
1

What is Middleware?
Application Application

Software that functions as a conversion or translation layer.
• It is also a consolidator and integrator.

– Custom-programmed middleware solutions have been developed for

Middleware

Operating System

Middleware

Operating System

AP 04/07

decades to enable one application to communicate with another that
either runs on a different platform or comes from a different vendor or
both.

• Today, there is a diverse group of products that offer
packaged middleware solutions.

Operating System vs. Middleware

Application

Middleware

Application

Middleware

AP 04/07

Operating SystemOperating System

2

The Middleware Layer

Distributed ApplicationDistributed Application Distributed Application

Middleware API

Middleware

Operating System API

Distributed Application

Middleware API

Middleware

Operating System API

AP 04/07

Operating System
(Processes, Communication,

Memory Management)

Operating System
(Processes, Communication,

Memory Management)

Network

Purpose and Origin

• Middleware is connectivity software that consists of a set of• Middleware is connectivity software that consists of a set of
enabling services that allow multiple processes running on one or
more machines to interact across a network.

• Middleware is essential to migrating mainframe applications to
client/server applications and to providing for communication
across heterogeneous platforms.

– This technology has evolved during the 1990s to provide for interoperability in
support of the move to client/server architectures (see Client/Server Software
Architectures).

AP 04/07

)
• The most widely-publicized middleware initiatives are the

– Open Software Foundation's Distributed Computing Environment (DCE),
– Object Management Group's Common Object Request Broker Architecture

(CORBA), and
– Microsoft's COM/DCOM (Component Object Model)

3

Technical Detail

Middl i t f di t ib t d ft• Middleware services are sets of distributed software
that exist between the application and the operating
system and network services on a system node in the
network.

AP 04/07

Middleware Services

id f ti l t f A li ti• provide a more functional set of Application
Programming Interfaces (API) than the operating
system and network services to allow an application to
– locate transparently across the network, providing interaction with

another application or service
– be independent from network services
– be reliable and available

AP 04/07

– scale up in capacity without losing function

4

TP Monitors
(Transaction Processing Monitors)

• First product to be called middleware

Client TP Monitor Database Server

Database Server

AP 04/07

• First product to be called middleware.
• Sitting between the requesting client program and the

databases,
it ensures that all databases are updated properly.

TP Monitors‘ Characteristics

T d t d f th di t d it t ti• Tend to do far more than coordinate and monitor transactions
across multiple data resources.

– Enhance the performance, reliability, and scalability of server-side systems.
– TP monitors establish a framework for creating server-side applications.
– A TP monitor can reliably and efficiently manage the resources needed by

applications that conform to the TP monitor’s rules.

• CICS (Customer Information Control System) and IMS/TM (a
message-based transaction manager) are the transaction

AP 04/07

g g)
processing workhorses of the mainframe environment.

• On UNIX systems, BEA’s TUXEDO, BEA’s TOP END, and IBM’s
Encina are the most widely used TP monitors.

5

Messaging Middleware

Common interface andCommon interface and
transport between applications.

– Stores the data in a message
queue if the target machine is
down or overloaded

– May contain business logic that
routes messages to the
appropriate destinations and

AP 04/07

pp p
reformats the data as well.

– Similar to an e-mail messaging
system, except that it is used to
send data between applications.

Messaging Middleware Products

Th d i t i d t f i• The predominant messaging product for managing
asynchronous communication between applications is
IBM’s MQSeries.
– MQSeries has been ported to all major server platforms.

• In conjunction with the Component Object Model
(COM), Microsoft introduced its own messaging
system Microsoft Message Queue Server (MSMQ)

AP 04/07

system, Microsoft Message Queue Server (MSMQ).
– MSMQ and MQSeries offer much the same functionality.

6

Distributed Processing

• Distributed object systems such as CORBA, DCOM and EJB

AP 04/07

enable processes to be run anywhere in the network.
• They differ from messaging middleware in that they cause

processes (components/objects) to be executed in a synchronous
fashion rather than sending data asynchronously.

Remote Procedure Calls

R t P d C ll (RPC) bl th l i f• Remote Procedure Calls (RPCs) enable the logic of an
application to be distributed across the network.

• Most prominent examples:
– SUN RPC, introduced with the network file system (SUN NFS),
– DCE RPC, served as technical foundation of Microsoft’s COM.

• Object Request Brokers (ORBs) enable the objects that
i bj t i t d li ti t b

AP 04/07

comprise an object-oriented application to be
distributed and shared across heterogeneous networks.
– Extending the procedural programming model of RPC,
– Distributed object systems such as CORBA, DCOM, .NET, and EJB

enable processes to be run anywhere in the network.

7

Database Middleware

AP 04/07

• Database Middleware provides a common interface between a
query and multiple, distributed databases.

• Using either a hub and spoke architecture or a distributed
architecture it enables data to be consolidated from a variety of
disparate data sources

Common Interfaces

AP 04/07

• Common programming interfaces between applications
are considered middleware.
– Open Database Connectivity (ODBC) enables applications to make a

standard call to all the databases that support the ODBC interface.

8

Application Server Middleware

• A Web-based application pp
server that provides
interfaces to a wide variety of
applications is used as
middleware between the
browser and legacy systems.

AP 04/07

– The browser can be used at
desktops or on laptops when
travelling.

– A wide range of server-side
processing has been supported by
appservers (i.e.;J2EE).

Universal Computing

– Enable the same program to run on any hardware platform without modification.

The Holy Grail of computing.

AP 04/07

– HTML pages written in JavaScript can execute on any JavaScript-enabled Web
browser running under any operating system.

– Java applications and applets are executed by a Java Virtual Machine, which can be
created for any operating system.

Browser and Java negate the requirement for a single operating
system and hardware environment.

9

Usage Considerations

Th i f iddl i i t h l l• The main purpose of middleware services is to help solve many
application connectivity and interoperability problems. However,
middleware services are not a panacea:

– There is a gap between principles and practice. Many popular middleware
services use proprietary implementations (making applications dependent on a
single vendor's product).

– The sheer number of middleware services is a barrier to using them. To keep
their computing environment manageably simple, developers have to select a
small number of services that meet their needs for functionality and platform

AP 04/07

small number of services that meet their needs for functionality and platform
coverage.

– While middleware services raise the level of abstraction of programming
distributed applications, they still leave the application developer with hard
design choices. For example, the developer must still decide what functionality
to put on the client and server sides of a distributed application.

Types of Middleware Services

1 Di t ib t d t i1. Distributed system services,
• Critical communications, program-to-program, and data management

services.
• This type of service includes RPCs, MOMs and ORBs.

2. Application enabling services,
• Access to distributed services and the underlying network.
• This type of services includes transaction processing monitors and

AP 04/07

database services such as Structured Query Language (SQL).

3. Middleware management services,
• Which enable applications and system functions to be continuously

monitored to ensure optimum performance of the distributed
environment.

10

Distributed Objects and Distributed
Processing

• Distributed objects have the biggest potential to solve a wide range• Distributed objects have the biggest potential to solve a wide range
of challenges faced by designers of large software systems.

• Some of these challenges include
– component packaging,
– cross-language interoperability,
– interprocess communication, and
– intermachine communication.

• We separate distributed object architectures into two categories:
t hit t d

AP 04/07

– component architectures and
– remoting architectures.

• Component architectures focus primarily on component packaging
and cross-language interoperability.

• Remoting architectures focus primarily on support for remote
method invocation on distributed objects.

Remoting Architectures

O S ft F d ti ’ (OSF) Di t ib t d• Open Software Foundation’s (OSF) Distributed
Computing Environment (DCE)
– which actually is a distributed processing environment based on the

Remote Procedure Call (RPC) paradigm (purely procedural)

• Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA).

AP 04/07

Request Broker Architecture (CORBA).
– The notion of component packaging and deployment has only recently

been added to CORBA 3.0.

11

Component Architectures

• Microsoft’s Component Object Model (COM)p j ()
– addresses packaging and deployment of binary component as well as cross-

language interoperability
• JavaBeans and Enterprise Java Beans (EJB) component models

introduced by SUN Microsystems.
• Both, COM and EJB address remoting to some extend:

– the COM model has been extended to Distributed COM (DCOM) using an
extended version of DCE RPC as transport.

– EJB supports client/server communication based on Java Remote Method
Invocation (RMI)

AP 04/07

Invocation (RMI).
– RMI is special as it integrates closely with the Java language without requiring

a special Interface Definition Language (IDL) to describe component interfaces
accessible for remote invocations.

• In an evolutionary sense, Microsoft’s .NET is the newest and most
advanced component architecture available in the market today.

DCE Architecture and Services

AP 04/07

12

The Object Management Architecture

AP 04/07

ORB Interfaces

AP 04/07

13

Recent CORBA 3.0 Additions

• CORBA Component Model (CCM)• CORBA Component Model (CCM) –
– introduces the notion of server-side components into CORBA and addresses

packaging and deployment for CORBA components.
– CCM provides for interoperability with EJB.

• Objects passable by value (valuetypes) –
– valuetypes definitely improve integration with Java and also serve as basis for

the XML/Value mapping (released as part of CORBA 2.3).
• Java-to-IDL Mapping –

– this mapping allows Java RMI objects to interoperate over the network like

AP 04/07

this mapping allows Java RMI objects to interoperate over the network like
CORBA objects using CORBA object references.

• XML/Value mapping –
– standardizes the representation of an XML document as a collection of native

CORBA types.
• CORBA Firewall Specification –

– allows firewalls to be configured for CORBA using access rules for IIOP traffic.

CORBA 3.0 Additions

CORBA M i• CORBA Messaging –
– encompasses both asynchronous and messaging-mode invocations of CORBA

objects as well as Quality of Service Control.

• Real-Time CORBA –
– extends the CORBA architecture with resource control mechanisms for real-

time applications running on a real-time operating system in a controlled
environment.

• Fault-Tolerant CORBA –

AP 04/07

– standardizes redundant software configurations and systems that give CORBA
robust and reliable performance (when run on redundant hardware).

• Minimum CORBA –
– defines a small-footprint CORBA configuration that is aimed at embedded and

card-based systems.

14

Styles of COM Server Components

AP 04/07

COM Characteristics

COM is a very mature component architecture that has• COM is a very mature component architecture that has
many strengths.
– Thousands of third-party ActiveX controls (in-process COM

components) are available in the market today.
– Microsoft and other vendors have built many tools that accelerate

development of COM-based applications.

• Advanced services such as Microsoft Transaction
Server (MTS) and Microsoft Message Queuing

AP 04/07

Server (MTS) and Microsoft Message Queuing
Server (MSMQ) support development of enterprise
multi-tier systems.
– Microsoft has been using the name COM+ to identify the bundling of

the COM runtime with those services.

15

Microsoft .NET Framework

AP 04/07

.NET Characteristics
• Distributed Computing:

NET provides a remoting architecture that exploits open Internet standards– .NET provides a remoting architecture that exploits open Internet standards,
including the Hypertext Transfer Protocol (http), Extensible Markup Language
(XML), and Simple Object Access Protocol (SOAP).

• Componentization:
– .NET extends the previous COM component model but provides a significantly

simpler way to build and deploy components.
• Enterprise services:

– .NET supports the development of scalable enterprise applications without
writing code to manage transactions, security, or pooling.

AP 04/07

• Web paradigm shifts:
– Over the last few years, web application development has shifted from

connectivity (TCP/IP), to presentation (HTML), to programmability (XML and
SOAP). .NET enables software to be sold and distributed as a service.

• Maturity factors:
– Although .NET is a relatively new framework, it builds upon the mature COM+

technology and services.

16

Future Trends: Resource Management
and Quality-of-Service

Middl b t ti id t• Middleware abstractions provide resource management
in a distributed system at a high level.
– OS manages: communication, processing, storage (memory/disks).
– Middleware abstractions also are from an end-to-end perspective, not

just of a single host, which allows for a more global and complete view
to a resource management system.

– Distributed objects are promising, as they not only encapsulate but
also cleanly integrate all three kinds of resource into a coherent

AP 04/07

also cleanly integrate all three kinds of resource into a coherent
package.

– This completeness helps distributed resource management and
makes it easier to provide for load balancing, mobility transparency,
and overall system reliability.

New Capabilities

• Recent middleware frameworks like the CORBA 3 0 Component• Recent middleware frameworks, like the CORBA 3.0 Component
Model (CCM), or the Microsoft .NET framework, allow the
expression of non-functional component properties.

– such as resource requirements, timing and security constraints, or fault-
tolerance assumptions on the component level using language constructs (like
C# and .NET attributes) or component meta-data (like CCM’s deployment
descriptors).

• Aspect-Oriented Programming (AOP) is a relatively new discipline
that focuses on cross-cutting concerns

AP 04/07

– targeting many components of a system simultaneously and
– non-functional component properties.

• AOP investigates software engineering approaches towards
predictable component-based systems.

– This research opens up new venues for middleware-based architectures on the
enterprise level.

17

Middleware hides Complexity

“A bl i C t S i b l d ith• “Any problem in Computer Science can be solved with
another level of indirection”
– Butler Lampson

• “Except the problem of indirection complexity”
– Bob Morgan

AP 04/07

References and Information Sources

[B t i 96] B t i Phili A "Middl A M d l f• [Bernstein 96] Bernstein, Philip A. "Middleware: A Model for
Distributed Services." Communications of the ACM 39, 2 (February
1996): 86-97.

• [Client 95] "Middleware Can Mask the Complexity of your
Distributed Environment." Client/Server Economics Letter 2, 6
(June 1995): 1-5.

• [Eckerson 95] Eckerson, Wayne W. "Three Tier Client/Server
Architecture: Achieving Scalability Performance and Efficiency in

AP 04/07

Architecture: Achieving Scalability, Performance, and Efficiency in
Client Server Applications." Open Information Systems 10, 1
(January 1995): 3(20).

• [Schreiber 95] Schreiber, Richard. "Middleware Demystified."
Datamation 41, 6 (April 1, 1995): 41-45.

