
AP 01/01

Interface Definition Language

• Types are problematic:
– Weakly typed C language: short / int / long

– Architecture-specific data types

• IDL is a strongly typed language
– Concretely defined sizes for base types

• IDL uses Network Data Representation (NDR)
– Architecture-independent network transmissions

AP 01/01

Enumerated Types

• Enum keyword
– Enums are transmitted as 16-bit values per default

– [v1_enum] attribute generates 32-bit entities

Interface IWeek: IUnknown {
typedef [v1_enum] enum DaysOfTheWeek
{

Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday

} DaysOfTheWeek;

HRESULT Test(DaysOfTheWeek day);
}

AP 01/01

Directional Attributes

• Which variables need to sent to server?

• C++ does not indicate whether function
changes pointer variables

• Attributes:
– [in], [out], [in, out]

– [in, out] models standard C++ behavior
(extra network traffic)

– [in] is default

AP 01/01

Arrays

• Fixed Arrays
• Conformant Arrays

– Several attributes to define size of arrays and data transmitted:
– First_is, last_is, length_is,

max_is, min_is, size_is
– Caller specifies actual number of elements at runtime

• Varying arrays
– Server may return less than the full number of elements
– Maximum number of elements is bounded

• Open arrays
– Caller/callee control size of memory blocks separately

• Multidimensional Arrays

AP 01/01

Character Arrays

• Common programming practice...
– Special [string] attribute

HRESULT SendString1([in, string] wchar_t * myString);
HRESULT SendString2([in] int cLength, [in, size_is(cLength)]

wchar_t * myString);

– Both versions are semantically equivalent

– Client calls:

wchar_t wszHello[] = L“My favourite String“;
pTest->SendString1(wszHello);
pTest->SendString2(wcslen(wszHello), wszHello);

– Problem: send/receive a string (memory allocation)

AP 01/01

Pointers

• Full Pointers (problem of aliasing)
– Stub code maintains dictionary of marshaled pointers

– Avoid full pointers whenever possible

• Unique Pointers
– Can point to any location

– Can have the value null

– Can change form non-null to null and vice-versa during a call

– IDL ignores changes between non-null values during call

– No aliasing

AP 01/01

Pointers (contd.)

• Reference Pointers
– Can point to any location
– Cannot have the value null
– No aliasing
– Cannot change during a call

• Interface Pointers
– C++ class and function pointers are off-limits to remote method calls
– Access to code in different address spaces only through

interface pointers
– Problem: generic IF pointers,

MIDL cannot generate stub code for void**
– HRESULT GetInterfacePointer([out] IUnknown** ppvObject);
– Client needs to call QueryInterface() afterwards

AP 01/01

Interface Pointers (contd.)

• Use IDL attribute to identify type of IF pointer
– HRESULT GetInterfacePointer([in] REFIID riid,

[out], iid_is(riid)] void** ppvObject);

– Client calls:

IMyCustomInterface * pCustomInterface;
pObject->GetInterfacePointer(IID_IMyCustomInterface,

(void**) pCustomInterface);

• Special attributes to map non-remotable methods
– [local] – directs MIDL not to generate stub code (for DLLs)

– [call_as] – directs MIDL to treat parameter types differently

