Asynchronous Calls

« Standard COM+ model is completely synchronous
— Emulates standard procedure calls
— Problematic in distributed scenarios with high network latencies

* Use threads to handle multiple calls asynchronously
— Efficiency might be limited
— Synchronization of multiple threads may be difficult

 ldea: support asynchronous calls by infrastructure
— COMH+ starts call and returns to client immediately

Call object can be used to obtain results later

Language constructs like futures support this approach

Works currently under Windows 2000 only
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Defining Asynchronous Interfaces

* New IDL attribute [async_uuid]
— MIDL generates both, synchronous and asynchronous version of IF

[object, uuid(10000001-AAAA-0000-0000-A00000000001),
async_uuid(10000001-AAAA-0000-0000-B00000000001) ]
Interface IPrime : IUnknown

{

HRESULT IsPrime(int num, [out, retval] int * v);

}

* Methods are split into two for asynch. Interface
* Begin_method accepts all [in], [in, out] parameters
* Finish_method accepts all [out], [in, out] parameters
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Asynchronous Interface
generated by MIDL

MIDL INTERFACE (“10000001-AAAA-0000-0000-B0O0000000001™)
AsynchPrime : public IUnknown {
public:
virtual HRESULT STDMETHODCALLTYPE Begin IsPrime (
int testnumber ) = 0;
virtual HRESULT STDMETHODCALLTYPE Finish IsPrime (
/* out, retval */ int _ RPC FAR *v) = 0;
}i

* New registry entries for asynchronous interfaces:
— Asynchronouslinterface subkey under 11D of synchronous interface
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Calling Asynchronous Interfaces

« To begin an asynchronous call

1. Query the server object for the ICallFactory interface.
If Querylnterface returns E_NOINTERFACE, the server object does
not support asynchronous calling.

2. Call ICallFactory::CreateCall
to create a call object corresponding to the interface you want, and
then release the pointer to ICallFactory.

3. If you did not request a pointer to the asynchronous interface from the
call to CreateCall, query the call object for the asynchronous interface.

4. Call the appropriate Begin_ method.

interface ICallFactory : [Unknown {
HRESULT CreateCall( [in] REFIID riid, [in] IUnknown *pCtrlUnk,

[in] REFIID riid2, [out, iid_is(riid2)] IlUnkown **ppv);
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IPrime * pPrime = 0;

Client makes asynchronous call

int result = 0;

CoCreatelnstance( CLSID_Prime, 0,

CLSCTX_LOCAL_SERVER,
1ID_IPrime, (void **) &pPrime;

/I do other work here

pAsyncPrime->Finish_IsPrime(&result);
ICallFactory* pCallFactory = 0O; if (result)
pPrime->Querylnterface(lID_ICallFactory, printf(“%d is prime\n®, number );

(void **) &pCallFactory);

pAsyncPrime->Release();

AsynclPrime* pAsyncPrime = 0; pCallFactory->Release();

pCallFactory->CreateCall(lID_AsynclPrime,

‘ pPrime->Release();
0, 1ID_AsynclPrime, (IlUnknown**)

&pAsyncPrime);

pAsyncPrime->Begin_IsPrime(number);
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Asynchronous Calls (contd.)

A call object can process only one asynchronous call at a time.

— If the same or a second client calls a Begin_ method before a pending
asynchronous call is finished, the Begin_ method will return
RPC_E_CALL_PENDING.

If the client does not need the results of the Begin_ method, it can
release the call object at the end of this procedure.

— COM detects this condition and cleans up the call. The Finish_ method is not
called, and the client does not get any out parameters or a return value.

When the server object is ready to return from the Begin_ method,
it signals the call object that it is done.

— When the client is ready, it checks to see if the call object has been signaled.

— If so, the client can complete the asynchronous call.
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Finishing an asynchronous call

+ The mechanism for this signaling and checking between client and
server is the ISynchronize interface on the call object.

— The call object normally implements this interface by aggregating a system-
supplied synchronization object.

— The synchronization object wraps a Win32 event handle, which the server
signals just before returning from the Begin_ method by calling
ISynchronize::Signal.

* To complete an asynchronous call

1. Query the call object for the ISynchronize interface.

2. Call ISynchronize::Wait.

3. If Wait returns RPC_E_TIMEOUT, the Begin_ method is not finished

processing. The client can continue with other work and call Wait again later. It
cannot call the Finish_ method until Wait returns S_OK.

4. If Wait returns S_OK, the Begin_ method has returned. Call the appropriate
Finish_ method.
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The ISynchronize Interface

interface ISynchronize : lUnknown {
// waits for the synchronization object to be signaled
/I or for a specified timeout period to elapse, whichever
/I comes first
HRESULT Wait([in] DWORD dwFlags, [in] DWORD dwMillisec );

/I sets synchronization object's state to signaled
HRESULT Signal();

/I resets synchronization object to non-signaled state
HRESULT Reset();
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Interoperability

» Asynchronous and synchronous IF are considered as
two parts of the same interface
— Although they have different unique 1IDs
— What happens if component implements synchronous IF only?

* If component implements synch IF only...

— COM+ infrastructure automatically supports ICallFactory interface in
the proxy (standard marshaling)

— Maps async calls to synch interface (Begin_ ...)
— Proxy holds values of synch call until client calls Finish_ ...
+ If component implements both versions of IF...

— Duplication of code -> Components need only support asynch IF...
— COMH+ infrastructure maps synchronous calls to asynch version of IF
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