or enterprise bean, is a body of

code having fields and methods to implement modules of business logic. You

can think of an enterprise bean as a building block that can be used alone or with

other enterprise beans to execute business logic on the J2EE server.

As mentioned earlier, there are three kinds of enterprise beans: session beans,

entity beans, and message-driven beans. Enterprise beans often interact with

databases. One of the benefits of entity beans is that you do not have to write any

SQL code or use the JDBC™ API (see JDBC API, page 22) directly to perform

14

18 OVERVIEW

Java EE 5 APIs
Figure 1–7 illustrates the availability of the Java EE 5 platform APIs in each Java

EE container type. The following sections give a brief summary of the technolo-

gies required by the Java EE platform, and the APIs used in Java EE applica-

tions.

Figure 1–7 Java EE Platform APIs

Enterprise JavaBeans Technology
An Enterprise JavaBeans™ (EJB™) component, or enterprise bean, is a body of

code having fields and methods to implement modules of business logic. You

can think of an enterprise bean as a building block that can be used alone or with

other enterprise beans to execute business logic on the Java EE server.

There are two kinds of enterprise beans: session beans and message-driven

beans. A session bean represents a transient conversation with a client. When the

client finishes executing, the session bean and its data are gone. A message-

driven bean combines features of a session bean and a message listener, allowing

a business component to receive messages asynchronously. Commonly, these are

Java Message Service (JMS) messages.

Application
Client

Application Client
Container

J2SE

Applet
Container

J2SE

Applet

Web Container

J2SE

JSP Servlet

EJB Container

J2SE

EJB

HTTP
SSL

HTTP
SSL

J
A

X
-R

P
C

SAAJ

J
A

X
-W

S

J
A

X
R

J
M

S

W
e

b
 S

e
rv

ic
e

s

W
S

 M
e

ta
d

a
ta

J
a
va

 P
e

rs
is

te
n

c
e

S
tA

X

M
a

n
a

g
e

m
e

n
t

J
A

X
-R

P
C

SAAJ

J
A

X
-W

S

J
A

X
R

J
A

C
C

W
e

b
 S

e
rv

ic
e

s

W
S

 M
e

ta
d

a
ta

J
M

S

C
o

n
n

e
c
to

rs

M
a

n
a

g
e

m
e

n
t

J
T
A

J
a
va

P
e

rs
is

te
n

c
e

S
tA

X

J
a
va

S
e

rve
r

F
a

c
e

s

J
T

S
L

Java
Mail

JAF

J
A

X
-R

P
C

SAAJ

J
A

X
-W

S

J
A

X
R

J
A

C
C

W
e

b
 S

e
rv

ic
e

s

W
S

 M
e

ta
d

a
ta

J
M

S

C
o

n
n

e
c
to

rs

M
a

n
a

g
e

m
e

n
t

J
T
A

J
a
va

P
e

rs
is

te
n

c
e

S
tA

X

Java
Mail

JAF

New in Java EE 5

Database

JavaEETutorial.book Page 18 Thursday, February 1, 2007 4:36 PM

J2EE / EE 5 PT 2007

Java EE 5 APIs

15

J2EE / EE 5 PT 2007

EE 5 APIs

• Enterprise JavaBeans Technology (EJB)

• Java Servlet Technology / JavaServer Pages Technology (JSP) /
JavaServer Pages Standard Tag Library (JSTL) / JavaServer Faces

• Java Message Service API (JMS)

• Java Transaction API (JTA)

• Java Mail API & SPI / JavaBeans Activation Framework (JAF)

• Java API for XML Processing (JAXP)

• Java API for XML Web Services (JAX-WS) / SOAP with Attachments (SAAJ)

• Java API for XML Registries (JAXR)

• Java Architecture for XML Binding (JAXB)

• J2EE Connector Architecture (JCA)

• Java DataBase Connection (JDBC) API and SPI

• Java Persistence API

• Java Naming and Directory Interface (JNDI)

• Java Authentication and Authorization Service (JASS)
16

J2EE / EE 5 PT 2007

Client Tier

• Web clients (“thin client”)

• Render web pages provided by web tier

• Pages may contain Java applets (embedded client application,
running in the browser)

• Application clients (“rich client”)

• Direct connection to
business tier (EJB)

17

6 OVERVIEW

Figure 1–2 Server Communications

Web Components
J2EE web components are either servlets or pages created using JSP technology

(JSP pages). Servlets are Java programming language classes that dynamically

process requests and construct responses. JSP pages are text-based documents

that execute as servlets but allow a more natural approach to creating static con-

tent.

Static HTML pages and applets are bundled with web components during appli-

cation assembly but are not considered web components by the J2EE specifica-

tion. Server-side utility classes can also be bundled with web components and,

like HTML pages, are not considered web components.

As shown in Figure 1–3, the web tier, like the client tier, might include a Java-

Beans component to manage the user input and send that input to enterprise

beans running in the business tier for processing.

Business Components
Business code, which is logic that solves or meets the needs of a particular busi-

ness domain such as banking, retail, or finance, is handled by enterprise beans

running in the business tier. Figure 1–4 shows how an enterprise bean receives

data from client programs, processes it (if necessary), and sends it to the enter-

J2EE / EE 5 PT 2007

Web Tier

• Servlets: Java classes, which dynamically process requests and construct
responses

• JavaServer pages: Text-based documents, includes servlet snippets

• Static text data - HTML, WML, XML; JSP elements for dynamic content

• Static HTML, applets, utility classes - bundled with J2EE application

18

BUSINESS COMPONENTS 7

prise information system tier for storage. An enterprise bean also retrieves data

from storage, processes it (if necessary), and sends it back to the client program.

Figure 1–3 Web Tier and J2EE Applications

Figure 1–4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and mes-

sage-driven beans. A session bean represents a transient conversation with a cli-

ent. When the client finishes executing, the session bean and its data are gone. In

contrast, an entity bean represents persistent data stored in one row of a database

table. If the client terminates or if the server shuts down, the underlying services

ensure that the entity bean data is saved. A message-driven bean combines fea-

J2EE / EE 5 PT 2007

Web Applications

• Presentation-oriented web application (JSP pages for generation of markup)

• Service-oriented web application (web service endpoints with servlets)

• Web container as runtime platform

• Request dispatching

• Security

• Concurrency

• Life-cycle management

• API for components

19

34 GETTING STARTED WITH WEB APPLICATIONS

ally a web component generates a HTTPServletResponse object. The web

server converts this object to an HTTP response and returns it to the client.

Figure 2–1 Java Web Application Request Handling

Servlets are Java programming language classes that dynamically process

requests and construct responses. JSP pages are text-based documents that exe-

cute as servlets but allow a more natural approach to creating static content.

Although servlets and JSP pages can be used interchangeably, each has its own

strengths. Servlets are best suited for service-oriented applications (web service

endpoints are implemented as servlets) and the control functions of a presenta-

tion-oriented application, such as dispatching requests and handling nontextual

data. JSP pages are more appropriate for generating text-based markup such as

HTML, Scalable Vector Graphics (SVG), Wireless Markup Language (WML),

and XML.

Since the introduction of Java Servlet and JSP technology, additional Java tech-

nologies and frameworks for building interactive web applications have been

developed. Figure 2–2 illustrates these technologies and their relationships.

Web
Client

HttpServlet
Request

HttpServlet
Response

Web Server

HTTP
Request

HTTP
Response

1

Web
Components

Web
Components

Web
Components

Web
Components

Web
Components

JavaBeans
Components

2

3

4

5

4

6

JavaEETutorial.book Page 34 Thursday, February 1, 2007 4:36 PM

J2EE / EE 5 PT 2007

Web Modules

• Web module as deployable unit

• .WAR file with portable format

• see Servlet specification

• Support for unpackaged modules

• Context root for web module
is configured in server-specific
deployment descriptor

20

GETTING STARTED WITH WEB APPLICATIONS 35

Figure 2–2 Java Web Application Technologies

Notice that Java Servlet technology is the foundation of all the web application

technologies, so you should familiarize yourself with the material in Chapter 3

even if you do not intend to write servlets. Each technology adds a level of

abstraction that makes web application prototyping and development faster and

the web applications themselves more maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a

web container. A web container provides services such as request dispatching,

security, concurrency, and life-cycle management. It also gives web components

access to APIs such as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the applica-

tion is installed, or deployed, to the web container. The configuration informa-

tion is maintained in a text file in XML format called a web application

deployment descriptor (DD). A DD must conform to the schema described in the

Java Servlet Specification.

This chapter gives a brief overview of the activities involved in developing web

applications. First we summarize the web application life cycle. Then we

describe how to package and deploy very simple web applications on the Appli-

cation Server. We move on to configuring web applications and discuss how to

specify the most commonly used configuration parameters. We then introduce an

example—Duke’s Bookstore—that we use to illustrate all the Java EE web-tier

technologies, and we describe how to set up the shared components of this

example. Finally we discuss how to access databases from web applications and

set up the database resources needed to run Duke’s Bookstore.

JavaServer Pages
Standard Tag Library

JavaServer Faces

JavaServer Pages

JavaServlet

JavaEETutorial.book Page 35 Thursday, February 1, 2007 4:36 PM

WEB MODULES 39

of WAR files differ from those of JAR files, WAR file names use a .war exten-

sion. The web module just described is portable; you can deploy it into any web

container that conforms to the Java Servlet Specification.

To deploy a WAR on the Application Server, the file must also contain a runtime

deployment descriptor. The runtime deployment descriptor is an XML file that

contains information such as the context root of the web application and the

mapping of the portable names of an application’s resources to the Application

Server’s resources. The Application Server web application runtime DD is

named sun-web.xml and is located in /WEB-INF/ along with the web application

DD. The structure of a web module that can be deployed on the Application

Server is shown in Figure 2–5.

Figure 2–5 Web Module Structure

Packaging Web Modules
A web module must be packaged into a WAR in certain deployment scenarios

and whenever you want to distribute the web module. You package a web mod-

ule into a WAR by executing the jar command in a directory laid out in the for-

mat of a web module, by using the ant utility, or by using the IDE tool of your

web.xml
sun-web.xml

*.tld

JSP pages,
static HTML pages,
applet classes, etc.

Library
archive files

lib

Assembly
Root

WEB-INF

All server-side
.class files for

this web module

classes

All .tag files
for this

web module

tags

JavaEETutorial.book Page 39 Thursday, February 1, 2007 4:36 PM

J2EE / EE 5 PT 2007

Java Servlets

• Portable way for dynamic web content

• For any kind of request-response pattern, HTTP-specific servlet classes
(javax.servlet.http)

• Servlet life cycle: Instantiation through container, init method, service method,
destroy method

• Possibility for event listeners in the WAR file (initialization, destruction,
request, activation, passivation, invalidation)

• Concurrent access, synchronization in the code

21

J2EE / EE 5 PT 2007

Servlet vs. CGI

46

46

Servlet vs. CGI

CGI

Based

Webserver

CGI

Based

Webserver

Request CGI1
Child for CGI1

CGI

Based

Webserver

Servlet Based Webserver

JVM

Request CGI1
Child for CGI1

Request Servlet1

CGI

Based

Webserver

Servlet Based Webserver

JVM

Servlet1

Request CGI1
Child for CGI1

Request CGI2

Request Servlet1

CGI

Based

Webserver

Child for CGI2

Servlet Based Webserver

JVM

Servlet1

Request CGI1
Child for CGI1

Request CGI2

Request Servlet1

Request Servlet2

CGI

Based

Webserver

Child for CGI2

Servlet Based Webserver

JVM

Servlet1

Servlet2

Request CGI1
Child for CGI1

Request CGI2

Request CGI1

Request Servlet1

Request Servlet2

CGI

Based

Webserver

Child for CGI2

Child for CGI1

Servlet Based Webserver

JVM

Servlet1

Servlet2

Request CGI1
Child for CGI1

Request CGI2

Request CGI1

Request Servlet1

Request Servlet2

Request Servlet1

CGI

Based

Webserver

Child for CGI2

Child for CGI1

Servlet Based Webserver

JVM

Servlet1

Servlet2

Request CGI1
Child for CGI1

This picture shows difference between CGI and servlet-based model. In CGI, for
every HTTP request, a new process has to be created while in servlet model, it is
the thread that gets created in the same Java VM (Virtual Machine) and that thread
can stay there for serving other requests.

05/15/2005

22

J2EE / EE 5 PT 2007

Servlet Life Cycle

• public void init() throws ServletException {}

• public void destroy() {}

• For GenericServlet, override
public void service(ServletRequest, ServletResponse)

• For HttpServlet, override
public void doGet(...) | doPost(...) | doPut(...) |
doDelete(...)

• service() method as dispatcher

• Request object contains all relevant data (e.g. HttpServletRequest)

• Response object filled by servlet (e.g. HttpServletResponse)

23

J2EE / EE 5 PT 2007

Servlet Example

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
public void doGet(HttpServletRequest req,
 HttpServletResponse res)

throws ServletException, IOException
{
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("Hello World");
}}

24

J2EE / EE 5 PT 2007

Information Sharing

• Through private helper objects

• Through sharing of objects that are attributes of a public scope

• Through a database

• Through invocation of other web resources

• Synchronization is task of the developer

25

J2EE / EE 5 PT 2007

Example
import java.io.*; import java.util.*;

import javax.servlet.*; import javax.servlet.http.*;

public class HolisticCounter extends HttpServlet {

 static int classCount = 0; // shared by all instances

 int count = 0; // separate for each servlet

 static Hashtable instances = new Hashtable(); // also shared

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count++;

 out.println("Since loading, this servlet instance has been accessed " +

 count + " times.");

 instances.put(this, this);

 out.println("There are currently " + instances.size() + " instances.");

 classCount++;

 out.println("Across all instances, this servlet class has been " +

 "accessed " + classCount + " times.");

}}

26

J2EE / EE 5 PT 2007

Client Sessions

• Session is created automatically

• Timeout period definition in WAR deployment descriptor

public class CashierServlet extends HttpServlet {

 public void doGet (HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Get the user's session and shopping cart

 HttpSession session = request.getSession();

 ShoppingCart cart = (ShoppingCart)session.getAttribute

 ("cart");

 ...

 // Determine the total price of the user's books

 double total = cart.getTotal();

27

J2EE / EE 5 PT 2007

JavaServer Pages

• Combination of presentation and business logic code, as with PHP, ASP.NET,
Ruby, ...

• JSP language supports access to server-side objects and tag libraries

• Mixture of static and dynamic content

• Static data: HTML, SVG, WML, XML, ...

• JSP elements, expressed in ‘standard’ syntax (.jsp) or XML syntax (.jspx)

• In case, container translates JSP page to a servlet class and compiles the
class

28

J2EE / EE 5 PT 2007

JSP Syntax

• JSP expression: <%= expression %>

• JSP Scriptlet: <% code %>

• JSP Declaration: <%! code %>

• JSP page directive: <%@ page att="val" %>

• Always XML equivalent defined
<jsp:expression>
<jsp:directive.page att="val"\>

29

J2EE / EE 5 PT 2007

JSP Example

<%@ page contentType="text/html; charset=UTF-8" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<TITLE>Using JavaServer Pages</TITLE>
<BODY BGCOLOR="#FDF5E6" TEXT="#000000" LINK="#0000EE">
Expression.

 Your hostname: <%= request.getRemoteHost() %>.
 Scriptlet.

 <% out.println("Attached GET data: " +request.getQueryString()); %>
 Declaration (plus expression).

 <%! private int accessCount = 0; %>
 Accesses to page since server reboot: <%= ++accessCount %>
 Directive (plus expression).

 <%@ page import = "java.util.*" %>
 Current date: <%= new Date() %>
</BODY></HTML>

30

J2EE / EE 5 PT 2007

Further JSP Features

• HTTP request forwarding (jsp:forward)

• Use JavaBeans within the JSP page

<jsp:useBean id="test" class="hall.SimpleBean" />
<jsp:setProperty name="test" property="message"
 value="Hello WWW" />
<jsp:getProperty name="test" property="message" />

• Scope attribute (PageContext (default), ServletRequest,
HttpSession, ServletContext)

• Inclusion on compile / execution time

<%@ include file="url" %>
<jsp:include page="relative URL" />

31

J2EE / EE 5 PT 2007

Extended Tags with JavaServer Faces (JSF)
<HTML><HEAD> <title>Hello</title></HEAD>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <body bgcolor="white">
 <f:view><h:form id="helloForm" >
 <h2>Hi. My name is Duke. I'm thinking of a number from
 <h:outputText value="#{UserNumberBean.minimum}"/> to
 <h:outputText value="#{UserNumberBean.maximum}"/>.
 Can you guess it?</h2>
 <h:graphicImage id="waveImg" url="/wave.med.gif" />
 <h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
 <f:validateLongRange minimum="#{UserNumberBean.minimum}"
 maximum="#{UserNumberBean.maximum}" />
 </h:inputText>
 <h:commandButton id="submit" action="success" value="Submit" />
 <h:message style="color: red” id="errors1" for="userNo"/>
 </h:form></f:view>
</HTML>
 32

J2EE / EE 5 PT 2007

Security in Web Applications

• HTTPS support is mandatory in J2EE-compliant web containers

• Security requirements: User identification and authentication, user account
systems, authorization, audit logs, authentication schemes

• Declarative security (web.xml) vs. programmatic security (HttpServletRequest
methods)

33

J2EE / EE 5 PT 2007

JAX-RPC

• XML-based RPC API for building web services

• No need for generating or parsing SOAP data (proxy / stub generation)

• Service Endpoint Interface (SEI) in Java, only JAX-RPC types allowed

• since June 2002 (before J2EE 1.4)

• No service-specific exceptions with DII

• J2ME supports only static stubs

• J2EE container manages
service access (service.getPort())

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC 321

Figure 8–1 illustrates how JAX-RPC technology manages communication

between a web service and client.

Figure 8–1 Communication Between a JAX-RPC Web Service and a Client

The starting point for developing a JAX-RPC web service is the service endpoint

interface. A service endpoint interface (SEI) is a Java interface that declares the

methods that a client can invoke on the service.

You use the SEI, the wscompile tool, and two configuration files to generate the

WSDL specification of the web service and the stubs that connect a web service

client to the JAX-RPC runtime. For reference documentation on wscompile, see

the Application Server man pages at http://docs.sun.com/db/doc/817-6092.

Together, the wscompile tool, the deploytool utility, and the Application Server

provide the Application Server’s implementation of JAX-RPC.

These are the basic steps for creating the web service and client:

1. Code the SEI and implementation class and interface configuration file.

2. Compile the SEI and implementation class.

3. Use wscompile to generate the files required to deploy the service.

4. Use deploytool to package the files into a WAR file.

5. Deploy the WAR file. The tie classes (which are used to communicate with

clients) are generated by the Application Server during deployment.

6. Code the client class and WSDL configuration file.

7. Use wscompile to generate and compile the stub files.

8. Compile the client class.

9. Run the client.

34

J2EE / EE 5 PT 2007

JAX-WS

• Successor of JAX-RPC since EE 5, relies on Java 5 annotations

• Service Endpoint Interface (SEI) in Java, only JAXB types allowed

• Binding between XML schema and Java types

• JAX-WS 2.0 supports WS-I Basic Profile 1.1

35

package helloservice.endpoint;

import javax.jws.WebService;

@WebService
public class Hello {
 private String message = new String("Hello, ");

 public void Hello() {}

 @WebMethod
 public String sayHello(String name) {
 return message + name + ".";
 }
}J2EE / EE 5 PT 2007

Coding a JAX-WS Web Service

• Code and compile the implementation class

• Use wsgen for the generation of descriptors and mapping files

36

J2EE / EE 5 PT 2007

Java API for XML Registries

• JAXR: Uniform API to XML registries for web services

• ebXML registry and repository standard

• UDDI standard

37

J2EE / EE 5 PT 2007

Business Tier

• Contains reusable components with business code

• Program logic which solves the need of a business domain functionality

• Business components are reflected as Enterprise JavaBean (EJB)

• Different Bean types (Session, Message)

• J2EE 1.4 Entity Beans replaced by Persistence API

38

BUSINESS COMPONENTS 7

prise information system tier for storage. An enterprise bean also retrieves data

from storage, processes it (if necessary), and sends it back to the client program.

Figure 1–3 Web Tier and J2EE Applications

Figure 1–4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and mes-

sage-driven beans. A session bean represents a transient conversation with a cli-

ent. When the client finishes executing, the session bean and its data are gone. In

contrast, an entity bean represents persistent data stored in one row of a database

table. If the client terminates or if the server shuts down, the underlying services

ensure that the entity bean data is saved. A message-driven bean combines fea-

J2EE / EE 5 PT 2007

JNDI

• Java Naming and Directory Interface

• Associate names and attributes with objects, provide way to access the
objects by their name

• Binding: Association between a name and an object

• Context: Set of bindings, name can be bound to another subcontext (similar
to FS directory structure)

• Entry point with javax.naming.InitialContext class

• Provider concept
(LDAP, RMI registry, DNS, filesystem, NDS, NIS)

39

J2EE / EE 5 PT 2007

Enterprise Java Beans

• Development and deployment of scalable, transactional, server-side
business logic components - the ‚heart‘ of J2EE / EE 5

• EJB container as runtime
environment

• EJB client: servlet,
application, other bean

• EJB 2.1 / EJB 3.0
specification

J2EE COMPONENTS 3

Figure 1–1 Multitiered Applications

J2EE Components
J2EE applications are made up of components. A J2EE component is a self-con-

tained functional software unit that is assembled into a J2EE application with its

related classes and files and that communicates with other components. The

J2EE specification defines the following J2EE components:

• Application clients and applets are components that run on the client.

• Java Servlet and JavaServer Pages™ (JSP™) technology components are

web components that run on the server.

• Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-

ness components that run on the server.

J2EE components are written in the Java programming language and are com-

piled in the same way as any program in the language. The difference between

J2EE components and “standard” Java classes is that J2EE components are

assembled into a J2EE application, are verified to be well formed and in compli-

ance with the J2EE specification, and are deployed to production, where they are

run and managed by the J2EE server.

40

J2EE / EE 5 PT 2007

Java EE & EJB

16

16

DB & EIS
Resources

Browser

Stand-alone
Application

Web
Components EJBs

Web
Components EJBs

EJB, EJB Server, EJB Client

Standalone EJB client talking to EJB server

web-tier EJB client talking to EJB server

EJB clients
talking to EJB server

 Now EJB clients are anything that invokes methods of EJB beans. EJB beans reside
in EJB server. The EJB clients can be standalone applications or web-tier
components. The EJB clients can be even other EJB beans.

06/01/2003

41

J2EE / EE 5 PT 2007

EJB Design Principles
• EJB applications are loosely coupled

• Access to other components / services (from other vendors) through
arbitrary names

• Can be authored without detailed knowledge of the environment

• Assembling to an application without code change

• EJB behavior is entirely specified by interfaces

• EJB applications never manage resources

• Access to external resource through their container

• Container resource management (allocation, deallocation, sharing, pooling)

• Container configuration as administrative task, no programmatic interface;
container provides system services

42

J2EE / EE 5 PT 2007

Annotations vs. Descriptors

• Only RUNTIME annotations used

• Available from class file, read by runtime

• Deployment descriptors overwrite annotation configuration

• Lifetime management through annotated functions
(@PreDestroy, @PostConstruct)

@Stateless
@Remote
public class HelloWorldBean {
 public String getHello() {
 return „Hello World“; }
 @PreDestroy cleanUp() {
 // logic before destruction of the instance
}}

43

public javax.sql.DataSource getCatalogDS() {
 try {
 // Obtain JNDI context.
 InitialContext initCtx = new InitialContext();
 // Perform JNDI lookup to obtain the resource.
 catalogDS = (DataSource)
 initCtx.lookup("java:comp/env/jdbc/catalogDS");
 } catch (NamingException ex) {
}}...

public getProductsByCategory() {
 DataSource catalogDS = getCatalogDS();
 Connection conn = catalogDS.getConnection();
...}

J2EE / EE 5 PT 2007

Without Resource Injection

44

<resource-ref>
 <description>Catalog DataSource</description>
 <res-ref-name>jdbc/catalogDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

private @Resource DataSource catalogDS;

public getProductsByCategory() {
 // Get a connection and execute the query.
 Connection conn = catalogDS.getConnection();
 ...
}

J2EE / EE 5 PT 2007

With Resource Injection

45

• Field is injected by the container before the component is made available

• Data source JNDI mapping is inferred from field name and data type

• No deployment descriptor needed, but possible for override

• Also useful for injecting JMS message destinations or Web Service references

• More powerful solutions for dependency injection from Open Source
community (e.g. Spring framework, Pico container, Jakarta HiveMind)

@Stateless public class PayrollBean
 implements Payroll {

 @Resource DataSource empDB;
 public void setBenefitsDeduction

 (int empId, double deduction) {

 ...

 Connection conn = empDB.getConnection();

 ... } ... }

--

@EJB ShoppingCart myCart;

Collection widgets = myCart.startToShop(“widgets”);

J2EE / EE 5 PT 2007

EJB 3 Example

46

J2EE / EE 5 PT 2007

Session Beans

• Purpose: Performs a task for a client, similar to an interactive session; hides
business task complexity

• Only one client per session bean at the same time

• Stateless Session Beans

• No conversational state, container can assign any instance to a client

• Class is annotated as @Stateless

• Stateful Session Beans

• Unique state information per client-bean session (conversational state)

• Class is annotated as @Stateful

• Support for lifecycle callback functions

47

J2EE / EE 5 PT 2007

Message-Driven Beans

• Short-lived stateless JMS message listener component

• Messages can be send by any J2EE component, not intended to be called
directly by clients or other components

• All instances of one message bean are equivalent, transaction-aware

• Class annotated with @MessageDriven, implements MessageListener
for onMessage() method

48

J2EE / EE 5 PT 2007

Defining Client Access

• Remote client access

• Can run on different machine or JVM, location is transparent to client

• Annotate business interface with @Remote

• Local client access

• Client must run in the same JVM as the bean

• Client and bean can manipulate the same parameter object

• Annotate business interface with @Local

• Web service access (@WebService , @WebMethod)

49

@WebService(name=”MySimpleWS”);
public class RandomClass {
 @WebMethod
 public String sayHello(String s) {...}
 public void unpublished() {...} }

@WebServiceRef(
wsdlLocation=
 ”http://localhost:8080/SayHelloService?WSDL”);)

static javaone.SayHelloService wsService;

public static void main(String[] args) {
 javaone.SayHello wsPort = wsService.getHello();
 wsPort.sayHello(“FOSS.in Attendees”); }

J2EE / EE 5 PT 2007

Web Service Example

50

J2EE / EE 5 PT 2007

Session Bean Lifecycle

51

J2EE / EE 5 PT 2007

Message-Driven Bean Lifecycle

52

J2EE / EE 5 PT 2007

EJB Packaging

• Deployment descriptor (e.g. persistency type, transaction attributes)

• Enterprise bean classes, helper classes and interfaces

53

J2EE / EE 5 PT 2007

EIS Tier

• Coupling with Enterprise Information Systems

• Enterprise resource planning (ERP) systems

• Mainframe transaction processing systems or database systems

• Integration of existing data and infrastructure

54

BUSINESS COMPONENTS 7

prise information system tier for storage. An enterprise bean also retrieves data

from storage, processes it (if necessary), and sends it back to the client program.

Figure 1–3 Web Tier and J2EE Applications

Figure 1–4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and mes-

sage-driven beans. A session bean represents a transient conversation with a cli-

ent. When the client finishes executing, the session bean and its data are gone. In

contrast, an entity bean represents persistent data stored in one row of a database

table. If the client terminates or if the server shuts down, the underlying services

ensure that the entity bean data is saved. A message-driven bean combines fea-

J2EE / EE 5 PT 2007

Ende IEEE J2EE Courses

Ende

34 IEEE Special von Michael Glögl

55

