Asynchronous Calls

« Standard COM+ model is completely synchronous
— Emulates standard procedure calls
— Problematic in distributed scenarios with high network latencies

* Use threads to handle multiple calls asynchronously
— Efficiency might be limited
— Synchronization of multiple threads may be difficult

 ldea: support asynchronous calls by infrastructure
— COMH+ starts call and returns to client immediately

Call object can be used to obtain results later

Language constructs like futures support this approach

Works currently under Windows 2000 only

AP 01/01

Defining Asynchronous Interfaces

* New IDL attribute [async_uuid]
— MIDL generates both, synchronous and asynchronous version of IF

[object, uuid(10000001-AAAA-0000-0000-A00000000001),
async_uuid(10000001-AAAA-0000-0000-B00000000001)]
Interface IPrime : IUnknown

{

HRESULT IsPrime(int num, [out, retval] int * v);

}

* Methods are split into two for asynch. Interface
* Begin_method accepts all [in], [in, out] parameters
* Finish_method accepts all [out], [in, out] parameters

AP 01/01

Asynchronous Interface
generated by MIDL

MIDL INTERFACE (“10000001-AAAA-0000-0000-B0O0000000001™)
AsynchPrime : public IUnknown {
public:
virtual HRESULT STDMETHODCALLTYPE Begin IsPrime (
int testnumber) = 0;
virtual HRESULT STDMETHODCALLTYPE Finish IsPrime (
/* out, retval */ int _ RPC FAR *v) = 0;
}i

* New registry entries for asynchronous interfaces:
— Asynchronouslinterface subkey under 11D of synchronous interface

AP 01/01

Calling Asynchronous Interfaces

« To begin an asynchronous call

1. Query the server object for the ICallFactory interface.
If Querylnterface returns E_NOINTERFACE, the server object does
not support asynchronous calling.

2. Call ICallFactory::CreateCall
to create a call object corresponding to the interface you want, and
then release the pointer to ICallFactory.

3. If you did not request a pointer to the asynchronous interface from the
call to CreateCall, query the call object for the asynchronous interface.

4. Call the appropriate Begin_ method.

interface ICallFactory : [Unknown {
HRESULT CreateCall([in] REFIID riid, [in] IUnknown *pCtrlUnk,

[in] REFIID riid2, [out, iid_is(riid2)] IlUnkown **ppv);

AP 01/01

IPrime * pPrime = 0;

Client makes asynchronous call

int result = 0;

CoCreatelnstance(CLSID_Prime, 0,

CLSCTX_LOCAL_SERVER,
1ID_IPrime, (void **) &pPrime;

/I do other work here

pAsyncPrime->Finish_IsPrime(&result);
ICallFactory* pCallFactory = 0O; if (result)
pPrime->Querylnterface(lID_ICallFactory, printf(“%d is prime\n®, number);

(void **) &pCallFactory);

pAsyncPrime->Release();

AsynclPrime* pAsyncPrime = 0; pCallFactory->Release();

pCallFactory->CreateCall(lID_AsynclPrime,

‘ pPrime->Release();
0, 1ID_AsynclPrime, (IlUnknown**)

&pAsyncPrime);

pAsyncPrime->Begin_IsPrime(number);

AP 01/01

Asynchronous Calls (contd.)

A call object can process only one asynchronous call at a time.

— If the same or a second client calls a Begin_ method before a pending
asynchronous call is finished, the Begin_ method will return
RPC_E_CALL_PENDING.

If the client does not need the results of the Begin_ method, it can
release the call object at the end of this procedure.

— COM detects this condition and cleans up the call. The Finish_ method is not
called, and the client does not get any out parameters or a return value.

When the server object is ready to return from the Begin_ method,
it signals the call object that it is done.

— When the client is ready, it checks to see if the call object has been signaled.

— If so, the client can complete the asynchronous call.

AP 01/01

Finishing an asynchronous call

+ The mechanism for this signaling and checking between client and
server is the ISynchronize interface on the call object.

— The call object normally implements this interface by aggregating a system-
supplied synchronization object.

— The synchronization object wraps a Win32 event handle, which the server
signals just before returning from the Begin_ method by calling
ISynchronize::Signal.

* To complete an asynchronous call

1. Query the call object for the ISynchronize interface.

2. Call ISynchronize::Wait.

3. If Wait returns RPC_E_TIMEOUT, the Begin_ method is not finished

processing. The client can continue with other work and call Wait again later. It
cannot call the Finish_ method until Wait returns S_OK.

4. If Wait returns S_OK, the Begin_ method has returned. Call the appropriate
Finish_ method.

AP 01/01

The ISynchronize Interface

interface ISynchronize : lUnknown {
// waits for the synchronization object to be signaled
/I or for a specified timeout period to elapse, whichever
/I comes first
HRESULT Wait([in] DWORD dwFlags, [in] DWORD dwMillisec);

/I sets synchronization object's state to signaled
HRESULT Signal();

/I resets synchronization object to non-signaled state
HRESULT Reset();

AP 01/01

Interoperability

» Asynchronous and synchronous IF are considered as
two parts of the same interface
— Although they have different unique 1IDs
— What happens if component implements synchronous IF only?

* If component implements synch IF only...

— COM+ infrastructure automatically supports ICallFactory interface in
the proxy (standard marshaling)

— Maps async calls to synch interface (Begin_ ...)
— Proxy holds values of synch call until client calls Finish_ ...
+ If component implements both versions of IF...

— Duplication of code -> Components need only support asynch IF...
— COMH+ infrastructure maps synchronous calls to asynch version of IF

AP 01/01

