
1

AP 01/01

Asynchronous Calls

• Standard COM+ model is completely synchronous
– Emulates standard procedure calls
– Problematic in distributed scenarios with high network latencies

• Use threads to handle multiple calls asynchronously
– Efficiency might be limited
– Synchronization of multiple threads may be difficult

• Idea: support asynchronous calls by infrastructure
– COM+ starts call and returns to client immediately
– Call object can be used to obtain results later
– Language constructs like futures support this approach
– Works currently under Windows 2000 only

AP 01/01

Defining Asynchronous Interfaces

• New IDL attribute [async_uuid]
– MIDL generates both, synchronous and asynchronous version of IF

[object, uuid(10000001-AAAA-0000-0000-A00000000001),
 async_uuid(10000001-AAAA-0000-0000-B00000000001)]
Interface IPrime : IUnknown
{

HRESULT IsPrime(int num, [out, retval] int * v);
}

• Methods are split into two for asynch. Interface
• Begin_method accepts all [in], [in, out] parameters
• Finish_method accepts all [out], [in, out] parameters

2

AP 01/01

Asynchronous Interface
 generated by MIDL

MIDL_INTERFACE(“10000001-AAAA-0000-0000-B00000000001“)

AsynchPrime : public IUnknown {

public:

virtual HRESULT STDMETHODCALLTYPE Begin_IsPrime(

int testnumber) = 0;

virtual HRESULT STDMETHODCALLTYPE Finish_IsPrime(

/* out, retval */ int __RPC_FAR *v) = 0;

};

• New registry entries for asynchronous interfaces:
– AsynchronousInterface subkey under IID of synchronous interface

AP 01/01

Calling Asynchronous Interfaces

• To begin an asynchronous call
1. Query the server object for the ICallFactory interface.

If QueryInterface returns E_NOINTERFACE, the server object does
not support asynchronous calling.

2. Call ICallFactory::CreateCall
to create a call object corresponding to the interface you want, and
then release the pointer to ICallFactory.

3. If you did not request a pointer to the asynchronous interface from the
call to CreateCall, query the call object for the asynchronous interface.

4. Call the appropriate Begin_ method.

interface ICallFactory : IUnknown {
HRESULT CreateCall([in] REFIID riid, [in] IUnknown *pCtrlUnk,

 [in] REFIID riid2, [out, iid_is(riid2)] IUnkown **ppv);
}

3

AP 01/01

Client makes asynchronous call

IPrime * pPrime = 0;
CoCreateInstance(CLSID_Prime, 0,
 CLSCTX_LOCAL_SERVER,
 IID_IPrime, (void **) &pPrime;

ICallFactory* pCallFactory = 0;
pPrime->QueryInterface(IID_ICallFactory,
 (void **) &pCallFactory);

AsyncIPrime* pAsyncPrime = 0;
pCallFactory->CreateCall(IID_AsyncIPrime,
 0, IID_AsyncIPrime, (IUnknown**)
 &pAsyncPrime);

pAsyncPrime->Begin_IsPrime(number);

int result = 0;

// do other work here

pAsyncPrime->Finish_IsPrime(&result);
if (result)
 printf(“%d is prime\n“, number);

pAsyncPrime->Release();
pCallFactory->Release();
pPrime->Release();

AP 01/01

Asynchronous Calls (contd.)

• A call object can process only one asynchronous call at a time.
– If the same or a second client calls a Begin_ method before a pending

asynchronous call is finished, the Begin_ method will return
RPC_E_CALL_PENDING.

• If the client does not need the results of the Begin_ method, it can
release the call object at the end of this procedure.

– COM detects this condition and cleans up the call. The Finish_ method is not
called, and the client does not get any out parameters or a return value.

• When the server object is ready to return from the Begin_ method,
it signals the call object that it is done.

– When the client is ready, it checks to see if the call object has been signaled.
– If so, the client can complete the asynchronous call.

4

AP 01/01

Finishing an asynchronous call

• The mechanism for this signaling and checking between client and
server is the ISynchronize interface on the call object.
– The call object normally implements this interface by aggregating a system-

supplied synchronization object.
– The synchronization object wraps a Win32 event handle, which the server

signals just before returning from the Begin_ method by calling
ISynchronize::Signal.

• To complete an asynchronous call
1. Query the call object for the ISynchronize interface.
2. Call ISynchronize::Wait.
3. If Wait returns RPC_E_TIMEOUT, the Begin_ method is not finished

processing. The client can continue with other work and call Wait again later. It
cannot call the Finish_ method until Wait returns S_OK.

4. If Wait returns S_OK, the Begin_ method has returned. Call the appropriate
Finish_ method.

AP 01/01

The ISynchronize Interface

interface ISynchronize : IUnknown {
// waits for the synchronization object to be signaled
// or for a specified timeout period to elapse, whichever
// comes first
HRESULT Wait([in] DWORD dwFlags, [in] DWORD dwMillisec);

// sets synchronization object‘s state to signaled
HRESULT Signal();

// resets synchronization object to non-signaled state
HRESULT Reset();

}

5

AP 01/01

Interoperability

• Asynchronous and synchronous IF are considered as
two parts of the same interface
– Although they have different unique IIDs
– What happens if component implements synchronous IF only?

• If component implements synch IF only...
– COM+ infrastructure automatically supports ICallFactory interface in

the proxy (standard marshaling)
– Maps async calls to synch interface (Begin_ ...)
– Proxy holds values of synch call until client calls Finish_ ...

• If component implements both versions of IF...
– Duplication of code -> Components need only support asynch IF...
– COM+ infrastructure maps synchronous calls to asynch version of IF

