
FundamentalsFundamentals
Of COM(+)Of COM(+)
(Part 2)(Part 2)

Don BoxDon Box
CofounderCofounder
DevelopMentorDevelopMentor
http://www.develop.com/http://www.develop.com/dboxdbox

11-20411-204

COM COM –– The idea The idea

 COM is based on three fundamental ideasCOM is based on three fundamental ideas

 Clients program in terms of interfaces,Clients program in terms of interfaces,
not classesnot classes

 Implementation code is not statically linked,Implementation code is not statically linked,
but rather loaded on-demand at runtimebut rather loaded on-demand at runtime

 Object implementers declare their runtimeObject implementers declare their runtime
requirements and the system ensures thatrequirements and the system ensures that
these requirements are metthese requirements are met

 The former two are the core of classic COMThe former two are the core of classic COM

 The latter is the core of MTS and COM+The latter is the core of MTS and COM+

Tale Of Two Tale Of Two COMsCOMs

 COM is used primarily for two tasksCOM is used primarily for two tasks
 Task 1: Gluing together multiple componentsTask 1: Gluing together multiple components

inside a processinside a process
 Class loading, type information, etcClass loading, type information, etc

 Task 2: Inter-process/Inter-hostTask 2: Inter-process/Inter-host
communicationscommunications
 Object-based Remote Procedure Calls (ORPC)Object-based Remote Procedure Calls (ORPC)

 Pros: Same programming model and APIsPros: Same programming model and APIs
used for both tasksused for both tasks

 Cons: Same programming model and APIsCons: Same programming model and APIs
used for both tasksused for both tasks

 Design around the task at handDesign around the task at hand

DefinitionsDefinitions

 Two key terms have been defined so farTwo key terms have been defined so far
 A A COM InterfaceCOM Interface is a collection of abstract is a collection of abstract

operations one can perform on an objectoperations one can perform on an object
 Must extendMust extend IUnknown IUnknown directly or indirectly directly or indirectly
 Identified by a UUID (IID)Identified by a UUID (IID)
 Platform-specificPlatform-specific vptr vptr//vtablevtable layout layout

 A A COM Object COM Object is a collection of is a collection of vptrs vptrs inin
memory that follow the COM identity lawsmemory that follow the COM identity laws
 Must implement at least one COM interfaceMust implement at least one COM interface
 QueryInterface QueryInterface ties ties vptrs vptrs together intotogether into

cohesive objectcohesive object

 Objects assumed to materialize from thin air!Objects assumed to materialize from thin air!

DefinitionsDefinitions

 A A COM ClassCOM Class (or (or coclasscoclass) is a named body of code) is a named body of code
that can be used to produce COM objectsthat can be used to produce COM objects

 All All coclassescoclasses are named by a UUID (CLSID) are named by a UUID (CLSID)

 All All coclassescoclasses have a distinguished object that is have a distinguished object that is
used to create new instancesused to create new instances
 Called a Called a class objectclass object or or class factoryclass factory

 Typically implementsTypically implements IClassFactory IClassFactory

 AllAll coclasses coclasses loaded on demand by class loader loaded on demand by class loader
 Called the Called the Service Control ManagerService Control Manager or (or (SCMSCM))

 For efficiency, a single component DLL can supportFor efficiency, a single component DLL can support
multiple COM classesmultiple COM classes

Classes, Class Objects,Classes, Class Objects,
And ComponentsAnd Components

Class AClass A

Class BClass B

Class CClass C

Class ObjectsClass Objects

Class InstancesClass InstancesComponent DLLComponent DLL

Class Versus TypeClass Versus Type

 An Interface represents a data type suitable forAn Interface represents a data type suitable for
declaring variablesdeclaring variables
 Non-trivial operationsNon-trivial operations

 Hierarchical with respect to one anotherHierarchical with respect to one another

 PolymorphicPolymorphic with respect to different objects with respect to different objects

 A Class represents loadable concrete code usedA Class represents loadable concrete code used
to create objectsto create objects
 Resultant objects implement one or more interfacesResultant objects implement one or more interfaces

 Class unsuitable for declaring variablesClass unsuitable for declaring variables
 Entire motivation for interface-based programming basedEntire motivation for interface-based programming based

on relative uselessness of classon relative uselessness of class

Class Versus TypeClass Versus Type

IAnimalIAnimal

PugPug SiameseSiamese ParrotParrot

DogCatDogCat RobinRobin

IMammalIMammal

IDogIDog ICatICat IBirdIBird

InterfacesInterfaces

ClassesClasses

The COM RuntimeThe COM Runtime
EnvironmentEnvironment
 The infrastructure used to support COM on a givenThe infrastructure used to support COM on a given

platform is called platform is called the COM librarythe COM library

 Each thread that uses COM library mustEach thread that uses COM library must
setup/teardown thread-specific data structuressetup/teardown thread-specific data structures
 CoInitializeCoInitialize[Ex] and [Ex] and CoUninitializeCoUninitialize do this for you do this for you

 The COM library implemented in several DLLsThe COM library implemented in several DLLs
 OLE32.DLL OLE32.DLL –– core class/interface functionality core class/interface functionality

 OLEAUT32.DLL OLEAUT32.DLL –– Visual Basic Visual Basic®®-centric type infrastructure-centric type infrastructure

 InprocInproc class loading done in OLE32.DLL class loading done in OLE32.DLL

 Cross-process/host class loading performed byCross-process/host class loading performed by
Windows NTWindows NT®® Service (RPCSS.EXE) Service (RPCSS.EXE)

The COM Runtime EnvironmentThe COM Runtime Environment

OLE32.DLLOLE32.DLL

RPCSS.EXERPCSS.EXE

FooFoo..dlldll

OLE32.DLLOLE32.DLL

Bar.exeBar.exe

RPCSS.EXERPCSS.EXE

OLE32.DLLOLE32.DLL

Bar.exeBar.exe

COM Class LoadingCOM Class Loading

 Clients issue activation Clients issue activation calls againstcalls against
the SCMthe SCM

 SCM responsible for locating componentSCM responsible for locating component
and loading it into memoryand loading it into memory

 SCM queries component for class objectSCM queries component for class object
and (optionally) uses it to instantiateand (optionally) uses it to instantiate
new instancenew instance

 Once SCM returns a reference to classOnce SCM returns a reference to class
instance/class object, SCM out of the pictureinstance/class object, SCM out of the picture

 Based on configuration, COM may need toBased on configuration, COM may need to
load component in separate processload component in separate process
(potentially on different machine)(potentially on different machine)

COM Class Loading And LocalityCOM Class Loading And Locality

 All activation calls allow client to indicate localityAll activation calls allow client to indicate locality
 SCM chooses most efficient allowed by clientSCM chooses most efficient allowed by client

typedef struct _COSERVERINFO {typedef struct _COSERVERINFO {
 DWORD dwReserved1; // m.b.z. DWORD dwReserved1; // m.b.z.
 const OLECHAR * const OLECHAR *pwszNamepwszName; // host name; // host name
 COAUTHINFO * COAUTHINFO *pAuthInfopAuthInfo; // security goo; // security goo
 DWORD dwReserved2; // m.b.z. DWORD dwReserved2; // m.b.z.
} COSERVERINFO;} COSERVERINFO;

CLSCTX_INPROC_SERVER // load in client processCLSCTX_INPROC_SERVER // load in client process
CLSCTX_INPROC_HANDLER // use OLE Document rendering handlerCLSCTX_INPROC_HANDLER // use OLE Document rendering handler
CLSCTX_LOCAL_SERVER // load in separate processCLSCTX_LOCAL_SERVER // load in separate process
CLSCTX_REMOTE_SERVER // load on distinct host machineCLSCTX_REMOTE_SERVER // load on distinct host machine
CLSCTX_SERVER CLSCTX_SERVER // CLSCTX_*_SERVER// CLSCTX_*_SERVER
CLSCTX_ALL CLSCTX_ALL // CLSCTX_*// CLSCTX_*

Using The SCMUsing The SCM

 The SCM exposes two core activation APIsThe SCM exposes two core activation APIs
 Both APIs load component automaticallyBoth APIs load component automatically
 Both APIs accept a CLSID and informationBoth APIs accept a CLSID and information

about component location as inputabout component location as input
parametersparameters

 CoGetClassObject CoGetClassObject returns classreturns class
object/factoryobject/factory
 No new instances createdNo new instances created

 CoCreateInstanceExCoCreateInstanceEx uses uses IClassFactory IClassFactory
interface on class object to create newinterface on class object to create new
instanceinstance
 Class object never returned to clientClass object never returned to client

CoGetClassObjectCoGetClassObject//IClassFactoryIClassFactory

HRESULT HRESULT CoGetClassObjectCoGetClassObject((
 [in] const CLSID& [in] const CLSID& rclsidrclsid, // which class?, // which class?
 [in] DWORD [in] DWORD dwClsCtxdwClsCtx, // locality?, // locality?
 [in] COSERVERINFO * [in] COSERVERINFO *pcsipcsi, // host/sec info?, // host/sec info?
 [in] REFIID [in] REFIID riidriid, // which interface?, // which interface?
 [out, [out, iidiid_is(_is(riidriid)] void **)] void **ppv ppv // put it here!// put it here!
););

interface interface IClassFactoryIClassFactory : : IUnknown IUnknown { {
// create a new com object// create a new com object
 HRESULT HRESULT CreateInstanceCreateInstance([in] ([in] IUnknownIUnknown * *pUnkOuterpUnkOuter,,
 [in] REFIID [in] REFIID riidriid,,
 [out, [out,retvalretval,,iidiid_is(_is(riidriid)] void **)] void **ppvppv););
// hold component code in memory// hold component code in memory
 HRESULT HRESULT LockServerLockServer([in] BOOL ([in] BOOL bLockbLock););
}}

ExampleExample

void void CreatePagerCreatePager((IPagerIPager *& *&rpprpp, , IMessageSourceIMessageSource *& *&rpmsrpms) {) {
 IClassFactory IClassFactory **pcf pcf = 0; = 0; rpprpp = 0; = 0; rpmsrpms = 0; = 0;
// ask SCM to load class code for Pager// ask SCM to load class code for Pager
 HRESULT hr = HRESULT hr = CoGetClassObjectCoGetClassObject(CLSID_Pager, CLSCTX_ALL, 0,(CLSID_Pager, CLSCTX_ALL, 0,
 IID_ IID_IClassFactoryIClassFactory, (void**)&, (void**)&pcfpcf););
 if (SUCCEEDED(hr)) { if (SUCCEEDED(hr)) {
// ask class code to create new class instance// ask class code to create new class instance
 hr = hr = pcfpcf->->CreateInstanceCreateInstance(0, IID_(0, IID_IPagerIPager, (void**)&, (void**)&rpprpp););
 if (SUCCEEDED(hr)) if (SUCCEEDED(hr))
 hr = hr = rpprpp->QueryInterface(IID_->QueryInterface(IID_IMessageSourceIMessageSource,,
 (void**)& (void**)&rpmsrpms););
 pcfpcf->Release();->Release();
 } }
}}

ExampleExample

mobile.mobile.dlldll

Client calls Client calls CoGetClassObjectCoGetClassObject11

11

rpprpp

pcfpcf

Client.exeClient.exe

Client calls Client calls CreateInstanceCreateInstance on Class Object on Class Object22

22

Client calls Release on Class ObjectClient calls Release on Class Object44

44

rpmsrpms

Client calls QueryInterface on Class InstanceClient calls QueryInterface on Class Instance33

33

CoGetClassObjectCoGetClassObject Pitfalls Pitfalls

 Previous example made at least fourPrevious example made at least four
round-trips in distributed caseround-trips in distributed case
 One for One for CoGetClassObjectCoGetClassObject

 One for One for CreateInstanceCreateInstance

 One for QueryInterfaceOne for QueryInterface

 One for One for IClassFactoryIClassFactory::Release::Release

 Superior solution would perform classSuperior solution would perform class
loading and object creation in oneloading and object creation in one
round tripround trip

 Solution: CoCreateInstance[Ex]Solution: CoCreateInstance[Ex]

CoCreateInstanceExCoCreateInstanceEx

HRESULT HRESULT CoCreateInstanceExCoCreateInstanceEx((
 [in] const CLSID& [in] const CLSID& rclsidrclsid, // which class?, // which class?
 [in] [in] IUnknown IUnknown * *pUnkOuterpUnkOuter, // used in aggregation, // used in aggregation
 [in] DWORD [in] DWORD dwClsCtxdwClsCtx, // locality, // locality
 [in] COSERVERINFO * [in] COSERVERINFO *pcsipcsi, // (opt) host/sec. info, // (opt) host/sec. info
 [in] ULONG [in] ULONG cItfscItfs, // # of interfaces, // # of interfaces
[in, out] MULTI_QI *[in, out] MULTI_QI *prgmqi prgmqi // put them here!// put them here!
););

typedef struct {typedef struct {
 const IID * const IID *pIIDpIID;;
 IUnknown IUnknown * *pItfpItf;;
 HRESULT hr; HRESULT hr;
} MULTI_QI;} MULTI_QI;

HRESULT CoCreateInstance(HRESULT CoCreateInstance(
 [in] const CLSID& [in] const CLSID& rclsidrclsid, // which class?, // which class?
 [in] [in] IUnknown IUnknown * *pUnkOuterpUnkOuter, // used in aggregation, // used in aggregation
 [in] DWORD [in] DWORD dwClsCtxdwClsCtx, // locality?, // locality?
 [in] REFIID [in] REFIID riidriid, // which interface?, // which interface?
[out, [out, iidiid_is(_is(riidriid)] void **)] void **ppvppv // put it here! // put it here!
););

ExampleExample

void void CreatePagerCreatePager((IPagerIPager *& *&rpprpp, , IMessageSourceIMessageSource *& *&rpmsrpms) {) {
 rpp rpp = 0; = 0; rpms rpms = 0;= 0;
// build vector of interface requests// build vector of interface requests
 MULTI_QI MULTI_QI rgmqirgmqi[] = { { &IID_[] = { { &IID_IPagerIPager, 0, 0 },, 0, 0 },
 { &IID_ { &IID_IMessageSourceIMessageSource, 0, 0 } };, 0, 0 } };
// ask COM to load class code and create instance// ask COM to load class code and create instance
 HRESULT hr = HRESULT hr = CoCreateInstanceExCoCreateInstanceEx(CLSID_Pager,(CLSID_Pager,
 0, CLSCTX_ALL, 0, 2, 0, CLSCTX_ALL, 0, 2, rgmqirgmqi););
// extract interface pointers from // extract interface pointers from rgmqirgmqi vector vector
 if (SUCCEEDED(hr)) { if (SUCCEEDED(hr)) {
 if (hr == S_OK || SUCCEEDED(if (hr == S_OK || SUCCEEDED(rgmqirgmqi[0].hr))[0].hr))
 rpprpp = reinterpret_cast< = reinterpret_cast<IPagerIPager*>(*>(rgmqirgmqi[0].[0].pItfpItf););
 if (hr == S_OK || SUCCEEDED(if (hr == S_OK || SUCCEEDED(rgmqirgmqi[1].hr))[1].hr))
 rpms rpms =reinterpret_cast<=reinterpret_cast<IMessageSourceIMessageSource*>(*>(rgmqirgmqi[1].[1].pItfpItf););
 } }
}}

Exposing COM ClassesExposing COM Classes

 Component DLLs export a well-knownComponent DLLs export a well-known
function used by COM to extract class objectfunction used by COM to extract class object
from DLLfrom DLL

STDAPI STDAPI DllGetClassObjectDllGetClassObject((
 [in] REFCLSID [in] REFCLSID rclsidrclsid, // which class?, // which class?
 [in] REFIID [in] REFIID riid riid, // which interface?, // which interface?
 [out, [out, iidiid_is(_is(riidriid)] void **)] void **ppv ppv // put it here!// put it here!
););

 DllGetClassObject DllGetClassObject called bycalled by
CoGetClassObjectCoGetClassObject and CoCreateInstance[Ex] and CoCreateInstance[Ex]
to access class objectto access class object
 Never called directly by client codeNever called directly by client code

 If DLL doesnIf DLL doesn’’t export t export DllGetClassObjectDllGetClassObject,,
all activation calls will failall activation calls will fail

DllGetClassObjectDllGetClassObject

PagerPager
Class ObjectClass Object

IClassFactoryIClassFactory

DllGetClassObjectDllGetClassObject

COMCOM

CoCreateInstanceExCoCreateInstanceEx

PagerPager
Class InstanceClass Instance

IPagerIPager

IMessageSourceIMessageSource

ICF::ICF::CreateInstanceCreateInstance

PagerPager
Class InstanceClass Instance

IPagerIPager

IMessageSourceIMessageSource

CellPhoneCellPhone
Class InstanceClass Instance

ICellPhoneICellPhone

IMessageSourceIMessageSource

CellPhoneCellPhone
Class ObjectClass Object

IClassFactoryIClassFactory

Exposing ClassExposing Class
Objects/Objects/InprocInproc

PagerClassObject PagerClassObject g_g_coPagercoPager;;
CellPhoneClassObject CellPhoneClassObject g_g_coCellPhonecoCellPhone;;

STDAPI DllGetClassObject(REFCLSID rclsid,STDAPI DllGetClassObject(REFCLSID rclsid,
 REFIID riid, void**ppv) { REFIID riid, void**ppv) {
 if (if (rclsidrclsid == CLSID_Pager) == CLSID_Pager)
 return g_ return g_coPagercoPager.QueryInterface(riid, ppv);.QueryInterface(riid, ppv);
 else if (rclsid == CLSID_ else if (rclsid == CLSID_CellPhoneCellPhone))
 return g_ return g_coCellPhonecoCellPhone.QueryInterface(riid, ppv);.QueryInterface(riid, ppv);
 *ppv = 0; *ppv = 0;
 return CLASS_E_CLASSNOTAVAILABLE; return CLASS_E_CLASSNOTAVAILABLE;
}}

Finding ComponentsFinding Components

 All COM classes registered under distinguished keyAll COM classes registered under distinguished key
in registry (HKEY_CLASSES_ROOT)in registry (HKEY_CLASSES_ROOT)
 Holds machine-wide configuration under Windows NT 4.0Holds machine-wide configuration under Windows NT 4.0

 Magic key under W2K that merges machine-wide registrationMagic key under W2K that merges machine-wide registration
with current userwith current user’’s private configurations private configuration

 Can also register text-based aliases for Can also register text-based aliases for CLSIDsCLSIDs
called called ProgIDsProgIDs for GUID-hostile environmentsfor GUID-hostile environments

 REGSVR32.EXE used to install component DLLs thatREGSVR32.EXE used to install component DLLs that
export two well-known entry pointsexport two well-known entry points
 STDAPI STDAPI DllRegisterServerDllRegisterServer(void);(void);

 STDAPI STDAPI DllUnregisterServerDllUnregisterServer(void);(void);

CLSID And The RegistryCLSID And The Registry

HKEY_CLASSES_ROOTHKEY_CLASSES_ROOT

CLSIDCLSID

@=Pager@=Pager

InprocServer32InprocServer32

@=C:\bin\mobile.@=C:\bin\mobile.dlldll

@=@=CellPhoneCellPhone

InprocServer32InprocServer32

@=C:\bin\mobile.@=C:\bin\mobile.dlldll

{CLSID_{CLSID_CellPhoneCellPhone}}{CLSID_Pager}{CLSID_Pager}

LocalServer32LocalServer32

@=C:\bin\phones.exe@=C:\bin\phones.exe

ProgIdsProgIds And The Registry And The Registry

HKEY_CLASSES_ROOTHKEY_CLASSES_ROOT

CLSIDCLSID

@=Pager@=Pager

ProgIDProgID

@=@=CommlibCommlib.Pager.1.Pager.1

{CLSID_Pager}

InprocServer32InprocServer32

@=C:\bin\mobile.@=C:\bin\mobile.dlldll

CommlibCommlib.Pager.1.Pager.1

@=Pager@=Pager

CLSIDCLSID

@={CLSID_Pager}@={CLSID_Pager}

HRESULTHRESULT ProgIDFromCLSID ProgIDFromCLSID((
 [in] REFCLSID [in] REFCLSID rclsid rclsid,,
 [out] OLECHAR ** [out] OLECHAR **ppwszProgIDppwszProgID););
HRESULT HRESULT CLSIDFromProgIDCLSIDFromProgID((
 [in] OLECHAR * [in] OLECHAR *pwszProgIDpwszProgID,,
 [out] CLSID * [out] CLSID *pclsidpclsid););

COM Classes And IDLCOM Classes And IDL

 COM classes can be declared in IDL using coclassCOM classes can be declared in IDL using coclass
statementstatement

 Coclass Coclass statement generates class entry in TLBstatement generates class entry in TLB

 Coclass Coclass statement generates CLSID_XXX variablesstatement generates CLSID_XXX variables
in generated C(++) headersin generated C(++) headers
 Generates __Generates __declspecdeclspec((uuiduuid) statements as well) statements as well

 Coclass Coclass statement allows statement allows mimimum mimimum supportedsupported
interfaces to be listed as wellinterfaces to be listed as well

[[uuiduuid(03C20B33-C942-11d1-926D-006008026FEA)](03C20B33-C942-11d1-926D-006008026FEA)]
coclasscoclass Pager { Pager {
 [default] interface [default] interface IPagerIPager;;
 interface interface IMessageSourceIMessageSource;;
}}

Async Calls

InterceptionInterception

 In general, it is better to leverage platformIn general, it is better to leverage platform
code than to write it yourselfcode than to write it yourself
 Thread scheduler, file system, window managerThread scheduler, file system, window manager

 Classically, the platform has been exposedClassically, the platform has been exposed
through explicit APIs and interfacesthrough explicit APIs and interfaces
 Requires some code on your part to utilizeRequires some code on your part to utilize

 COM is moving towards exposing theCOM is moving towards exposing the
platform through interceptionplatform through interception
 COM puts a middleman between the clientCOM puts a middleman between the client

and objectand object
 Middleman makes calls to the platform onMiddleman makes calls to the platform on

objectobject’’s behalf both before and after objects behalf both before and after object’’ss
method executesmethod executes

Interception BasicsInterception Basics

 To provide a service, the system must intercept allTo provide a service, the system must intercept all
calls to your objectcalls to your object

 Interceptors pre- and post-process every callInterceptors pre- and post-process every call
 Interceptors make system calls on your behalfInterceptors make system calls on your behalf

 Interceptors set up the runtime environment for yourInterceptors set up the runtime environment for your
method callsmethod calls

 Interceptors may fail the method call without yourInterceptors may fail the method call without your
participationparticipation

 Interceptors must know what your interfacesInterceptors must know what your interfaces
look likelook like
 All interfaces exposed by configured components requireAll interfaces exposed by configured components require

specially prepared P/S DLL or a type libraryspecially prepared P/S DLL or a type library

Interception And InterfacesInterception And Interfaces

 Interception needs type info for all interfacesInterception needs type info for all interfaces

 Interfaces marked [dual] and [Interfaces marked [dual] and [oleautomationoleautomation] can] can
simply rely on type librarysimply rely on type library
 Parameter types limited to VARIANT-compatibleParameter types limited to VARIANT-compatible

 Interfaces not marked [dual] or [Interfaces not marked [dual] or [oleautomationoleautomation]]
require a specially prepared proxy/stub DLLsrequire a specially prepared proxy/stub DLLs
 Run MIDL compiler using /Run MIDL compiler using /Oicf Oicf flagflag

 Compile Compile foofoo_i.c, _i.c, foofoo_p.c and _p.c and dllhostdllhost.c using /MD switch.c using /MD switch

 Link P/S Link P/S dlldll against MTXIH.LIB, OLE32.LIB and against MTXIH.LIB, OLE32.LIB and
ADVAPI32.LIB before any other librariesADVAPI32.LIB before any other libraries

 Registering P/S DLL or (dual/Registering P/S DLL or (dual/oleautomationoleautomation) TLB) TLB
inserts entries under HKCR\Interfacesinserts entries under HKCR\Interfaces

Proxy/Stub Proxy/Stub DllsDlls And And
The RegistryThe Registry

HKEY_CLASSES_ROOTHKEY_CLASSES_ROOT

CLSIDCLSID

@=@=PSFactoryBufferPSFactoryBuffer

InprocServer32InprocServer32

@=C:\bin\@=C:\bin\cmpscmps.dll.dll

@=@=IPagerIPager

ProxyStubClsid32ProxyStubClsid32

@={CLSID_@={CLSID_PSCommPSComm}}

{IID_{IID_IPagerIPager}}{CLSID_{CLSID_PSCommPSComm}}

InterfaceInterface

@=@=IMessageSourceIMessageSource

ProxyStubClsid32ProxyStubClsid32

@={CLSID_@={CLSID_PSCommPSComm}}

{IID_{IID_IMessageSourceIMessageSource}}

ThreadingModelThreadingModel=both=both

Configured ComponentsConfigured Components

 ProblemProblem: If goal is to write little or no code, how do: If goal is to write little or no code, how do
we configure interceptor to do its magic?we configure interceptor to do its magic?

 SolutionSolution: Declarative attributes: Declarative attributes

 Classes that require extended services mustClasses that require extended services must
indicate this indicate this declarativelydeclaratively

 COM+/MTS introduce the notionCOM+/MTS introduce the notion
of of configured componentsconfigured components

 Configured components are classes that haveConfigured components are classes that have
extended attributes that control interceptionextended attributes that control interception

 Configured components always DLLsConfigured components always DLLs
 MTS/COM+ use surrogate for remote/local activationMTS/COM+ use surrogate for remote/local activation

Configured ComponentsConfigured Components

 MTS and COM+ have radically differentMTS and COM+ have radically different
detailsdetails wrt wrt how configuration information how configuration information
is stored and usedis stored and used

 Both use HKEY_CLASSES_ROOT\CLSIDBoth use HKEY_CLASSES_ROOT\CLSID

 Both store information in auxiliary storageBoth store information in auxiliary storage

 Details abstracted away behindDetails abstracted away behind
catalog managercatalog manager

CatalogCatalog
ManagerManager

HKEY_CLASSES_ROOT\CLSIDHKEY_CLASSES_ROOT\CLSID

Auxiliary Configuration DatabaseAuxiliary Configuration Database

Configured Components -Configured Components -
MTS StyleMTS Style
 MTS layers on top of classic COMMTS layers on top of classic COM

 Runtime services provided by MTS executiveRuntime services provided by MTS executive
 Lives in MTXEX.DLLLives in MTXEX.DLL

 MTS MTS CatMan CatMan stores MTXEX.DLL under HKCR tostores MTXEX.DLL under HKCR to
ensure MTS gets between client and objectensure MTS gets between client and object
 Stores component filename in aux databaseStores component filename in aux database

CatalogCatalog
ManagerManager

HKEY_CLASSES_ROOT\CLSIDHKEY_CLASSES_ROOT\CLSID
InprocServer32=MTXEX.DLLInprocServer32=MTXEX.DLL

Auxiliary Configuration DatabaseAuxiliary Configuration Database
CLSID_Pager=PAGER.DLLCLSID_Pager=PAGER.DLL

Configured Components -Configured Components -
COM+ StyleCOM+ Style
 Under COM+, runtime services providedUnder COM+, runtime services provided

by COM itselfby COM itself

 CoCreateInstanceCoCreateInstance is smart enough to consult is smart enough to consult
auxiliary information at activation-timeauxiliary information at activation-time

 COM+COM+ CatMan CatMan stores still manages extended stores still manages extended
attributes in auxiliary databaseattributes in auxiliary database

CatalogCatalog
ManagerManager

HKEY_CLASSES_ROOT\CLSIDHKEY_CLASSES_ROOT\CLSID
InprocServer32=PAGER.DLLInprocServer32=PAGER.DLL

Auxiliary Configuration DatabaseAuxiliary Configuration Database
CLSID_Pager=CLSID_Pager=LoadBalanceLoadBalance+Pooling+Pooling

Packages/ApplicationsPackages/Applications

 The catalog manager segregates classesThe catalog manager segregates classes
into COM+ applications (or MTS packages)into COM+ applications (or MTS packages)

 Each configured class belongs to exactlyEach configured class belongs to exactly
one applicationone application

 All classes in an application shareAll classes in an application share
activation settingsactivation settings

 Configuration orthogonal to physicalConfiguration orthogonal to physical
packagingpackaging
 x classes from y DLLs mapped into zx classes from y DLLs mapped into z

applicationsapplications

 Applications can be configured to load inApplications can be configured to load in
activatoractivator’’s process (library) or in distincts process (library) or in distinct
surrogate process (server)surrogate process (server)

xx Classes, Classes, yy DllsDlls, , zz
Applications/PackagesApplications/Packages

OneAndTwoOneAndTwo..dlldll

OneOne
TwoTwo

OneAndFourOneAndFour Application Application TwoAndThree TwoAndThree ApplicationApplication

One
Two

DLLsDLLs

Packages/AppsPackages/Apps

ThreeAndFourThreeAndFour..dlldll

ThreeThree

FourFour

Four
Three

AttributesAttributes

 The catalog stores attributes that theThe catalog stores attributes that the
runtime interrogates to build an interceptorruntime interrogates to build an interceptor

 The set of attributes is fixed (for now)The set of attributes is fixed (for now)

 Applications/packages, classes, interfacesApplications/packages, classes, interfaces
and methods can all have attributesand methods can all have attributes

 Can set attributes usingCan set attributes using
COM+/MTS explorerCOM+/MTS explorer

 Will be able to set all attributes fromWill be able to set all attributes from
development environment somedaydevelopment environment someday……

Attributes: Applications/PackagesAttributes: Applications/Packages

ImpersonationImpersonation
LevelLevel

ProcessProcess
ShutdownShutdown

DebuggerDebugger

Enable CompensatingEnable Compensating
Resource ManagersResource Managers

Enable 3GBEnable 3GB
SupportSupport

SecuritySecurity
IdentityIdentity

QueueingQueueing

IdentifyIdentify, Impersonate, Delegate, Impersonate, Delegate

NeverNever//N minutes after idleN minutes after idle

Command Line to Launch Debugger/ProcessCommand Line to Launch Debugger/Process

On/On/OffOff

On/On/OffOff

Interactive UserInteractive User//Hardcoded Hardcoded User ID + PWUser ID + PW

Queued/Queued+ListenerQueued/Queued+Listener

AuthenticationAuthentication
LevelLevel NoneNone, , ConnectConnect, , CallCall, , PacketPacket, , IntegrityIntegrity, , PrivacyPrivacy

AuthorizationAuthorization
ChecksChecks Application OnlyApplication Only//Application + ComponentApplication + Component

ActivationActivation
TypeType Library (Library (inprocinproc)/Server (surrogate))/Server (surrogate)

Underlines indicate settings available under MTSUnderlines indicate settings available under MTS

Attributes: Classes, Interfaces,Attributes: Classes, Interfaces,
And MethodsAnd Methods

TransactionTransaction

SynchronizationSynchronization

Object PoolingObject Pooling

Declarative Declarative
ConstructionConstruction

JIT ActivationJIT Activation

Activation-time Activation-time
Load BalancingLoad Balancing

InstrumentationInstrumentation
EventsEvents

DeclarativeDeclarative
AuthorizationAuthorization

Non SupportedNon Supported, , SupportedSupported, , RequiredRequired, , Requires NewRequires New

Non Supported, Supported, Non Supported, Supported, RequiredRequired, Requires New, Requires New

On/On/OffOff, Max Instances, Min Instances, Timeout, Max Instances, Min Instances, Timeout

Arbitrary Class-specific StringArbitrary Class-specific String

OnOn/Off/Off

On/On/OffOff

OnOn/Off/Off

Zero or more role namesZero or more role names

Auto-DeactivateAuto-Deactivate On/On/OffOff

ClassClass

ClassClass

ClassClass

ClassClass

ClassClass

ClassClass

ClassClass

ClassClass
InterfaceInterface
MethodMethod

MethodMethod

Must Activate inMust Activate in
ActivatorActivator’’s Contexts Context On/On/OffOff ClassClass

Underlines indicate settings available under MTSUnderlines indicate settings available under MTS

Exporting Packages/Exporting Packages/
ApplicationsApplications
 MTS/COM+ allow package/app configuration to beMTS/COM+ allow package/app configuration to be

exported to the file system for distributionexported to the file system for distribution

 MTS: Exporting produces a .PAK file that containsMTS: Exporting produces a .PAK file that contains
snapshot of catalog for the packagesnapshot of catalog for the package
 Also contains flattened references to all DLLs/Also contains flattened references to all DLLs/TLBsTLBs

 COM+: Exporting produces a single .MSI file thatCOM+: Exporting produces a single .MSI file that
contains both catalog info and DLL/contains both catalog info and DLL/TLBsTLBs

 .PAK/.MSI file can be imported on other host.PAK/.MSI file can be imported on other host
machinesmachines
 Can be done remotely using remote catalog accessCan be done remotely using remote catalog access

Package/Application Export ResiduePackage/Application Export Residue

MYAPP.MSIMYAPP.MSI

Catalog infoCatalog info

MYCOMP1.DLLMYCOMP1.DLL

code for some classescode for some classes

MYCOMP2.DLLMYCOMP2.DLL

code for other classescode for other classes

MYPS.DLLMYPS.DLL

proxy/stub codeproxy/stub code

MYAPP.PAKMYAPP.PAK

Catalog infoCatalog info

MYCOMP1.DLLMYCOMP1.DLL

code for some classescode for some classes

MYCOMP2.DLLMYCOMP2.DLL

code for other classescode for other classes

MYPS.DLLMYPS.DLL

proxy/stub codeproxy/stub code

MTSMTS COM+COM+

Server Packages/Server Packages/
ApplicationsApplications
 An application can be configured to activateAn application can be configured to activate

as a library application or a server applicationas a library application or a server application
 Server applications are the norm in MTS/COM+Server applications are the norm in MTS/COM+

 Only server applications supportOnly server applications support……
 Remote activationRemote activation

 Complete Security SupportComplete Security Support

 Insulating user of component from component faultsInsulating user of component from component faults

 MTS Server packages are loaded by the MTSMTS Server packages are loaded by the MTS
Surrogate (Surrogate (mtxmtx.exe).exe)

 COM+ Server packages are loaded by default COMCOM+ Server packages are loaded by default COM
surrogate (surrogate (dllhostdllhost.exe).exe)
 dllhst3g.exe if 3GB support is enabled in catalogdllhst3g.exe if 3GB support is enabled in catalog

emtsonlyemtsonly

MTS Server PackagesMTS Server Packages

You

CLIENT.EXECLIENT.EXE MTX.EXEMTX.EXE

OLE32.DLLOLE32.DLL

MTXEX.DLLMTXEX.DLL

YOURSERVER.DLLYOURSERVER.DLL

InterceptorInterceptor

YouYou

OLE32.DLLOLE32.DLL

ProxyProxy

emtsonlyemtsonly

COM+ Server ApplicationsCOM+ Server Applications

YouYou

CLIENT.EXECLIENT.EXE DLLHOST.EXEDLLHOST.EXE

OLE32.DLLOLE32.DLL

YOURSERVER.DLLYOURSERVER.DLL

Stub(+)Stub(+)

YouYou

OLE32.DLLOLE32.DLL

ProxyProxy

emtsonlyemtsonly

LibraryLibrary
Applications/PackagesApplications/Packages
 Library applications/packages load in the creatorLibrary applications/packages load in the creator’’ss

processprocess
 Solves the Solves the ““1 class used by 3 applications1 class used by 3 applications”” problem problem

 MTS catalog manager controls registry entries forMTS catalog manager controls registry entries for
components in library packagescomponents in library packages
 Each classEach class’’s InprocServer32 key points to the MTSs InprocServer32 key points to the MTS

Executive (Executive (mtxexmtxex..dlldll))

 MTS Executive creates interceptor between client andMTS Executive creates interceptor between client and
object based on catalog infoobject based on catalog info

 MTS Executive manages a thread pool to service activationMTS Executive manages a thread pool to service activation
calls and general housekeepingcalls and general housekeeping

 Instances will Instances will always alwaysalways always be protected from be protected from
concurrent access under MTS!concurrent access under MTS!

CLIENT.EXECLIENT.EXE

MTS Library PackagesMTS Library Packages
In NatureIn Nature

OLE32.DLLOLE32.DLL

MTXEX.DLLMTXEX.DLL

YOURSERVER.DLLYOURSERVER.DLL

InterceptorInterceptor

YouYou

How COM(+) LibraryHow COM(+) Library
Applications WorkApplications Work
 COM+ catalog manager leavesCOM+ catalog manager leaves

InprocServer32 entry aloneInprocServer32 entry alone
 Additional attributes storedAdditional attributes stored

in aux in aux configconfig database database

 CoCreateInstance CoCreateInstance checks for extendedchecks for extended
attributes and creates an interceptor asattributes and creates an interceptor as
neededneeded

 Instances may or may not be protected fromInstances may or may not be protected from
concurrent access depending onconcurrent access depending on
configuration!configuration!
 Default setting at install-time is protected, butDefault setting at install-time is protected, but

can easily defeat using COM+ Explorercan easily defeat using COM+ Explorer

CLIENT.EXECLIENT.EXE

COM+ Library ApplicationsCOM+ Library Applications
In NatureIn Nature

OLE32.DLLOLE32.DLL

YOURSERVER.DLLYOURSERVER.DLL

InterceptorInterceptor

YouYou

SummarySummary

 The SCM dynamically loads COM class codeThe SCM dynamically loads COM class code

 COM+ and MTS exposes services throughCOM+ and MTS exposes services through
interceptioninterception

 Components configure their interceptors throughComponents configure their interceptors through
declarative attributes stored in a configurationdeclarative attributes stored in a configuration
databasedatabase

 MTS/COM+ consult configuration database atMTS/COM+ consult configuration database at
activation timeactivation time

 Classes are grouped into applications/packagesClasses are grouped into applications/packages

 The catalog is a scriptable MTS/COM+ componentThe catalog is a scriptable MTS/COM+ component

ReferencesReferences

 Programming Dist Apps With Visual BasicProgramming Dist Apps With Visual Basic
and COMand COM
 Ted Ted PattisonPattison, Microsoft Press, Microsoft Press

 Inside COMInside COM
 Dale Dale RogersonRogerson, Microsoft Press, Microsoft Press

 Essential COM(+), 2nd Edition (the book)Essential COM(+), 2nd Edition (the book)
 Don Box, Addison WesleyDon Box, Addison Wesley Longman Longman (4Q99) (4Q99)

 Essential COM(+) Short Course,Essential COM(+) Short Course,
DevelopMentorDevelopMentor
 http://www.develop.comhttp://www.develop.com

 DCOM Mailing ListDCOM Mailing List
 http://discuss.http://discuss.microsoftmicrosoft.com.com

