
AP 04/04

A Comparison of Component

Frameworks

AP 04/04

Overview

• The Component Landscape

– Objects vs. Components

– Concepts of reuse, deployment, (graphical) builder tools

• Component Systems

– NeXTSTEP Interface Builder, Java Beans, Component Object Model (COM)

• Component Programming with .NET

• Aspects: Problems with Component Frameworks

– Non-functional component properties

– Aspect-oriented programming

• How C# and .NET change the scene

– Dynamic Re-Configuration in a .NET component framework

– Reflection and attributed-based programming – our aspect weaver

• Conclusions

AP 04/04

Mainframes PC‘s The Grid

Hardware Software Middleware

IBM Microsoft ???

closed closed open standards,

proprietary proprietary WebServices

PC1

PC3PC2

The Shifting Paradigm

Cluster

SuperDome

AP 04/04

Why Components?

„Software components are binary units of
independent production, acquisition, and
deployment that interact to form a functioning
system“ (Szyperski 1997)

AP 04/04

The Ultimate Difference

• Components capture the static nature of

a software fragment.

• Objects capture its dynamic nature.
– Simply treating everything as dynamic can eliminate this distinction.

• Good software engineering practices strengthen the

static description of systems as much as possible.
– Dynamics can always be superimposed where needed.

– Meta-programming and just-in-time compilation simplify

this soft treatment of the boundary between static and dynamic.

AP 04/04

The Component Landscape

Component models

Client-side Server-side
Distributed

Model-View-Controller

WebObjects

ASP.NET

JSP

Naming

patterns

Language

constructs

Smalltalk

Objective-C

JavaBeans

C#

(Eiffel)

Component Pascal

Transactions

Persistency

Security

COM+ / .NET

Enterprise Services

J2EE

N
o

n
-f

u
n

c
ti
o

n
a

l
p

ro
p

e
rt

ie
s
?

 V
e

rs
io

n
in

g
?

(D
is

tr
ib

u
te

d
)

D
e

p
lo

y
m

e
n

t?

AP 04/04

I
Setting the stage:

NeXTSTEP and its tools

Components at Work

AP 04/04

AP 04/04

Déjà vu

AP 04/04

NeXTSTEP InterfaceBuilder

• Component model

based on Objective-C
– Class == object

– Runtime type info

• Graphical management of

events
– Revolutionary tool (1991)

– Interconnects event sources

and sinks graphically

AP 04/04

WebObjects

• Extended component model
– NeXT‘s Objective-C classes

– JavaBeans

• Targeted towards host-based and web-based apps.
– Generate html-forms

• Implemented on top of OpenStep (for Windows)
– MacOS X Server, Windows NT/2000

– All the tools are still available

– Shift towards Java introduced a number of bugs

AP 04/04

WebObjectsBuilder on Windows 2000

AP 04/04

II
The JavaBeans

component model

Components at Work

AP 04/04

JavaBeans - based on

Naming Patterns

• Any object that conforms to certain rules can be a bean.
– No Bean-superclass

• Many beans are AWT components
– AWT = Abstract Windowing Toolkit

– Invisible beans may be useful

• A bean is characterized by properties, events, and

methods it exports.

• A bean communicates by generating events.
– Event model is based on java.util.EventObject and

java.util.EventListener interfaces

AP 04/04

Creating JavaBeans Components

Two rules implied by the JavaBeans architecture include:

• the Bean class must provide zero-argument

constructors so it can be created using

Beans.instantiate(), and

• the Bean must support persistence, by implementing

either Serializable or Externalizable.

• Considerations need to be taken for persistence:
– use of the transient keyword when using the default read and write

methods.

AP 04/04

AP 04/04

Methods

• Public methods describe the Bean’s behavior.
– Excluding methods that get/set property values

– Excluding methods that register/remove event listeners

• Public methods are exposed by the builder tool.

• The methods are used by the builder tool or the user to

construct connections between Beans.

AP 04/04

Properties

• Getter:
– public T getP()

• Boolean getter:
– public boolean isP()

• Setter:
– public void setP(T)

• Exceptions:
– Property accessor methods can throw any type

of checked or unchecked exceptions

A bean defines a property p of type T if it has an accessor

method adhering to the following naming pattern:

Special cases:

• Indexed properties

• Bound properties

• Constrained properties

• Property editors

• Customizers

AP 04/04

Packaging

• JavaBeans are delivered by means of a JAR file.

• A JAR that contains a Bean must include
– a Manifest declaring the Beans it contains,

– be it a class or a persistent representation of a prototype of the Bean.

• In the absence of additional information, a Bean

packaged in a given JAR file may require all the files in

that JAR for its successful operation;
– a builder tool that uses JavaBeans components from a series of JAR

files will need to include all files in these JARs

AP 04/04

Packaging (contd.)

• Express Inter-Bean dependencies:
– Design-Time-Only and Depends-On tags.

(JavaBeans 1.01)

• The JAR can also contain any other files
– such as images, sounds, HTML help files

• The JAR can also contain different localized versions of

this information.
– To support deployment of the Bean in a builder tool the JavaBeans

component developer can insert Javadoc information into the JAR as

well.

AP 04/04

Enterprise Java Beans

III

AP 04/04

Enterprise JavaBeans Technology

• Enterprise JavaBeans (EJB)
– defines a model for the development and deployment of reusable Java

server components.

• Components
– pre-developed pieces of application code that can be assembled into

working application systems.

• JavaBeans
– support reusable development components.

• EJB architecture
– logically extends the JavaBeans component model to support server

components.

AP 04/04

Server Components

and Application Servers

• Server components
– are application components that run in an application server.

– Applications are based on a multitier, distributed object architecture

– Most of an application's logic is moved from the client to the server.

– The application logic is partitioned into one or more business objects

that are deployed in an application server.

• Java application server
– provides an optimized execution environment for server-side Java

application components.

– high-performance, highly scalable, robust execution environment

specifically suited to support Internet-enabled application systems.

– "Write Once, Run Anywhere" (WORA) portability.

AP 04/04

Communication Protocols

• Client applications may use a variety of protocols.
– Java technology clients invoke the application using the native Java

Remote Method Invocation (RMI) interface.

– RMI requests are transferred using the Java Remote Method Protocol
(JRMP) or the Internet InterORB Protocol (IIOP).

– Native language clients can invoke the application using CORBA IDL
running over IIOP or a COM/CORBA internetworking service running
over IIOP.

– The RMI client proxy could also be rendered as an ActiveX control to
provide easy integration with any Windows application.

– Browsers can invoke the application through a servlet running on the
HTTP server.

– The browser communicates with the servlet using HTTP, and the
servlet communicates with the application using RMI.

AP 04/04

Existing Infrastructure Integration

AP 04/04

EJB Architecture and their APIs

• EJB

– The Enterprise JavaBeans API defines a server component model that

provides portability across application servers and implements automatic

services on behalf of the application components.

• JNDI

– The Java Naming and Directory Interface API provides access to naming and

directory services, such as DNS, NDS, NIS+, LDAP, and COS Naming.

• RMI

– The Remote Method Invocation API creates remote interfaces for distributed

computing on the Java platform.

• Java IDL

– The Java Interface Definition Language API creates remote interfaces to

support CORBA communication in the Java platform. Java IDL includes an IDL

compiler and a lightweight, replaceable ORB that supports IIOP.

AP 04/04

EJB Architecture and APIs (contd.)

• Servlets and JSP
– The Java Servlets and Java Server Pages APIs support dynamic HTML

generation and session management for browser clients.

• JMS
– The Java Messaging Service API supports asynchronous communications

through various messaging systems, such as reliable queuing and publish-and-
subscribe services.

• JTA
– The Java Transaction API provides a transaction demarcation API.

• JTS
– The Java Transaction Service API defines a distributed transaction

management service based on CORBA Object Transaction Service.

• JDBCTM
– The JDBC Database Access API provides uniform access to relational

databases, such as DB2, Informix, Oracle, SQL Server, and Sybase.

AP 04/04

EJB Object Model

AP 04/04

Enterprise JavaBeans

Component Model

• The Enterprise JavaBeans component model logically extends the
JavaBeans component model to support server components.

• Server components
– are reusable, prepackaged pieces of application functionality that are designed

to run in an application server.

– They can be combined with other components to create customized application
systems.

• Server components
– are similar to development components, but they are generally larger grained

and more complete than development components.

• Enterprise JavaBeans components (enterprise beans)
– cannot be manipulated by a visual Java IDE in the same way that JavaBeans

components can.

– Instead, they can be assembled and customized at deployment time using tools
provided by an EJB-compliant Java application server.

AP 04/04

Implicit Services

• The EJB container performs a number of service on

behalf of the enterprise beans-

• Lifecycle.
– Individual enterprise beans do not need to explicitly manage process

allocation, thread management, object activation, or object

destruction.

• State Management.
– Individual enterprise beans do not need to explicitly save or restore

conversational object state between method calls.

• Security.
– Individual enterprise beans do not need to explicitly authenticate users

or check authorization levels.

AP 04/04

Implicit Services (contd.)

• Transactions.
– Individual enterprise beans do not need to explicitly specify transaction

demarcation code to participate in distributed transactions.

– The EJB container can automatically manage the start, enrollment,

commitment, and rollback of transactions on behalf of the enterprise

bean.

• Persistence.
– Individual enterprise beans do not need to explicitly retrieve or store

persistent object data from a database.

– The EJB container can automatically manage persistent data on

behalf of the enterprise bean.

AP 04/04

Potential Enterprise JavaBeans

Systems
• TP monitors,

– such as IBM TXSeries and IBM CICS/390

• Component transaction servers,
– such as Sybase Jaguar CTS

• CORBA systems,
– BEA Systems M3, IBM WebSphere Advanced Edition, Inprise VisiBroker/ITS

• Relational database systems,
– such as IBM DB2, Informix, Oracle, and Sybase

• Object database systems,
– such as GemStone GemStone/J

• Object/relational caching systems,
– Persistence PowerTier and Secant Extreme

• Web application servers,
– BEA WebLogic, Bluestone Sapphire, IBM WebSphere, Netscape Application

Server, Oracle Application Server, Progress Apptivity, SilverStream Application
Server, and Sun NetDynamics.

AP 04/04

EJB Container

AP 04/04

Session Beans

• A session bean is created by a client
– exists only for the duration of a single client/server session.

• Performs operations on behalf of the client
– such as accessing a database or performing calculations.

• Can be transactional
– but (normally) they are not recoverable following a system crash.

• Can be stateless
– or they can maintain conversational state across methods and

transactions.

– The container manages the conversational state of a session bean if it
needs to be evicted from memory.

• A session bean must manage its own persistent data.

AP 04/04

Entity Beans

• Object representation of persistent data
– maintained in a permanent data store, such as a database.

– A primary key identifies each instance of an entity bean.

• Entity beans can be created
– either by inserting data directly into the database or by

– creating an object (using an object factory Create method).

– Entity beans are transactional, and they are recoverable following a

system crash.

• Support for session beans is required,
– but support for entity beans and container-managed persistence is

optional.

AP 04/04

Enterprise JavaBeans Security

• Automates the use of Java platform security
– enterprise beans do not need to explicitly code Java security routines.

– The security rules for each enterprise bean are defined declaratively in

a set of AccessControlEntry objects within the deployment descriptor

object.

– An AccessControlEntry object associates a method with a list of users

that have rights to invoke the method.

– The EJB container uses the AccessControlEntry to automatically

perform all security checking on behalf of the enterprise bean.

AP 04/04

Packaging

• EJB components can be packaged
– as individual enterprise beans,

– as a collection of enterprise beans, or

– as a complete application system.

• EJB components are distributed in a Java Archive File
– called an ejb-jar file.

– The ejb-jar file contains a manifest file outlining the contents of the file,

– plus the enterprise bean class files,

– the Deployment Descriptor objects, and, optionally,

– the Environment Properties objects.

AP 04/04

Deployment

• Deployment Descriptor object
– used to establish the runtime service settings for an enterprise bean.

– tells the EJB container how to manage and control the enterprise

bean.

– The settings can be set at application assembly or application

deployment time.

• Deployment Descriptor defines
– the enterprise bean class name,

– the JNDI namespace that represents the container,

– the Home interface name,

– the Remote interface name, and

– the Environment Properties object name.

AP 04/04

IV
The Component

Object Model (COM+)

AP 04/04

COM – The idea

• COM is based on three fundamental ideas

• Clients program in terms of interfaces,

not classes (classic COM)

• Implementation code is not statically linked, but rather

loaded on-demand at runtime (classic COM)

• Object implementers declare their runtime

requirements and the system ensures that these

requirements are met (MTS & COM+)

AP 04/04

Definitions

• Two key terms have been defined so far

• A COM Interface is a collection of abstract operations one

can perform on an object
– Must extend IUnknown directly or indirectly

– Identified by a UUID (IID)

– Platform-specific vptr/vtable layout

• A COM Object is a collection of vptrs in memory that follow

the COM identity laws
– Must implement at least one COM interface

– QueryInterface ties vptrs together into

cohesive object

• Objects assumed to materialize from thin air!

AP 04/04

Definitions

• A COM Class (or coclass) is a named body of code
that can be used to produce COM objects

• All coclasses are named by a UUID (CLSID)

• All coclasses have a distinguished object that is used
to create new instances
– Called a class object or class factory

– Typically implements IClassFactory

• All coclasses loaded on demand by class loader
– Called the Service Control Manager or (SCM)

• For efficiency, a single component DLL can support
multiple COM classes

AP 04/04

Classes, Class Objects,

And Components

Class AClass A

Class BClass B

Class CClass C

Class ObjectsClass Objects

Class InstancesClass InstancesComponent DLLComponent DLL

AP 04/04

Class Versus Type

• An Interface represents a data type suitable for

declaring variables
– Non-trivial operations

– Hierarchical with respect to one another

– Polymorphic with respect to different objects

• A Class represents loadable concrete code used

to create objects
– Resultant objects implement one or more interfaces

• Class unsuitable for declaring variables
– Entire motivation for interface-based programming based on relative

uselessness of class

AP 04/04

The COM+ Runtime Environment

• The infrastructure used to support COM+ on a given

platform is called the COM+ library

• Each thread that uses COM+ library must

setup/teardown thread-specific data structures
– CoInitialize[Ex] and CoUninitialize do this for you

• The COM+ library implemented in several DLLs
– OLE32.DLL – core class/interface functionality

– OLEAUT32.DLL – Visual Basic®-centric type infrastructure

• Inproc class loading done in OLE32.DLL

• Cross-process/host class loading performed by

Windows 2000 Service (SVCHOST.EXE)

AP 04/04

The COM Runtime

Environment

OLE32.DLLOLE32.DLL

SVCHOSTSVCHOST.EXE.EXE

Foo.dllFoo.dll

OLE32.DLLOLE32.DLL

Bar.exeBar.exe

SVCHOSTSVCHOST.EXE.EXE

OLE32.DLLOLE32.DLL

Bar.exeBar.exe

AP 04/04

COM Class Loading

• Clients issue activation calls against the Service

Control Manager (SCM)

• SCM responsible for locating component and

loading it into memory

• SCM queries component for class object and

(optionally) uses it to instantiate new instance

• Once SCM returns a reference to class instance/class

object, SCM out of the picture

• Based on configuration, COM may need to load

component in separate process

(potentially on different machine)

AP 04/04

COM Class Loading And Locality

• All activation calls allow client to indicate locality
– SCM chooses most efficient allowed by client

typedef struct _COSERVERINFO {typedef struct _COSERVERINFO {

 DWORD dwReserved1; // m.b.z. DWORD dwReserved1; // m.b.z.

 const OLECHAR *pwszName; // host name const OLECHAR *pwszName; // host name

 COAUTHINFO *pAuthInfo; // security goo COAUTHINFO *pAuthInfo; // security goo

 DWORD dwReserved2; // m.b.z. DWORD dwReserved2; // m.b.z.

} COSERVERINFO;} COSERVERINFO;

CLSCTX_INPROC_SERVER // load in client processCLSCTX_INPROC_SERVER // load in client process

CLSCTX_INPROC_HANDLER // use OLE Document rendering handlerCLSCTX_INPROC_HANDLER // use OLE Document rendering handler

CLSCTX_LOCAL_SERVER // load in separate processCLSCTX_LOCAL_SERVER // load in separate process

CLSCTX_REMOTE_SERVER // load on distinct host machineCLSCTX_REMOTE_SERVER // load on distinct host machine

CLSCTX_SERVER CLSCTX_SERVER // CLSCTX_*_SERVER// CLSCTX_*_SERVER

CLSCTX_ALL CLSCTX_ALL // CLSCTX_*// CLSCTX_*

AP 04/04

Using The SCM

• The SCM exposes two core activation APIs

• Both APIs load component automatically

• Both APIs accept a CLSID and information about

component location as input parameters

• CoGetClassObject returns class object/factory
– No new instances created

• CoCreateInstanceEx uses IClassFactory interface

on class object to create new instance
– Class object never returned to client

AP 04/04

Example
mobile.dllmobile.dll

Client calls CoGetClassObjectClient calls CoGetClassObject11

11

rpprpp

pcfpcf

Client.exeClient.exe

Client calls CreateInstance on Class ObjectClient calls CreateInstance on Class Object22

22

Client calls Release on Class ObjectClient calls Release on Class Object44

44

rpmsrpms

Client calls QueryInterface on Class InstanceClient calls QueryInterface on Class Instance33

33

AP 04/04

Exposing COM Classes

• Component DLLs export a well-known function to
extract class object from DLL

STDAPI DllGetClassObject(

 [in] REFCLSID rclsid, // which class?

 [in] REFIID riid, // which interface?

 [out, iid_is(riid)] void **ppv // put it here!

);

• DllGetClassObject is called by CoGetClassObject
and CoCreateInstance[Ex] to access class object
– Never called directly by client code

• If DLL doesn’t export DllGetClassObject,
all activation calls will fail

AP 04/04

DllGetClassObject

PagerPager

Class ObjectClass Object

IClassFactoryIClassFactory

DllGetClassObjectDllGetClassObject

COMCOM

CoCreateInstanceExCoCreateInstanceEx

PagerPager

Class InstanceClass Instance

IPagerIPager

IMessageSourceIMessageSource

ICF::CreateInstanceICF::CreateInstance

PagerPager

Class InstanceClass Instance

IPagerIPager

IMessageSourceIMessageSource

CellPhoneCellPhone

Class InstanceClass Instance

ICellPhoneICellPhone

IMessageSourceIMessageSource

CellPhoneCellPhone

Class ObjectClass Object

IClassFactoryIClassFactory

AP 04/04

Finding Components

• All COM classes registered under distinguished key

in registry (HKEY_CLASSES_ROOT)
– Holds machine-wide configuration under Windows NT 4.0

– Magic key under W2K that merges machine-wide registration with

current user’s private configuration

• Can also register text-based aliases for CLSIDs

called ProgIDs for GUID-hostile environments

• REGSVR32.EXE used to install component DLLs that

export two well-known entry points
– STDAPI DllRegisterServer(void);

– STDAPI DllUnregisterServer(void);

AP 04/04

MTS – EJB Competition

• Although Microsoft Transaction Server (MTS) could be

adapted to support Enterprise JavaBeans components,

Microsoft is not likely to make the effort.

• MTS provides a container system for COM server

components, providing transactional and security

services similar to those provided in Enterprise

JavaBeans servers.

• COM+, the next generation of MTS, will provide a few

additional capabilities, such as dynamic load-balancing

and queued request-processing.

AP 04/04

Microsoft Windows DNA

Object Model

AP 04/04

Conclusions

• NeXT‘s beautiful Objective-C classes are gone

• The JavaBeans component model brings
– Programming rules and naming conventions

– Java language-binding only, no distribution of components

• Microsoft Component Object Model (COM+)
– Mature distributed component framework

– Separate type system and multiple language bindings

– Based on binary memory layout of C++ vtables (!)

• End-of-last-century style of component programming
– Non-functional component properties – Deployment, Versioning, FT,

RT, Configuration are insufficiently addressed

AP 04/04

Components

in C# and .NET

V

AP 04/04

What defines a component?

• What defines a component?
– Properties, methods, events

– Design-time and runtime information

– Integrated help and documentation

• C# has first class component support
– Not naming patterns, adapters, etc.

– Not external files

– Versionable

• Easy to build and consume

AP 04/04

public class Button: Controlpublic class Button: Control

{{

 private string caption; private string caption;

 public string Caption { public string Caption {

 get { get {

 return caption; return caption;

 } }

 set { set {

 caption = value; caption = value;

 Repaint(); Repaint();

 } }

 } }

}}

Properties

• Properties are “smart fields”
– Natural syntax, accessors, inlining

Button b = new Button();Button b = new Button();

b.Caption = "OK";b.Caption = "OK";

String s = b.Caption;String s = b.Caption;

AP 04/04

Indexers

• Indexers are “smart arrays”
– Can be overloaded

public class ListBox: Control

{

 private string[] items;

 public string this[int index]{

 get {

 return items[index];

 }

 set {

 items[index] = value;

 Repaint();

 }

 }

}

ListBox listBox = new ListBox();ListBox listBox = new ListBox();

listBox[0] = "hello";listBox[0] = "hello";

Console.WriteLine(listBox[0]);Console.WriteLine(listBox[0]);

AP 04/04

Events

• Efficient, type-safe and customizable
– Built on delegates

public class MyForm: Form {

 public MyForm()

 {

 Button okButton = new Button(...);

 okButton.Click += new EventHandler(OkButtonClick);

 }

 void OkButtonClick(…)

 {

 ShowMessage("You clicked OK");

 }

}

AP 04/04

Design/Runtime Information

• Add information to types + methods?
– Transaction required for a method?

– Mark members for persistence?

– Default event hookup?

• Traditional solutions
– Lots of custom user code

– Naming conventions between classes

– External files (e.g. .IDL, .DEF)

• The C# solution - Attributes

AP 04/04

Attributes

[HelpUrl([HelpUrl(““http://SomeUrl/Docs/SomeClasshttp://SomeUrl/Docs/SomeClass””)])]

class SomeClassclass SomeClass

{{

 [WebMethod] [WebMethod]

 void GetCustomers() { void GetCustomers() { …… } }

 string Test([SomeAttr] string param1) { string Test([SomeAttr] string param1) {……}}

}}

• Appear in square brackets

• Attached to code elements

AP 04/04

Attribute Fundamentals

• Attributes are classes! Completely generic

• Easy to attach to types and members

• Attributes can be queried at runtime

class HelpUrl : System.Attribute {
 public HelpUrl(string url) { … }
 …
}

[HelpUrl(“http://SomeUrl/APIDocs/SomeClass”)]
class SomeClass { … }

Type type = Type.GetType(“SomeClass”);
object[] attributes =
 type.GetCustomAttributes();

AP 04/04

COM Support

• .NET Framework provides great

COM support
– TLBIMP imports existing COM classes

– TLBEXP exports .NET types

• Seamless experience

AP 04/04

~mscoree.dllmscoree.dll

Obj1 CCW

RCW Obj2

on-the-fly COM

• COM callable wrapper (CCW)

• runtime callable wrapper (RCW)

AP 04/04

Calling into a COM component

• Create .NET assembly from COM component via tlbimp

• Client apps may access the newly created assembly

using System;

using System.Runtime.InteropServices;

using CONVERTERLib;

class Convert {

public static void Main(string [] args) {

CFConvert conv = new CFConvert();

...

fahrenheit = conv.CelsiusToFahrenheit(celsius);

AP 04/04

.NET Programming in Managed C++

class Foo: public IFoo {}class Foo: IFoo {}Interface impl.

__property int get_x() {

 return m_x; }

__property void set_x(int x)

{

 m_x = x; }

int x {

 get{ return m_;}

 set{ m_x = x; }}

Property impl.

__property int get_x();

__property void set_x(int x);

int x {get; set;}Property declaration

__gc class Foo{}class Foo{}Class declaration

__gc __interface IFoo{}interface IFoo{}Interface

declaration

Managed C++C#CLR operation

AP 04/04

Managed C++ (contd.)

System::Console::

WriteLine(„text“);

System.Console.

WriteLine(„text“);

Namespace ref.

using namespace System;using System;Namespace import

#using <assembly.dll>/r:assembly.dllAssembly reference

[System::Reflection::

DefaultMemberAttribute(

S“Item“)]

__gc class MyCollection {

 __property String*

 get_Item(int index); }

String this[int

index] { }

Indexer declaration

__delegate void call();delegate void call();Delegate declaration

Managed C++C#CLR operation

AP 04/04

Managed C++ (contd.)

__sealed class Foo { ... };sealed class Foo { ... }Sealed type

__abstract class Foo {..

};

abstract class Foo { .. }Abstract type

__value struct Foo{ ... };struct Foo { ... }Value type

void IArtist::Draw() {}

void ICowBay.Draw() {}

void IArtist.Draw() {}

void ICowBoy.Draw(){}

Name clash

resolution

__value enum Foo {

 bar, qx }

enum Foo { bar, qx }Enumeration decl.

pFoo->DoFoo();foo.DoFoo();Method invocation

IFoo * pFoo = new Foo();IFoo foo = new Foo();Object variable

Managed C++C#CLR operation

AP 04/04

Managed C++ (contd.)

if (dynamic_cast<IFoo*>

(pBar) != NULL) ...

if (bar is IFoo) ...Type check

IFoo* pFoo =

 dynamic_cast<IFoo*>

 (pBar);

if (pFoo != NULL) ...

IFoo foo = bar as IFoo;

if (foo != null) ...

Dynamic type

cast

try {

 IFoo* pFoo =

__try_cast<IFoo*>(pBar);

} catch (

 IllegalCastException* e){}

try {

 IFoo foo = (IFoo)bar; }

catch (

 IllegalCastException e){}

C-style typecast

Managed C++C#CLR operation

AP 04/04

Comparison

J2EE vs. .NET

VI

AP 04/04

Areas for Comparison: Application

Platforms

• .NET
– The .NET Framework

• Java
– Java application servers

– Products include:

• IBM WebSphere Application Server

• BEA WebLogic Application Server

• Sun ONE Application Server

• Oracle Application Server

• Many others

AP 04/04

Standard Library

Application Platforms Today

GUI

Services

Transaction

Services

Web

Scripting

Data

Access

More

Operating System

Runtime Environment

Browser

Apps

Web Services

Apps

Other

Apps

Local

Apps

AP 04/04

.NET Framework Class Library

Illustrating The .NET Framework

Windows

Forms

Enterprise

Services

ASP.NET ADO.NET More

Windows

Common Language Runtime

Browser

Apps

Web Services

Apps

Other

Apps

Local

Apps

AP 04/04

Standard Java Packages

Illustrating The Java Environment

Swing Enterprise

JavaBeans

JavaServer

Pages

JDBC More

Windows, Solaris, Linux, others

Java Virtual Machine (VM)

Browser

Apps

Web Services

Apps

Other

Apps

Local

Apps

AP 04/04

Application Platforms: Some History

1996 1998 2002

Windows DNA

- MTS (now COM+)

- ASP

- ADO

Microsoft

Java Java

- Java language

- Java VM

- J2SE

J2EE

- EJB

- JSP

- JDBC

.NET Framework

- CLR

- C#, VB.NET

- Enterprise services,

 ASP.NET, ADO.NET

- Web services support

AP 04/04

Runtime Environments Today

JIT

Compiler

Native

Code

Native Code Execution

Interpreter

Interpretation

Source

Code

Language

Compiler

Intermediate

Language

Compilation

AP 04/04

Areas for Comparison: Runtime

Environments

• .NET Framework
– Intermediate language is Microsoft Intermediate Language (MSIL)

– Provides JIT compilation

• There is no interpreter in the CLR

• Java
– Intermediate language is bytecode

– Original implementation targeted interpretation

• Java VMs with JIT compilation are now also used

AP 04/04

Defining Web Services

• A web service is a chunk of functionality that can be

accessed using web technology
– Across an intranet or the Internet

• Usually:
– What’s accessed is a method in a language such as Java or Visual

Basic.NET

– The web technology used is the Simple Object Access Protocol

(SOAP) carried over HTTP

• Both the .NET and Java camps have endorsed web

services

AP 04/04

Web Services Technologies

• Simple Object Access Protocol (SOAP)
– An XML-based way to invoke web services

• Web Services Description Language (WSDL)
– An XML-based language for describing web services

• Universal Description, Discovery, and Integration (UDDI)
– A registry for web services

• Global XML Web Services Architecture (GXA)
– Addressing security and much more

AP 04/04

Illustrating Web Services Technologies

UDDI

Registry

Internet

or

intranet
Application

WSDL Interface

Application

Application

SOAP

AP 04/04

Applying Web Services

• Connecting clients to applications

• B2B integration on the Internet

• Enterprise application integration (EAI) on intranets

AP 04/04

Web Services Support

• .NET Framework class library
– System.Web.Services namespace

• Implements ASP.NET’s .asmx pages

– System.Runtime.Remoting namespace

• Provides SOAP support for remote access

• J2EE 1.3
– Web services support will be added in the next version

– Although some vendors, e.g., IBM, have added it on their own

AP 04/04

Summarizing the Technologies (1)

.NET Java

Application

Server

.NET

Framework

IBM WebSphere, BEA

WebLogic, others

Runtime

Environment

Common Language

Runtime (CLR)

Java Virtual Machine (VM)

Standard

Libraries

.NET Framework

class library

J2SE, J2EE

GUIs Windows Forms Swing

Transactions Enterprise

Services

EJB

AP 04/04

Summarizing the Technologies (2)

.NET Java

Web Scripting ASP.NET JSPs

Data

Access

ADO.NET JDBC

Development

Tools

Visual Studio.NET IBM WebSphere Studio,

Borland JBuilder, others

Web Services

Support

ASP.NET, .NET My

Services, others

Some support from IBM, et al.,

Liberty Alliance

Small Device

Platform

.NET Compact

Framework

J2ME

AP 04/04

Areas for Comparison: Non-Technical

Issues

• Vendor issues
– Lock-in

– Trust

• Maturity

• Existing developer skills

• Operating system support

• Cost

AP 04/04

Conclusions

• The development world has bifurcated
– Microsoft .NET

– The Java environment

• Both have similar architectures

• Both will survive
– Which is a good thing

• .NET will dominate in the Windows environment

