Real-Time Middleware

Andreas Rasche

Roadmap

¢ Real-time Systems, Tasks, Scheduling, Priority Inversion
e Real-time CORBA Specification

e Distributed Real-time Specification for Java (D-RTSJ)

e Composite Objects

e Time-triggered Message-triggered Objects (TMO)

e OSA+

Real-time Middleware | Middleware and Distributed Systems 2 AR 2007

What is Real-Time ?

® “A system is a real-time system if the correctness of an operation depends not
only upon the logical correctness but also upon the time at which it is
performed.”

e Hard real-time: Missing a deadline could result in catastrophe

¢ Flight control systems, drive-by-wire, avionics, nuclear power plants
e Soft real-time: Result arrival after deadline has still value

e multi-media, airline reservation systems

¢ Typlically strongly coupled to the real world (embedded devices)

value value
A A

)

. > >
deadline t deadline t

Real-time Middleware | Middleware and Distributed Systems 3 AR 2007

Structure of a real-time system

Sensors —> Computer Actuators
System
Environment

e Deadlines are given by the environment

e A sensor must be read every 10 seconds

¢ or the landing gear of a airplane must be released before landing

Real-time Middleware | Middleware and Distributed Systems 4

AR 2007

Tasks & Scheduling

< task execution time Sl slack time)

T

arrival time start time deadline t

e Scheduling: Find order for task execution so that every tasks meets its deadline
¢ Periodic vs. aperiodic vs. sporadic tasks

* Preemptive vs. non-preemptive execution

e Static (priority-based) scheduling (RMS) vs. dynamic scheduling (EDF, LSF)

e Task synchronization & unbounded priority inversion / avoidance

Real-time Middleware | Middleware and Distributed Systems 5 AR 2007

Static Scheduling & Schedulability

e Rate Monotonic Scheduling (RMS)
¢ Periodic, preemptable, independent tasks
e Deadlines are equal to task period

¢ A set of n tasks is schedulable if total processor utilization is no greater than
n@2"-1)

e Task priorities are static; inversely related to periods
e Optimal static-priority uniprocessor algorithm

¢ All tasks, deadlines and execution times must be known before runtime

Real-time Middleware | Middleware and Distributed Systems 6 AR 2007

RMS - Scheduling Example

Task Ti Period/Deadling Di| Exection Time G Priority Utilization (U))
1 4 2 1 50%
2 3 1 O(Highest) 33%
3 5 1 2 20%
Utilization: U = Y Ui = > G/Di =103 %
v \ 4 \ 4
1
4 \ 4 4 \4
2
* |
3 H
>
0] 1 2 3 4) 6 / 9 2 3
AR 2007

Real-time Middleware | Middleware and Distributed Systems 7

Priority Inversion - Priority Inversion Avoidance

¢ Priority Inversion Avoidance Protocols:

e Priority Inheritance (low-priority task’s priority raised when high-priority task
tries to aquire resource)

e Priority Ceiling (priority of task aquiring a resource raised to highest priority
of task’s using the resource)
Priority Inversion
High blocked by Low and Medium

<€ >
High Priority
L(R) FR)
Medium Priority
Low Priority
— . L(R) F(R) >
Critical Section 0 1 5 3 4 5 6 7 8 9

Real-time Middleware | Middleware and Distributed Systems 8 AR 2007

Distributed Real-Time Embedded Systems (DRE)

¢ Real-time computing is about predictability of timeliness

e Distributed real-time computing is about predictability of timeliness of multi-
node (trans-node) behaviors

e Embedded systems must often deal with limited resources

¢ Non-functionional properties of distributed real-time systems not covered in
this lecture:

¢ Fault-tolerance, reliability, availability
e Security, Quality of Service (QoS)

e Examples of DRE systems: telecommunication networks, tele-medicine,
transportation systems, process automation, military appliciations

Real-time Middleware | Middleware and Distributed Systems 9 AR 2007

Real-Time CORBA Overview and Design Goals

e History: Version 1.0 Sept. 2000 - Version 2.0 Nov. 2003

e Extensions to OMG CORBA specifications

e Support of end-to-end predictability

¢ Definition of “Schedulable Entity” (threads) and priority control

¢ Avoid or bound priority inversions

¢ Bounding of method invocation blocking

e Extended resource management (process, storage, communication)
e Management of resource allocations (Mutex)

e Explicit set-up and configuration of bindings (connections)

e Configuration via CORBA:Policy mechnism

Real-time Middleware | Middleware and Distributed Systems 10 AR 2007

Real-time ORB & Real-time POA

Scheduling
* Real-time CORBA defines extentions to (~ et | Seree server)
CORBA::ORB interface: RTCORBA:RTORB RTCORBA: Servant
° Getting RTORB: call cc%?iﬁi' RT&%?%A - POA | RTPOA
ORB::resolve_initial_reference with Objectld LiBEeL
“RTORB” _ AN)
¢ Extentions to POA defined in ORB RTORB
RTPortableServer::POA
(GlonTcp) | ESIOP —‘ (others)w o RTCORBA:
e ORB::resolve_initial_references(*“RootPOA”) | |
returns RTPortableServer::POA
Real-time CORBA entity existing CORBA entity

[OMG “Real-Time CORBA Specification v2.0”]

Real-time Middleware | Middleware and Distributed Systems 11 AR 2007

CORBA and Threads and Priorities

Thread 1 Thread 1
Object A

Object A

Thread

|
|
|
Object B :

[Douglas E. Jensen “Distributed Threads - "An End-to-End Abstraction for Distributed Real-time”]
Real-time Middleware | Middleware and Distributed Systems 12 AR 2007

Object B

RT-CORBA Priorities & Priority Mappings

e RT-CORBA priorities are unique values ranging from 0 to 32767 (short)
e Priorities are set via RTCORBA::Current interface - resolve_i_r(“RTCurrent”)
e Mapping of CORBA priorities to native operating systems host priorities

e Upon setting the RT-CORBA priority attribute(RTCurrent) the value is mapped to
a native priority and the native priority of the current thread immediately set to
that value

//IDL
module RT_CORBA ({
// Locality Constrained interface
interface PriorityMapping{
boolean to native (in Priority corba priority,
out NativePriority native_ priority);
boolean to CORBA (in NativePriority native priority,
out Priority corba priority);

}i

} "Real-time Middleware | Middleware and Distributed Systems 13 AR 2007

RT-CORBA Priority Mappings - Example

class MyPriorityMapping : public RTCORBA: :PriorityMapping{
CORBA: :Boolean to_native (RTCORBA::Priority corba_prio,
RTCORBA: :NativePriority &native prio)

{
native _prio = 128 + (corba_prio/ 256);

// In the [128,256) range...
return true;

}

}: [D.Schmidt et.al “Using Real-time CORBA Effectively”]
¢ |[nstallation via void install priority mapping(in PriorityMapping pm)
e Only one priority mapping active at a time
e Used by the ORB for priority manipulation -> no exceptions in prio. mapping

e Mapping function implementation must be re-entrant

Real-time Middleware | Middleware and Distributed Systems 14 AR 2007

Client Priority Propagation

e Configured in PriorityModelPolicy (CLIENT_PROPAGATED)

e CORBA priority is propagated in a CORBA priority service context

¢ During request dispatch thread priorities are adjusted

e |f server code changes priority all subsequent invokations use this priority

¢ Important mechanism to bind execution times of method invocations

module IOP {
const Serviceld RTCorbaPriority = 10;

}i

Real-time Middleware | Middleware and Distributed Systems 15 AR 2007

Server-Set Priority Model

e Configuration via SERVER_SET_PRIORITY in PriorityModelPolicy

e Server-side thread executed with configured priority
CORBA: :PolicyList policies (1);
policies.length (1);

policies[0] = rtorb->create priority model policy
(RTCORBA: : SERVER DECLARED, LOW_PRIORITY);

// Get the ORB'’s policy manager Priority coded in I0R

Used by client-side ORB to exploit
) e.g. priority banded conections
PortableServer: :POA_var base_station poa =
- - Client-side code in ORB should be

root_poa->create_POA executed with server declared
(“Base_Station_POA", e
PortableServer: :POAManager::_nil (), Example: all requests will be

. handled with specified priority
policies); Y

// Activate the <Base_ Station> servant in <base station poa>
base_station_poa->activate_object (base_station);

[D.Schmidt et.al “Using Real-time CORBA Effectively”]
Real-time Middleware | Middleware and Distributed Systems 16 AR 2007

Real-time CORBA Priority Policies

ORB
end system

(2) Priority is exported
in interoperable
object reference

(3) Client's priority
is not propagated
by invocation

(1) Server
priority
is preset

ORB
end system
B

(a)
Global CORBA priority = 100
Service Service
context context
=100 =100
Y
ORB) ORB) ORB
Lynx03 end system Windows NT end system Solaris end system
priority priority priority
=100 = =135

Current::priority(100)
to_native() => 100

Current::priority(100)
to_native() => 5

Real-time Middleware | Middleware and Distributed Systems 17

Current::priority(100)
to_native() => 135

Priorities - RT-CORBA 2.0 Additions

e Setting of server priority per object reference

e Overrides server declared priority

PortableServer: :POA: :0ObjectId activate object with priority (
in PortableServer::Servant p_ servant,
in RTCORBA: :Priority priority)

raises (PortableServer::POA::ServantAlreadyActive,
PortableServer: :POA: :WrongPolicy);

void activate object with_id and priority (
in PortableServer::0bjectId oid,
in PortableServer::Servant p_ servant,
in RTCORBA: :Priority priority)

raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);

Real-time Middleware | Middleware and Distributed Systems 18 AR 2007

Priorities - RT-CORBA 2.0 Additions

e Priority Transforms: implementation of user-defined invokation policies

¢ Implementation of different priority models than server declared or client
propagated

e Mapping of RTCORBA::Priority to other RTCORBA::Priority
e Can be installed:

e During invocation upcall (after an invocation has been received at the server
but before the servant code is invoked) - inbound Priority Transforms

e \When making an ‘onward’ CORBA invocation, from servant application
code - outbound Priority Transforms

Real-time Middleware | Middleware and Distributed Systems 19 AR 2007

Thread Pool with Lanes Thread Pool
SEse|Es
Threadpools & Threadpoollanes (ML %™ JTs™

PRIORITY
20

35 50

¢ [anes define different priority levels within a threadpool
e Thread borrowing: high prio. lane may borrow threads from low prio lanes
¢ Preallocation of threads (static threads)
e Reduction of priority inversion (low priority request don’t block high prior ones)

¢ Reduction of latency and increase of predictability by avoiding recreation and
destruction of threads

¢ Partitioning of threads
e |solation of system parts by association of POAs to different thread pools
¢ Bound thread usage (memory usage together with queues size)

e Limitation of threads a number of POAs may use
(max. threads = static threads + dynamic threads)

Real-time Middleware | Middleware and Distributed Systems 20 AR 2007

[I.Pyarali et. al. “Evaluating and Optimizing Thread Pool Strategies for Real-Time CORBA”]

Threadpools: POAs & ORB

S4 SS S6 S7
10 50 50 35

N
\

(Default [Thread Pool A A (Thread Pooll;
Thread Pool
> >
>= $>5)(,2%72)(5 || |[s2%72
DEFAULT PRIORITY PRIORITY PRIORITY PRIORITY
PRIORITY 10 35 50 20
N 9%
POA C
S11 S12 S13
A TS

POA B

A

[DEFAULT] [DEFAULT] [DEFAULT]

Root POA

.

AV

a —)2 _)2

Real-time Middleware | Middleware and Distributed Systems

21

e Threadpools can be
associated to POA
and ORB level

e Max. one
threadpool per POA

AR 2007

Creation and Destruction of Threadpools

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Threadpool Policy

const CORBA::PolicyType THREADPOOL POLICY TYPE = 41;

local interface ThreadpoolPolicy : CORBA::Policy
readonly attribute ThreadpoolId threadpool;

}i

local interface RTORB {

ThreadpoolPolicy create_threadpool_policy (in ThreadpoollId threadpool);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

Threadpoolld create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in Threadpoolld threadpool)

raises (InvalidThreadpool);

Real-time Middleware | Middleware and Distributed Systems

//IDL

module RTCORBA {

// Threadpool types

typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

AR 2007

Request Buffering in RT-CORBA Threadpools

(Thead Pool A (" Thead Pool B
S| 2878 272
> > >
3 2R 2R
PRIORITY 10 PRIORITY 35 PRIORITY 20
_ _

\\ //

:

|

2%

® Provides control over
storage resources

¢ No separate thread for
every request neccessary

¢ Used if no static or
dynamic thread is available

[I.Pyarali et. al. “Evaluating and Optimizing Thread Pool Strategies for Real-Time CORBA”]

Real-time Middleware | Middleware and Distributed Systems 23

AR 2007

Implementing Threadpools
Half-Synch/Half-Asynch Pattern

e Buffering of requests in a queue by I/O-threads

e \Worker threads within the pool process requests from queue

e Fasy implementation of thread borrowing, but less efficient because of queueing

SyNc
TASK 1

SyNc
TASK 3

~5

TASK LAYER

+§
<
\
\
\
\
\
\

1, 4: read(data) N I

/
/

Sync
TASK) ™
I
|

\ |

/
/

MESSAGE QUEUES

7
/ / 3: enqueue(data)
/

ASYNC
TASK

w: interrupt

ASYNCHRONOUS QUEUEING SYNCHRONOUS
TASK LAYER LAYER

Real-time Middleware | Middleware and Distributed Systems

EXTERNAL
EVENT SOURCES

/
/

24

(POA A) PoAB][POAC |
(POA THREAD 1 (POA THREAD)
POOL POOL
LANE1) (LANE2) (LANE3 LANE1) [LANE2) [LANES3
5 10 15 10 15 20
SSSl S S| eSSl |[ess] s s |ess

EEEEBEE

Swax SSSs

SS210 S&818 $&520

[mg"m} [REACTOR] [REACTOR] [REACTOR] [REACTOR]

NETWORK

AR 2007

[D.C.Schmidt, C. O’'Ryan “Leader/Followers”]

PROCESSING

Implementing Threadpools
| eader/Followers Pattern

FOLLOWING

-
z.¢%
528
$s: @
§83¢
ExE=Z
= =4

=

e
=
g5

e A number of threads (in a threadpool) is synchronized to get process external

requests

¢ At one time one thread - the leader - waits for an event on a set of I/O-
handles

e Other threads - the followers - can queue up and wait to become new leader

e Current leader determines follower, after demultiplexing an event from |/O-
handles

e Underlying I/O-system queues events if no thread is available
¢ No additional thread for request dispatch + better performance

e Request buffering & borrowing harder to implement (no explicit queue)

Real-time Middleware | Middleware and Distributed Systems 25 AR 2007

Leader/Followers Pattern - Example Sequence

: THREAD] : THREAD : THREAD : HANDLE : CONCRETE
POOL SET EVENT HANDLER
I .. I I I I
_ join() - | |
B BECOME NEW LEADER THREAD
< T m I
handle_evgnts() | > |
join ; select
M join() [BECOME 0 I
FOLLOWER I
1 THREAD |
EVENT ARRIVES . |
I el
romote new leader
P _new_ 0 o | |
I

handle event()

W

IBECOME NEW LEADER THREAD

join()

handle events() |

BECOME PROCESSING THREAD Ij
>
,

|
|
>
,I-.-
1

Ny,
>

BECOME

; FOLLOWER

THREAD

Real-time Middleware | Middleware and Distributed Systems 26

<« select()

AR 2007

[D.C.Schmidt, C. O’'Ryan “Leader/Followers”]

Real-Time CORBA Mutex

e Standardized mutex implementation for all applications

e Two states: locked and unlocked

e Born in unlocked State

¢ Implementation of priority inheritance required

e ORB must use same mutex implementation as delivered to applications

e Consistent priority inversion avoidance /DL
module RT_CORBA {

// locality constrained interface
interface Mutex {
void lock();
void unlock();
boolean try_lock(in TimeBase::TimeT max_wait);
// if max_wait = 0 then return immediately
b
interface ORB : CORBA::ORB {

Mutex create_mutex();

};...
b

Real-time Middleware | Middleware and Distributed Systems 27 AR 2007

Client-side configuration - Banded Connections

e Configured via PriorityBandedConnectionsPolicy
e Reduction of priority inversion caused by using non-priority transport protocols
¢ Facility for clients to communicate with a server via multiple connections

e Each connections handles separate invokation priority level (range)

e Connection selection transparent to the application

¢ Applied at client-side during object binding or server-side and propagated
via IOR

//1DL
module RT_CORBA {
struct PriorityBand {
Priority low;
Priority high;
}
typedef sequence <PriorityBand> PriorityBands;
// PriorityBandedConnectionPolicy
const CORBA::PolicyType
PRIORITY_ BANDED_ CONNECTIONS_POLICY_ TYPE = 45;
interface PriorityBandedConnectionPolicy : CORBA::Policy {
readonly attribute PriorityBands priority bands;

}i
Real-time Middleware | Middleware and Distributed Systems }i 28 AR 2007

Priority Bands - Example

// Create the priority bands
RTCORBA: :PriorityBands bands (2); bands.length (2);

bands[0].low = LOW_PRIO; // We can have bands with
bands[0] .high = MEDIUM PRIO; // a range of priorities or
bands[1l].low = HIGH_ PRIO; // just a “range” of 1!

bands[1l] .high = HIGH PRIO;

// Now create the policy...

CORBA: :PolicyList policies (1l); policies.length (1);
policies[0] =
rtorb->create priority banded connection policy (bands);
// Use just like any other policies...

e Priority Bands can also be used on client-side to pre-allocate connections

e |f priority bands are installed and an invokation with a priority triggered without
a configured (range): a “no resource” system exception is thrown

Real-time Middleware | Middleware and Distributed Systems 29 AR 2007

More Connection Policies

e Client-side configuration - private connections
e Configured via PrivateConnectionPolicy
¢ Private for connection for one object binding
¢ Not multiplexed with other invocations
¢ [nvokation Timeouts
e Configured via RelativeRoundtripTimeoutPolicy
¢ Allows for definition of timeout for invocations
e Server is not informed about expiration of a timeout

e Defined in original CORBA specification

Real-time Middleware | Middleware and Distributed Systems 30

AR 2007

Protocol Configuration - ProtocolPolicy

e Configuration and selection of communication protocols

¢ ClientProtocolPolicy & ServerProtocolPolicy

¢ Definition of multiple protocols and order configuration possible

¢ Protocol defined as pair of ORB protocol (GIOP) and transport protocol (TCP)

e ProtocolProperties for protocol specific configuration (message length, buffer

Slze) / IDL module RT_CORBA {
// Locality Constrained interface
interface ProtocolProperties {};
struct Protocol {
IOP: :Profileld protocol_type;
ProtocolProperties orb_protocol_ properties;
ProtocolProperties transport_ protocol_properties;
}i
typedef sequence <Protocol> ProtocolList;
// Protocol Policy
const CORBA::PolicyType PROTOCOL_POLICY_ TYPE = ??;
// Locality Constrained interface
interface ProtocolPolicy : CORBA::Policy {
readonly attribute ProtocolList protocols;

}i
Real-time Middleware | Middleware and Distributed Systems biooa AR 2007

ProtocolPolicy Example

[D.Schmidt et.al

e Creation of protocol properties

RTCORBA: : ProtocolProperties var tcp properties =
rtorb->create_tcp protocol properties (
64 * 1024, /* send buffer */
64 * 1024, /* recv buffer */
false, /* keep alive */
true, /* dont_ route */
true /* no_delay */);

e Configuration of protocol list
RTCORBA: : ProtocolList plist; plist.length (2);

“Using Real-time CORBA Effectively”]

plist[0] .protocol type = MY PROTOCOL TAG; // Custom protocol

plist[0] .trans_protocol props =

/* Use ORB proprietary interface */
plist[1l].protocol type = IOP::TAG_INTERNET IOP;
plist[1l].trans_protocol props = tcp properties;
RTCORBA: :ClientProtocolPolicy ptr policy =
rtorb->create_client protocol policy (plist);

Real-time Middleware | Middleware and Distributed Systems 32

// IIOP

AR 2007

Real-Time CORBA Protocol Configuration

Client

(2) Pass object [
reference

-f———O

J

e P

(3) Select

protocol \\
Y

Standard
synchronizers

(4) Invoke operation

Object
(servant)

(1) Create object
reference

Gortable object adapteD

Real-time Middleware | Middleware and Distributed Systems

VME ATM TCP << (?0'12 VME ATM TCP
(s)\ osmma)
Network

AR 2007

RT-CORBA v2.0 Dynamic Scheduling

e Static priority scheduling not sufficient for dynamic workloads

e |[ntegration of other (dynamic) scheduling algorithms (EDFLSF,LLEF,...)

Control Flow
¢ Plugin schedulers
» Distributable Thread (DT) replaces activity definition L
e Each DT has system-wide unique identifier Object Object Object
A B C

e DT has one or more execution scheduling parameter elements (priority, time
constraints (deadlines, utility functions, importance)

e Semantics of acceptability of end-to-end timelininess defined by the
application in context of used scheduling discipline

e Execution of DTs governed by scheduling parameter elements at each
visited node

Real-time Middleware | Middleware and Distributed Systems 34 AR 2007

Distributable Thread Abstraction

Thread 1 Thread 1 DThread 1
Object A Object A Object A |
1

. 1
mlddlgware

Thread
2

Object B Object B Object B

[Douglas E. Jensen “Distributed Threads - "An End-to-End Abstraction for Distributed Real-time”]

Real-time Middleware | Middleware and Distributed Systems 35 AR 2007

Distributed System Scheduling

e Scheduling in distributed systems can be devided into 4 classes

e Scheduling independently on each node and there is no trans-node end-to-
end timeliness requirement (non-realtime systems)

e Scheduling independently on each node but there is a mechanism such as
priority propagation (RT-CORBA specification 1.%)

e Scheduling on each node is global: there is a logical singular system-wide
scheduling algorithm instatiated on each node (implementable in RT-
CORBA 2.0)

e Multi-level scheduling: at least one level of meta-scheduling - global
optimization by adaptive adjustment of local policies

Real-time Middleware | Middleware and Distributed Systems 36 AR 2007

Distributable Threads - Scheduling Segments

e Distributable threads consist of one or more (potentially nested) scheduling
segments (nesting creates scheduling scopes)

e EFach segment represents a sequence of control flow with associated
scheduling parameter elements

¢ Declaration of segments within code through: begin_scheduling_segment and

en d—SC h ed u I In g_Seg ment Distributable Thread Traversing CORBA Objects
e Update of scheduling parameters within mswg Smen
segment using update_scheduling_segment Dimx Z] son
e Segments may span processor boundaries o DJESDX .
ESS
BSSZ Segment
ESSZ I I z
Object A Object B Object C
@ Application call
BSS - begin_scheduling segment [Portable Interceptor
USS - update_scheduling_segment —— Distributable Thread
ESS - end_scheduling segment Normal Thread

Real-time Middleware | Middleware and Distributed Systems 37 AR 2007

Dynamic Scheduling Interfaces

e DT entry points defined by overriding ThreadAction::do method

module RTScheduling {

e DT creation: RTCORBA::Current::spawn

local interface Current :

RTCORBA: :Current {

DistributableThread spawn (

e segment specific functions (begin,end,update) in Threadaction

in unsigned long

start,
stack_size,

// zero means use the 0/S default

¢ Distributable thread id specific functions in RICORBA::Priority base_priority);

e |dType get_current_id(); b
e DistributableThread lookup(in IdType id);
e DT cancelation (RTCORBA::Current::cancel(id))
e Readonly access to scheduling parameters

e Getting current segment names (list)

Real-time Middleware | Middleware and Distributed Systems 38

AR 2007

(Distributed) Real-Time Specification for Java

e Extended thread & synchronization model
¢ RealtimeThread and NoHeapRealtimeThread
e Static priority scheduler with > 28 priorities
e Support for user-defined schedulers
e Extended Memory Model - GC-free memory regions
e Scoped Memory
¢ [mmortal Memory
e Asynchronous Transfer of Control

¢ Direct memory access and interrupt handling

Real-time Middleware | Middleware and Distributed Systems 39

AR 2007

Distributed Real-Time Specification for Java (JSR-50)

e Extention of RTSJ in a natural and familiar way
¢ Real-time RMI (Modification of JSR-78 RMI - Custom Remote Interfaces)
e Support for propagating resource management specific data
e Configuration of underlying transport infratructure
e | exically scoped timing constraints (BeginTimeContraint{}, BeginTimeContraint{})
¢ Distributable Thread Integrity Framework

¢ |[ntegration of application-specific policies for maintaining the health and
integrity of Distributable Threads in presence of failures

e Scheduling Framework

e Plug-in architecture for integration of appropriate user space policies for

Real-time Middleware | Middleware and Distributed Systems 40 AR 2007

Composite Objects - Real-Time with CORBA

[Polze98]

e |[ntegration of real-time into non-realtime CORBA

e Decoupling of real-time and non-real-time part via shared buffer and

consistency protocol (weak consistency for shared variables)

Composite Object

public data

pure non-RT

variables

RT-data

shadow non-RT

variables

shared RT

variables

mirroring

consistency protocol

pure RT

variables

Real-time Middleware | Middleware and Distributed Systems 41

RT-Message Queuces

POSIX 1003.21 Class

(',‘ompffp.\éim Object

CORBA stubs

RT-threads

public
data

RT-data

communication
without QoS

cuarantees

Problems:

preeseenenaes
i IRTimedsage

quenes:

QoS guarantees

Scheduling of RT-threads

priorities

timers

RT-threads

memory management
vim_wire(). locking

overloaded new/malloc

Firewall/mirroring between RT & public data

AR 2007

[A. Polze, L. Sha “Composite Objects: Real-Time Programming with CORBA”|

Composite Objects - Timing Firewalls

¢ Non-real-time parts must not violate real-time scheduling rules

e Usage of scheduling server approach for CPU partitioning

[rio A

%— RT-priorty levels

[TR

non-RT priority levels

v

horizontal firewall

Real-time Middleware | Middleware and Distributed Systems

o
BRE

v Scheduling Server thread
e s ea
:’— RT-slot

L non-RT siot

e,
-

vertical firewall

AR 2007

[A. Polze, L. Sha “Composite Objects: Real-Time Programming with CORBA”|

Composite Objects in Action - Unstoppable Robots

gateway #3 dateway #1 2nd World
+ Composite Object il 1st World Display =g Composite Object Java-based Display
NeXTSTEP simulation NeXTSTEP Solaris
environment
GO NeXTSTEP
OP ‘ i
gateway #4 e
Composite Object controlle controller
, MexTSTEF NeXTSTEF
rtLinux
i robot T
control
Khidiis controller A8 | gateway #2 A Window-based
o : " Composite Object CORBA controller
robot NeXTSTEP R (w)
MeXTSTEP Solaris
CONsensus *
algorithm
Real-time Middleware | Middleware and Distributed Systems 43 AR 2007

[A. Polze, L. Sha “Composite Objects: Real-Time Programming with CORBA”|

Time-Triggered Message- Triggered Object (TMO)

e Early '90s by Kane Kim at Dreamlabs University of California Irvine
e Component structering scheme supporting real-time and non-real-time objects
e A TMOs are distributed computing components interacting via remote method calls
e TMOs can contain two types of methods
e Time-triggered methods (also called spontaneous methods or SpMs)
e Conventional service methods (SvMs)

e Basic concurrency constraint: activation of an SvM triggered by a message from an
external client is allowed only when conflicting SpM executions are not in place

* Triggering times for SpMs must be specified Tor [= From 10am 1o 10-30am
as constants during design time every 30min

start-during (t, t+5min)
finish-by t+10min"

Real-time Middleware | Middleware and Distributed Systems 44 AR 2007

TMO structure

e Object data store: lockable segments
containing data members

e Service methods: triggerd by messages
to provide services requested by client
objects (TMO designer guarantees
deadlines for output production)

e SpMs are invoked when the real-time
clock reaches the specified time

e Candidate times: set of times actual Service
. . . . reques
triggering time will be choosen from queue

e TMO designer guarantees timely service o

to all potential clients by indicating the ~ —=

deadline for every output produced in y
response to a service method request

Real-time Middleware | Middleware and Distributed Systems 45

Name of TMO
Object data store
A 57N E» - SpM1 ___.
-------------- Deadline
i = SpM, ___.@
Reservation g Deadline
queue)
t From b
SvMs SpMs
SvM, [-- @
Deadline
SvM, |--
Deadline
Concurrency .
control
AR 2007

%y
v @
St
LE (%)
]
8!—.:8
=2
833
ES0T
= 0%
2082
oS'co
-
U@EN
[*]
e £
)
o
.Uw
e 12
08'5
o c ©
=
g Ppess Jt=
1w
0 E
£
|—
-cw
£33
go
2%
S
EE
o8
&';
(721
& =
s
=

[K.H.(Kane) Kim “Object Structures for Real-Time Systems and Simulators”]

TMO - Guaranteed Deadlines

e Client’s deadline for result arrival is set by the programmer with knowledge of
the server’s GCT and the transmission times consumed by the communication

infrastructure

e Client’s execution engine ensures that client’s deadline is kept under a GCT

advertised by a server

e Maximum invokation rates (MIR)
are specified during SvM
creation

e |[f a client can’t hold its deadline
it can trigger an alternative
action or choose another TMO
with better timings (comm.
infrastructure, GCT, MIR (load
situation)

Real-time Middleware | Middleware and Distributed Systems

Client object Server object
<0biect data store> <0bject data store>
| |
Method 1 __..-- T |, L Method 2
as® ! 0’
V. | 1:| to, Method 7
’."’ | [“““ 4
R e :
I il
Y W_/
Deadline for Domain of Guaranteed completion
result arrival communication time (GCT) (server's

(client's deadline) infrastructure self-imposed deadline)

[K.H. (Kane) Kim “APIs for Real-Time Distributed Object Programming”]

46 AR 2007

TMO-based Video Conferencing System

Participant site - computer
system

Access Capability (to other TMO’s) Another
participant site computer system

Object Data Store

Audio server, video server, audio
r¢ceiver-player, video receiver-

player, camera: msg_receiver "Send image
to\the camera (pl, p2, ..)",

microphone: msg_receiver "Speak 1nto the
microphone (pl, p2, ..)"

speaker (pl, p2, ..), display unit (pl, p2,

)

[

Userin a
particioant
site

SpM ™ Update the state descriptors in ODS”
Update the state of audio server (microphone)
Update the state of video server (camera)
Update the state of audio receiver-player &
speaker

Update the state of video receiver-player &

Object Execution
cee D Engine
Peripheral drivers

Video Conferencing System

Access Capability (to other TMO’s)
None

Object Data Store

(0-n) Participant site computer
S .

SpM (driven by an infinite-precision
clock)

Update the states of participant site
computer systems

SvM

Enter a seat

Real-time Middleware | Middleware and Distributed Systems

47

Participant site A

Participant site B
--»: Audio signal
LMC: logical multicast
channel

» . Video signal
»: Sync. Signal

AR 2007

[K.H. (Kane) Kim “The TMO Structuring Approach and its Potential for Telecommunication Applications”]

Open Systems Architecture - OSA+

e Developed at University of Karlsruhe (Prof.
Brinkschulte)

¢ Real-time middleware using microkernel
concepts targeting small low power devices

e Active entities in OSA+ are services - they
communicate via jobs

¢ A job consist of order and result
e Services can be plugged into a platform

e Multiple platforms in a distributed environment
form a virtual platform hiding heterogenous
infrastructure of underlying systems

Real-time Middleware | Middleware and Distributed Systems 48

User
Service

User
Service

OSA+ Core Platform

Basic
Services

v

Adaptation to hardware,

operating system and
communication system

Extension
Services

l

Functional extensions

AR 2007

[F. Picioroaga et. al “OSA+ Real-Time Middleware, Results and Perspectives”]

OSA+ Jobs

¢ Jobs are used for:

e Communication - by exchaning order and result

e Synchronisation - by creating a specific order of orders

¢ Parallel execution - by parallel creation or orders

¢ Real-time execution - using time contraints within orders

Real-time Middleware | Middleware and Distributed Systems

Server
Service

s £
iExists Await Exists
Result ~ Order| : Order

Return

Result

49 AR 2007

[F. Picioroaga et. al “OSA+ Real-Time Middleware, Results and Perspectives”]

OSA+ Base Services

e Task Service - Connection between micro kernel and underlying operting
system. Implements scheduling, synchronization, parallel execution

e Memory Service - Connection between micro kernel and memory management
of underlying operting system. Implements dynamic allocation and
management of memory

e Event Service - Time-triggered execution of jobs and copling of job delivery to
internal and external events

e Communication Service - Connection to communication sub-system. Delivery
of jobs to distributed services

e Addressing Service - Localization of services. Clients can query locations of
distributed services

e Reconfiguration Service - dynamic reconfiguration of services during runtime

Real-time Middleware | Middleware and Distributed Systems 50 AR 2007

Further Reading

e J. Lui. “Real-Time Systems”, Prentice Hall
e RealTime-CORBA Specification 2.0, OMG, November 2003

e Carlos O. Rain, D. Schmidt, “Using Real-time CORBA effectivly”,
www.cs.wustl.edu/~schmidt/tutorials-corba.html/

¢ J. Anderson, D. Jensen, “Distributed Real-time Specification for Java - A
Status Report”

e K.H. (Kane) Kim, “Object Structures for Real-time Systems and Simulators”,
IEEE Computer 1997

e F. Picioroaga et. al. “OSA+ Real-Time Middleware, Results and Perspectives”,
ISORC ‘04

Real-time Middleware | Middleware and Distributed Systems 51 AR 2007

