
AP 2005

Design Patterns (II)

AP 2005

Purpose

BehavioralStructuralCreational

Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Interpreter
Template Method

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Adapter (class)Factory Method

Abstract Factory
Builder
Prototype
Singleton

Object

Class

Scope

Defer object creation to
another class

Defer object creation to
another object

Describe algorithms and
flow control

Describe ways to
assemble objects

Design Pattern Space

AP 2005

Behavioral Patterns

• Concerned with algorithms and the assignment of
responsibilities between objects

• Describe communication flows among objects

• Behavioral class patterns
– Use inheritance to distribute behavior among classes

• Behavioral object patterns
– Use object composition rather than inheritance

– Describe how groups of peer objects cooperate for a task

– Patterns on how peer objects know each other

AP 2005

CHAIN OF RESPONSIBILITY
(Object Behavioral)

• Intent:
– Avoid coupling the sender of a request to its receiver

– Give more than one object a chance to handle a request

– Chain the receiving objects

– Pass the request along until an Object handles it

• Motivation:
– Example: Context-sensitive help facility for a GUI

• Users can obtain help info on any widget

• Help provided depends on the chosen widget and its context

– Object that provides help is not directly known to object (e.g. button)
that initiates the request

– Decouple senders and receivers of requests

AP 2005

CHAIN OF RESPONSIBILITY
Motivation

aPrintButton

aSaveDialog

anApplication

handler

handler

anOKButton

handler

aPrintDialog

handler

handler

specific general

AP 2005

CHAIN OF RESPONSIBILITY
Motivation

aPrintDialogaPrintButton

HandleHelp()

HandleHelp()

anApplicaton

• Object in the chain receives
the request

• Handles it or forwards it

• Requestor has „implicit
receiver“ for the request

• Final receiver handles or
ignores the request

AP 2005

CHAIN OF RESPONSIBILITY
Motivation

handler

HelpHandler

HandleHelp()

if can handle {
 ShowHelp()
} else {
 Handler :: HandleHelp()
}

handler -
>HandleHelp()

Button

HandleHelp()
ShowHelp()

Dialog

WidgetApplication

• HelpHandler forwards
requests by default

• Subclasses can
override operation

• Requests are fulfilled
in the subclass, or
handled by the default
implementation

AP 2005

CHAIN OF RESPONSIBILITY
Structure

Client
Handler

HandleRequest()

ConcreteHandler1

HandleRequest()

ConcreteHandler2

HandleRequest()

successor

aClient
aConcreteHandler1

aConcreteHandler2
aHandler

successor
successor

AP 2005

CHAIN OF RESPONSIBILITY
Participants

• Handler (HelpHandler)
– Defines an interface for handling requests

– (optional) implements the successor link

• ConcreteHandler (PrintButton, PrintDialog)
– Handles requests it is responsible for

– Either handles requests or forwards it to its successor, usually through
the Handler

• Client
– Initiates the request to a ConcreteHandler object on the chain

AP 2005

CHAIN OF RESPONSIBILITY
Applicability / Benefits

• Use Chain of Responsibility when:
– More than one object may handle a request

– The handler is not known a priori

– The handler should be identified automatically

– You don’t want specify the receiver explicitly

– The handler objects are specified dynamically

• Benefits:
– Reduced coupling

• Sender and receiver have no explicit knowledge of each other

• Single reference to successor

– Flexible assignment of object responsibilities

AP 2005

COMMAND
(Object Behavioral)

• Intent:
– Encapsulate a request as an object

• Parameterize clients with different requests (queue or log requests)

• Support undoable operations (Transactions)

– Decouple requesting object from performing object

• Motivation:
– Decouple GUI toolkit request from

• Operation being requested

• Receiver of the request

– Abstract command class

• interface for executing operations

• Requestor does not know which Command subclass is used

– Concrete Command subclass specifies receiver-action pair

• Final receiver as instance variable

AP 2005

COMMAND
Motivation

Application

Add(Document)

Menu

Add(MenuItem)

MenuItem

Clicked()

Command

Execute()

command ->Execute()

Document

Open()
Close()
Cut()

Copy()
Paste()

Application

Add(Document)

Menu

Add(MenuItem)

MenuItem

Clicked()

Command

Execute()

command ->Execute()

Document

Open()
Close()
Cut()

Copy()
Paste()

command

• Each possible choice in a Menu is an instance of a MenuItem class
• Application creates menus and their menu items

Instance variable stores
receiver of an event

AP 2005

COMMAND
Motivation

Document

Open()
Close()
Cut()

Copy()
Paste()

Document

Open()
Close()
Cut()

Copy()
Paste()

Command

Execute()

PasteCommand

Execute() document –>Paste()

• PasteCommand supports pasting text from the clipboard into a document.
• PasteCommand‘s receiver is the Document object given at instantiation.
• The Execute operation invokes Paste() on the receiving document.

AP 2005

COMMAND
Motivation Command

Execute()

Application

Add(Document)
OpenCommand

Execute()
AskUser()

application

name = AskUser()
doc = new Document(name)
application -> Add(doc)
doc -> Open()

• OpenCommand‘s operation Execute
• prompts the user for a name
• creates the corresponding document object
• adds document to the receiving app
• opens the document

AP 2005

COMMAND
Motivation

Command

Execute()

MacroCommand

Execute()

for all c in commands
c -> Execute()

command

• MacroCommand is a concrete Command subclass
• Executes a sequence of commands
• MacroCommand has no explicit receiver – Command objects in the

sequence define their own receivers.

AP 2005

COMMAND
Structure

Client Invoker Command

Execute()

Receiver

Action()
receiver

receiver -> Action();

ConcreteCommand

Execute()

state

AP 2005

COMMAND
Participants

• Command
– Declares interface for operation execution

• ConcreteCommand (PasteCommand, OpenCommand)
– Defines binding between Receiver and an action

– Implements operation execution by invoking Receiver

• Client (Application)
– Creates a ConcreteCommand object and sets the Receiver

• Invoker (MenuItem)
– Asks the Command to carry out the request

(stores ConcreteCommand)

• Receiver (Document, Application)
– Knows how to perform the operation(s) for a request

AP 2005

COMMAND
Interaction Between Objects

aReceiver aClient aCommand anInvoker

new Command(aReceiver)

StoreCommand(aCommand)

Execute()
Action()

AP 2005

COMMAND
Applicability

Use the Command pattern when you want to:
• Parameterize objects by an action to perform

– Commands = OO replacement for callback function registration

• Decouple request specification and execution
– Command object’s lifetime is independent from original request

– Command object might be transferred to another process

• Implement undo operation
– Command object maintains state information for reversing its effects

– Additional Unexecute() operation

– Saving / loading operations for state allows crash fault tolerance

• Model transactional behavior
– Encapsulation of set of data changes

AP 2005

INTERPRETER
(Class Behavioral)

• Intent:
– Define representation of language through its grammar

– Build something that uses the representation to interpret sentences

• Motivation:
– Interpreter for problems represented through language sentences

– Example: Regular expressions

• Implementation of search algorithms uses given pattern language

– Example grammar

• expression ::= literal | alternation | sequence |

repetition | ‘(‘ expression ‘)’

• alternation ::= expression ‘|’ expression

• sequence ::= expression ‘&’ expression

• Repetition ::= expression ‘*’

AP 2005

INTERPRETER
Motivation

RegularExpression

Interpret()

LiteralExpression

Interpret()

literal

SequenceExpression

Interpret()

AlternationExpression

Interpret()Interpret()

RegularExpression

repetition

alternative 1

alternative 2

expression 1

expression 2

AP 2005

INTERPRETER
Motivation

aSequenceExpression

aLiteralExpression

aRepetitionExpression

expression1
expression 2

‘raining‘

repeat

anAlternationExpression

alternation 1
alternation 2

aLiteralExpression

‘dogs‘

aLiteralExpression

‘cats‘

Raining & (dogs | cats) *

AP 2005

INTERPRETER
Structure

Client

Context

AbstractExpression

Interpret(Context)

TerminalExpression

Interpret(Context)

NoterminalExpression

Interpret(Context)

AP 2005

INTERPRETER
Participants

• AbstractExpression (RegularExpression)
– Declares abstract Interpret operation

• TerminalExpression (LiteralExpression)
– Implements Interpret operation according to symbol

• NonterminalExpression (AlternationExpression, …)
– One class for each rule in the grammar
– Holds instances of AbstractExpression for each symbol in it
– Implements Interpret operation, mostly through recursion on the
AbstractExpression instances

• Context
– Global interpreter information, manipulated by Interpret implementations
– Initialized by Client

• Client
– Builds representation of sentence through NonterminalExpression and
TerminalExpression classes

– Invokes Interpret operation of root symbol

AP 2005

INTERPRETER
Applicability

Use the Interpreter pattern when:

• You have abstract syntax trees
– there is a language to interpret

– statements are representable as AST

• The grammar is simple
– Large and unmanageable class hierarchy in complex cases (use

parser generators)

• Efficiency is not a critical concern
– most efficient interpreters first translating parse trees into another form

– Example: Regular expressions ! state machines

– Translator itself could be an interpreter

AP 2005

ITERATOR
(Object Behavioral)

• Intent:
– Access elements of an aggregate object sequentially

– Don’t expose underlying representation

• Motivation:
– Traversal of aggregate list object

– Allow multiple pending traversals

– Separate traversal operations from list interface

• Solution:
– Take responsibility for access and traversal out of the list interface

– Iterator class for list element access

• Current element is managed in the Iterator implementation

– Decouple aggregate class from client

AP 2005

ITERATOR
Motivation

List

Count()
Append(Element)
Remove(Element)

...

ListIterator

First()
Next()
IsDone()
CurrentItem()

index

list

AP 2005

ITERATOR
Polymorphic Iteration

AbstractList

CreateIterator()
Count()
Append(Item)
Remove(Item

...

Iterator

First()
Next()
IsDone()
CurrentItem()

client

List

SkipList

ListIterator

SkipListIterator

Iteration mechanism independent of concrete aggregate class

AP 2005

ITERATOR
Structure

Aggregate

CreateIterator()

Iterator

First()
Next()
IsDone()
CurrentItem()

client

ConcreteAggregate

CreateIterator()

return new ConcreteIterator (this)

ConcreteIterator

AP 2005

ITERATOR
Applicability / Benefits

Use the Iterator pattern to access aggregate content
– No exposing of internal representation

– Support for multiple traversals

– Uniform traversal interface for different aggregates

Benefits:
• Support for variation in the traversal of an aggregate

– e.g. parse order

– New traversals through Iterator sublasses

• Simplification of Aggregate interface

• Each iterator keeps track of it’s own traversal state

AP 2005

MEDIATOR
(Object Behavioral)

• Intent:
– Define object which encapsulates interaction of objects

– Keep objects from referring to each other, allow variation of interaction

• Motivation:
– OO-design might lead to structure with many connections

– Example: Implementation of dialog box

• Window with widgets

• Most widgets depend on each other

• New dialogs with same widgets have different behavior

– Define control and coordination intermediary ! director

• Hub of communication for widgets

• Every widget only need to know the director object

AP 2005

MEDIATOR
Motivation

The quick brown fox ...

New cetury schoolbookFamily

Avant garde
chicago
courier
helvetica
palatino
times roman
zapf dingbats

Weight

Slant

Size

medium bold demibold

 roma italic oblique

condensed34pt

AP 2005

MEDIATOR
Motivation

aClient

aFontDialogDirector

aListBox

director

aButton

director aEntryField

director

director

AP 2005

MEDIATOR
Motivation

Mediator
aFontDialogDirectoraClient

SetText()

GetSelection()

WidgetChanged()

Colleagues

aListBox anEntryField

ShowDialog()

AP 2005

MEDIATOR
Motivation

DialogDirector

ShowDialo()
CreateWidgets()
WidgetChanged(Widget)

Widget

Changed()

FontDialogDirector

CreateWidgets()
WidgetChanged(Widget)

EntryField

SetText()

ListBox

GetSelection()

director ->WidgetChanged(this)

list

field

director

AP 2005

MEDIATOR
Structure

Mediator Colleague

ConcreteMediator ConcreteColleague1 ConcreteColleague2

mediator

AP 2005

MEDIATOR
Typical Object Structure

aColleague

aConcreteMediator

mediator

aColleague

mediator

aColleague

mediator

aColleague

mediator

aColleague

mediator

AP 2005

MEDIATOR
Applicability / Benefits

Use the Mediator pattern when:
• Multiple objects …

– … communicate in a complex way

– … have unstructured / difficult dependencies

– … prevent reuse of single objects through the tight interdependencies

– … should be easily configurable with another behavior

Benefits:
– Limits subclassing in case of behavior change

– Decouples colleague objects

– Simplifies object protocols (one-to-many vs. many-to-many)

– Abstraction of object cooperation

– Provides centralized control

AP 2005

MEMENTO
(Object Behavioral)

• Intent:
– Capture and externalize an object’s internal state

– Provide capability to restore object later

– Keep encapsulation principle

• Motivation:
– Save state information for later restore

• Checkpointing mechanisms

• Undo mechanisms

– Memento object

• Storage for state snapshot of another (originator) object

• Read / written on request by originator object

• Opaque to other objects

AP 2005

MEMENTO
Structure

Originator

SetMemento(Memento m)
CreateMemento()

state

Memento

GetState()
SetState()

state

Caretaker

return new Memento (state) state = m -> GetState()

memento

• Caretaker requests Memento from Originator
– holds it for a time

– passes it (eventually) back to the originator

• Only the Originator of a Memento can assign / retrieve its state

AP 2005

MEMENTO
Participants

• Memento
– Stores internal state of the Originator object

– Protects against access by objects other than the Originator
• Narrow interface for Caretaker

• Wide interface for Originator

• In best case, only one Originator has access to the state data

• Originator
– Creates Memento containing current state snapshot

– Uses Memento to restore internal state

• Caretaker
– Responsible for Memento’s safekeeping

– Never operates / examines content of a Memento

AP 2005

MEMENTO
Applicability

Use the Memento pattern when:
• Snapshot of object state is needed

– Later restore

• Direct interface would break encapsulation
– Exposing of implementation details

Benefits:

• Preserves encapsulation boundaries
– Shields other objects from potentially complex Originator internals

• Simplifies Originator
– Storage management handled externally

AP 2005

OBSERVER
(Object Behavioral)

• Intent:
– Define one-to-many dependency between objects

– Notification of dependent objects about state change

• Motivation:
– Need to maintain consistency between related objects

– Example: GUI toolkit

• Separate presentation aspects from application data

• Different visualization of same data

• No dependency between visualization objects, but all update on
data change

– Subject and it’s dependent Observers

– Publish-subscribe interaction

AP 2005

OBSERVER
Motivation

observers

 a b c

x 60 30 10

y 50 30 20

z 80 10 10
 a b c

a

b

c

a = 50%
b = 30%
c = 20%

subject

change notification

state request

AP 2005

OBSERVER
Structure

Subject

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

GetState()
SetState()

subjectState

observers

Observers

Update()

return subjectState

for all o in observers{
 o -> Update()
}

ConcreteObserver

Update()

observerState

observerState=
 subject -> GetState()

subject

AP 2005

OBSERVER
Participants

• Subject:
– Knows its Observers

– Provides interface for attaching/detaching Observer objects

• Observer:
– Defines an Update interface, for changes in the subject

• ConcreteSubject:
– Stores state, which is of interest to ConcreteObserver objects

– Sends a notification to its observers when its state changes

• ConcreteObserver:
– Maintains a reference to a ConcreteSubject object

– Own state, consistent with Subject state through Update interface

AP 2005

OBSERVER
Collaborations

• ConcreteSubject notifies its observers whenever the
observer’s state becomes invalid

• ConcreteObserver object may query the Subject for
information in case of notification

• Notification might be triggered by another Observer

AP 2005

OBSERVER
Applicability

Use the Observer pattern when:
• Abstraction has two dependent aspects

• Dependencies on object state change are unclear

• Need notification without knowledge about Observers

Benefits:
• Abstract coupling between Subject and Observers

• Support for broadcast communication

AP 2005

STATE
 (Object Behavioral)

• Intent:
– Allow object to alter its behavior, depending on internal state change

– Object appears to change its class

• Motivation:
– Example: Class TCPConnection

– Represent possible states of network connection as objects

– Abstract base class TCPState

• Subclasses implement state-specific behavior

– TCPConnection maintains a state object

– State-specific requests are handled directly by the according
state object

AP 2005

STATE
Motivation

TCPConnection

Open()
Close()
Achnowledge()

state -> Open()

TCPState

Open()
Close()
Achnowledge()

TCPEstablished

Open()
Close()
Achnowledge()

TCPListen

Open()
Close()
Achnowledge()

TCPClosed

Open()
Close()
Achnowledge()

state

AP 2005

STATE
Structure

Context

Request()

State

Handle()

state -> Handle()
ConcreteStateA

Handle()

ConcreteStateB

Handle()

state

AP 2005

STATE
Collaborations

• Context delegates state-specific requests to current
ConcreteState object

• Context may pass itself as an argument to the
State object

• Context is the primary interface for clients
– Clients can configure a Context with State objects

– Once configured, Clients don´t have to deal any longer directly
with State objects

AP 2005

STATE
Applicability

Use the State pattern when:
• Object’s behavior depends on its state

• Object must change behavior at runtime, reasoned by
state information

Benefits:
• Localize state-specific behavior

• Makes state transitions explicit

• State objects can be shared

AP 2005

STRATEGY
 (Object Behavioral)

• Intent:
– Define family of algorithms

– Encapsulate each one, make them interchangeable

– Vary algorithm independent from clients

• Motivation:
– Example: Break composed text stream into lines

• Simple strategy (AsciiParser)

• Paragraph optimization (TexParser)

• Array composition (fixed number of columns)

– Don’t integrate different algorithms directly in client

• Solution:
– Definition of encapsulating classes, algorithm is a Strategy

AP 2005

Composition

Traverse()
Repair()

Compositor -> Compose()

compositor

STRATEGY
Motivation

Composition

Compose()

SimpleCompositor

Compose()

TeXCompositor ArrayCompositor

Compose()
Compose()

AP 2005

STRATEGY
Structure

Context

ContextInterface()

strategy
Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorighmInterface()

ConcreteStrategyB ConcreteStrategyC

AlgorighmInterface() AlgorighmInterface()

AP 2005

STRATEGY
Applicability

 Use the Strategy pattern when

• Related classes differ only in their behaviour

• You need different variants of an algorithm

- Should be implementable as hierarchy

• To avoid exposing algorithm-specific data structures

• To replace conditional statements for behaviour

- Move conditional branches to according Strategy classes

AP 2005

TEMPLATE METHOD
 (Class Behavioral)

• Intent:
– Define algorithm skeleton in an operation

– Subclass might redefine steps of the algorithm

• Motivation:
– Example: Framework with Application / Document classes

– Applications can subclass for specific needs

– Common algorithm for opening a document

• Check of the document can be opened " app.-specific

• Create app-specific Document object " app.-specific

• Add new Document to the set of documents

• Read document data from a file " doc.-specific

• Solution:
– Define some of the algorithm steps using abstract operations

AP 2005

TEMPLATE METHOD
Motivation

Document

Save()
Open()
Close()
DoRead()

MyDocument

DoRead()

docs

Application

AddDocument()
OpenDocumenr()
DoCreateDocument()

CanOpenDocument()

AboutToOpenDocument()

MyApplication

DoCreateDocument()
CanOpenDocument()
AboutToOpenDocument()

return new MyDocument

AP 2005

TEMPLATE METHOD
Structure

AbstractClass

TemplateMethod()
PrimitiveOperation1()

PrimitiveOperation2()

ConcreteClass

PrimitiveOperation1()
PrimitiveOperation“()

...
PrimitiveOperation1()

...
PrimitiveOperation2()

...

“Hollywood Principle”:

“Don’t call us, we’ll call you”

AP 2005

TEMPLATE METHOD
Applicability

The Template Method pattern should be used

• To implement the invariant parts of an algorithm once

• To leave it up to subclasses to implement varying behaviour

• To avoid code duplication

- Centralize common behaviour of subclasses

- First identify the differences in the existing code

- Then separate the differences into new operation

- Replace the differing code with a template method

• To control subclasses extensions

- Template method that calls “hook” operations

- permitting extensions only at those points.

AP 2005

VISITOR
 (Object Behavioral)

• Intent:
– Represent operation for object structure elements

– Define new operations without changing the element classes

• Motivation:
– Example: Compiler with internal AST code representation

• Operations on AST (type checking, code optimization, …)

• Different AST node types (assignment node, variable node, …)

– Providing operations on each node type is hard

• New operations

• Solution:
– Package related operations in a separate object ! Visitor

– Pass visitor to element objects

– Node classes become independent of operations applied to them

AP 2005

VISITOR
Motivation

Node

TypeCheck()
GenerateCode()
PrettyPrint()

VariableRefNode

TypeCheck()
GenerateCode()
PrettyPrint()

AssignmentNode

TypeCheck()
GenerateCode()
PrettyPrint()

AP 2005

VISITOR
Motivation

NodeVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

TypeChecingVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

CodeGeneratingVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

AP 2005

VISITOR
Motivation

Node

Accept(NodeVisitor)

AssignmentNode

Accept(NodeVisitor v)

VariableRefNode

Accept(NodeVisitor v)

v -> VisitAssignment(this) v -> VisitAssignment(this)

Program
Two class hierarchies:
• Elements being operated on

(Node hierarchy)
• Visitors with node operations

(NodeVisitor hierarchy)

• Acceptance of visitor through
operation call

AP 2005

VISITOR
Structure (I)

Visitor

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ContcreteVisitor1

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ContcreteVisitor2

client

AP 2005

VISITOR
Structure (II)

ObjectStructure Element

Accept(Visitor)

ConcreteElementA

Accept(Visitor v)
OperationA()

ConcreteElementB

Accept(Visitor v)
OperationB()

V -> VisitConcreteElementA(this) V -> VisitConcreteElementB(this)

AP 2005

VISITOR
Collaborations

• Client must create a ConcreteVisitor object

• Client traverses the object structure, visiting each element

• Visited Element calls class corresponding Visitor operation
– Element supplies itself as an argument to operation

– Visitor can access state information

AP 2005

VISITOR
Applicability

Use the Visitor pattern when

• Need to perform operations on differing objects, depending on
concrete classes

• Many distinct and unrelated operations need to be performed on
objects

– Avoid ‘pollution’ of object interface

– Visitor pattern keeps related operations together

– Only needed application operations with shared object structures

• Rarely change of element object structure, frequent change of
operation set

- Changes of object structure classes might require costly visitor changes

AP 2005

Purpose

BehavioralStructuralCreational

Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Interpreter
Template Method

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Adapter (class)Factory Method

Abstract Factory
Builder
Prototype
Singleton

Object

Class

Scope

Defer object creation to
another class

Defer object creation to
another object

Describe algorithms and
flow control

Describe ways to
assemble objects

Design Pattern Space

AP 2005

Design Patterns in Smalltalk MVC

• Model
– Implements algorithms (business logic)

– Independent of environment

• View:
– Communicates with environment

– Implements I/O interface for model

• Controller:
– Controls data exchange (notification protocol) between model and view

View
GUI, Document 2

Controller
Model

US $ -> EUR

Model
EUR -> US $

View
GUI, Document 1

View
character-based

AP 2005

Model/View/Controller (contd.)

• MVC decouples views from models – more general:
– Decoupling objects so that changes to one can affect any number of

others

– without requiring the object to know details of the others

– Observer pattern solves the more general problem

• MVC allows view to be nested:
– CompositeView objects act just as View objects

– Composite pattern describes the more general problem of grouping
primitive and composite objects into new objects with identical
interfaces

• MVC controls appearance of view by controller:
– Example of the more general Strategy pattern

• MVC uses Factory and Decorator patterns as well

