Fundamentals
Of COM(+)
(Part 2)

Don Box
Cofounder
DevelopMentor

http://www.develop.com/dbox

11-204

DEVELOPMENTOR

COM — The idea

» COM is based on three fundamental ideas

» Clients program in terms of interfaces,
not classes

» Implementation code is not statically linked,

but rather loaded on-demand at runtime

» Object implementers declare their runtime
requirements and the system ensures that
these requirements are met

<+ The former two are the core of classic COM
» The latter is the core of MTS and COM+

Tale Of Two COMs

» COM is used primarily for two tasks

+ Task 1: Gluing together multiple components
inside a process

m Class loading, type information, etc
+ Task 2: Inter-process/inter-host

communications
m Object-based Remote Procedure Calls (ORPC)

» Pros: Same programming model and APlIs
used for both tasks

» Cons: Same programming model and APIs
used for both tasks

» Design around the task at hand

Definitions

Two key terms have been defined so far

A COM Interface is a collection of abstract
operations one can perform on an object
m Must extend IlUnknown directly or indirectly

= |dentified by a UUID (IID)

m Platform-specific vptr/vtable layout

A COM Object is a collection of vptrs In
memory that follow the COM identity laws

m Must implement at least one COM interface

m Querylnterface ties vptrs together into
cohesive object

Objects assumed to materialize from thin air!

Definitions

A COM Class (or coclass) is a named body of code
that can be used to produce COM objects

All coclasses are named by a UUID (CLSID)

All coclasses have a distinguished object that is
used to create new instances
m Called a class object or class factory

m Typically implements IClassFactory

All coclasses loaded on demand by class loader
m Called the Service Control Manager or (SCM)

For efficiency, a single component DLL can support
multiple COM classes

Classes, Class Objects,

SOMPORNENNDINS Class Instances

Class Versus Type

An Interface represents a data type suitable for
declaring variables

= Non-trivial operations

m Hierarchical with respect to one another

m Polymorphic with respect to different objects

A Class represents loadable concrete code used
to create objects

m Resultant objects implement one or more interfaces

Class unsuitable for declaring variables

m Entire motivation for interface-based programming based
on relative uselessness of class

Class Versus Type

Interfaces

Classes

The COM Runtime
Environment

» The infrastructure used to support COM on a given
platform is called the COM library

» Each thread that uses COM library must
setup/teardown thread-specific data structures

m Colnitialize[Ex] and CoUninitialize do this for you

» The COM library implemented in several DLLs
m OLE32.DLL - core class/interface functionality
m OLEAUT32.DLL - Visual Basic®-centric type infrastructure

» Inproc class loading done in OLE32.DLL

» Cross-process/host class loading performed by
Windows NT® Service (RPCSS.EXE)

The COM Runtime Environment

Foo.dl ¢

Bar.exe

»O—{

OLE32.DLL
A

OLE32.DLL OLE32.DLL

i i v

RPCSS.EXE RPCSS.EXE

COM Class Loading

+ Clients issue activation calls against
the SCM

+ SCM responsible for locating component
and loading it into memory

+ SCM queries component for class object

and (optionally) uses it to instantiate
new instance

<% Once SCM returns a reference to class
instance/class object, SCM out of the picture

+ Based on configuration, COM may need to
load component in separate process
(potentially on different machine)

COM Class Loading And Locality

< All activation calls allow client to indicate locality
m SCM chooses most efficient allowed by client

CLSCTX_INPROC_SERVER //load in client process
CLSCTX_INPROC_HANDLER // use OLE Document rendering handler
CLSCTX _LOCAL_SERVER //load in separate process
CLSCTX_REMOTE_SERVER //load on distinct host machine
CLSCTX_SERVER // CLSCTX_* SERVER

CLSCTX_ALL // CLSCTX_*

typedef struct _COSERVERINFO {
DWORD dwReservedi; // m.b.z.
const OLECHAR *pwszName; // host name
COAUTHINFO *pAuthinfo; // security goo
DWORD dwReserved2; // m.b.z.

} COSERVERINFO;

Using The SCM

«+ The SCM exposes two core activation APls
» Both APIls load component automatically

» Both APIls accept a CLSID and information
about component location as input
parameters

» CoGetClassObject returns class
object/factory
= No new instances created

» CoCreatelnstanceEx uses IClassFactory

interface on class object to create new
instance

m Class object never returned to client

CoGetClassObject/IClassFactory

interface IClassFactory : IlUnknown {
// create a new com object
HRESULT Createlnstance([in] IUnknown *pUnkOuter,
[in] REFIID riid,
[out.retval,iid_is(riid)] void **ppv);
//‘hold component code in memory.
HRESULT LockServer(]in] BOOL bLock);

)

HRESULT CoGetClassObject(

in] const CLSID& rclsid, // which class?

in] DWORD dwClsCtx, //locality?

in] COSERVERINFO *pcsi, // host/sec info?
in] REFIID riid, // which interface?

lout; iid_is(riid)] void **ppv // put it here!

Example

void CreatePager(IPager *&rpp, IMessageSource *&rpms) {
IClassFactory *pcf = 0; rpp = 0; rpms = 0;
// ask SCM to load class code for Pager
HRESULT hr = CoGetClassObject(CLSID_Pager, CLSCTX_ALL, 0,
lID_IClassFactory, (void**)&pcf);
if (SUCCEEDED(hr)) {
// ask class code to create new class instance
hr = pcf->Createlnstance(0, lID_IPager, (void**)&rpp);
it (SUCCEEDED(hr))
hr = rpp->Queryinterface(liD_IMessageSource,
(void**)&rpms);
pct->Release():
)
)

Client.exe | mobile.dll

2

1) Client calls CoGetClassObject

2 Client calls CreateInstance on Class Object

3 Client calls QuerylInterface on Class Instance

4, Client calls Release on Class Object

CoGetClassObject Pitfalls

L)

» Previous example made at least four
round-trips in distributed case

One for CoGetClassObject
One for Createlnstance

One for Queryinterface

One for IClassFactory::Release

Superior solution would perform class

loading and object creation in one
round trip

Solution: CoCreatelnstance[EX]

CoCreatelnstanceEx

typedef struct {
const IID *plID;
IUnknown *pltf;
HRESULT hr;

Y MULTI_QJ;

HRESULT CoCreatelnstanceEx(

[in] const CLSID& rclsid, / which class?
[in] IUnknown *pUnkOuter, // used in aggregation
[in] DIWORD dwClisCix, //locality

[in] COSERVERINEO *pcsi, //(opt) host/sec. info
[in] ULONG clifs, /[# of interfaces
[in, out] MULTI_QI *prgmgqi // put them here!

);

HRESULT CoCreatelnstance(
[in] const CLSID& rclsid, / which class?
[in] IUnknown *pUnkOuter, // used in aggregation
[in] DIWORD dwClisCitx, //locality?
[in] REEIID riid, /[which interface?
[out, iid_is(riid)] void **ppv // put it here!
);

Example

void CreatePager(IPager *&rpp, IMessageSource *&rpms) {
rpp = 0; rpms = 0;
// build vector of interface requests
MULTI_QI rgmqi[] = { { &lIID_IPager, 0, 0 },
{ &lID_IMessageSource, 0, 0 } };
// ask COM to load class code and create instance
HRESULT hr = CoCreatelnstanceEx(CLSID_Pager,
0, CLSCTX_ALL, 0, 2, rgmgqi);
/[extract interface pointers from rgmgqi vector
if (SUCCEEDED(hr)) {
if (hr == S_OK |l SUCCEEDED(rgmgqi[0].hr))
rpp = reinterpret_cast<IPager*>(rgmgqi[0].pltf);
if (hr==S_OK |l SUCCEEDED(rgmgi[1].hr))
rpms =reinterpret_casi<IMessageSource*>(rgmgqi[1]-pltf);
)
)

Exposing COM Classes

» Component DLLs export a well-known
function used by COM to extract class object

from DLL
STDAPI DIIGetClassObject(
[in] REFCLSID rclsid, // which class?
[in] REFIID riid, // which interface?
[out, iid_is(riid)] void **ppv // put it here!
);
» DIlGetClassObject called by
CoGetClassObject and CoCreatelnstance[EX]
to access class object

m Never called directly by client code

» If DLL doesn’t export DliIGetClassObject,
all activation calls will fail

DIIGetClassObject

CoCreatelInstanceEx

l
S I

ICF::Createlnstance

T

Class Instancg

T

IClassFactory O
_ Pager
Class Instance

IClassEactory ICellPhone

celiPhone

ElassHnStance

IMessageSource

Exposing Class
Objects/Inproc

PagerClassObject g_coPager;
CellPhoneClassObject g_coCellPhone;

STDAPI DliGetClassObject(REFCLSID rclsid,
REFIID riid, void**ppv) {
if (rclsid == CLSID_Pager)
return g_coPager.Querylnterface(riid, ppv);
else if (rclsid == CLSID_CellPhone)
return g_coCellPhone.Querylnterface(riid, ppv);
*ppv = 0;
return CLASS _E CLASSNOTAVAILABLE;
;

Finding Components

All COM classes registered under distinguished key
in registry (HKEY_CLASSES ROOT)

m Holds machine-wide configuration under Windows NT 4.0

m Magic key under W2K that merges machine-wide registration
with current user’s private configuration

Can also register text-based aliases for CLSIDs
called ProglDs for GUID-hostile environments

REGSVR32.EXE used to install component DLLs that
export two well-known entry points

m STDAPI DIIRegisterServer(void);

m STDAPI DllUnregisterServer(void);

CLSID And The Registry

i HIKEY. CLASSES ROOTL i
=TT

) E @=CellPhone |

lulnprosSenver32

@=C:\bin\mobile.dIl) —(@=C:\bin\mobile.dIl)

Proglds And The Registry

@={CLSID_Pager})

@=Commlib.Pager.1)

HRESULT ProgIDFromCLSID(
[in] REFCLSID rclsid,
[out] OLECHAR **ppwszProglD);
HRESULT CLSIDFromProglD(
[in] OLECHAR*pwszProglD,
[out] CLSID *pclsid);

@=C:\bin\mobile.dIl)

COM Classes And IDL

COM classes can be declared in IDL using coclass
statement

Coclass statement generates class entry in TLB

Coclass statement generates CLSID XXX variables
in generated C(++) headers

m Generates __declspec(uuid) statements as well

Coclass statement allows mimimum supported
interfaces to be listed as well

Async Calls

[uuid(03C20B33-C942-11d1-926D-006008026FEA)]
coclass Pager {

[default] interface IPager;

interface IMessageSource;

)

Interception

In general, it is better to leverage platform
code than to write it yourself

m Thread scheduler, file system, window manager

Classically, the platform has been exposed
through explicit APIls and interfaces

m Requires some code on your part to utilize

COM is moving towards exposing the
platform through interception

m COM puts a middleman between the client
and object

Middleman makes calls to the platform on
object’s behalf both before and after object’s
method executes

Interception Basics

To provide a service, the system must intercept all
calls to your object

Interceptors pre- and post-process every call
Interceptors make system calls on your behalf

Interceptors set up the runtime environment for your
method calls

Interceptors may fail the method call without your
participation
Interceptors must know what your interfaces
look like

m All interfaces exposed by configured components require
specially prepared P/S DLL or a type library

Interception And Interfaces

Interception needs type info for all interfaces

Interfaces marked [dual] and [oleautomation] can
simply rely on type library

m Parameter types limited to VARIANT-compatible
Interfaces not marked [dual] or [oleautomation]
require a specially prepared proxy/stub DLLs

m Run MIDL compiler using /Oicf flag

m Compile foo_i.c, foo_p.c and dllhost.c using /MD switch

m Link P/S dll against MTXIH.LIB, OLE32.LIB and
ADVAPI32.LIB before any other libraries

Registering P/S DLL or (dual/oleautomation) TLB
inserts entries under HKCR\Interfaces

Proxy/Stub Dlls And
The Registry

%

I CLSIDL
[{CLSID.RSComm}, luflIDIRage) uiliDLIVessageSource)y

—(@:PSFactoryBuffer) @=I|Pager (@—IMessageSource

—(@=C:\bin\cmps.dll) E @={CLSID_PSComm} E @={CLSID_ PSCommD

—(ThreadingModel=both)

Configured Components

Problem: If goal is to write little or no code, how do
we configure interceptor to do its magic?

Solution: Declarative attributes

Classes that require extended services must
indicate this declaratively

COM+/MTS introduce the notion
of configured components

Configured components are classes that have
extended attributes that control interception

Configured components always DLLs
m MTS/COM+ use surrogate for remote/local activation

Configured Components

» MTS and COM+ have radically different
details wrt how configuration information
Is stored and used

» Both use HKEY_CLASSES ROOT\CLSID
» Both store information in auxiliary storage

» Details abstracted away behind
catalog manager

/—?\

Catalog
Manager

Auxiliary:Configuration Database

-

HKEY CLASSES ROOT\CLSID

Configured Components -
MTS Style

» MTS layers on top of classic COM

» Runtime services provided by MTS executive
= Lives in MTXEX.DLL

» MTS CatMan stores MTXEX.DLL under HKCR to

ensure MTS gets between client and object
m Stores component filename in aux database

/—?\

Catalog
Manager

—

2= MIXEXGDIE

NS = e =

N~—— - ,—. - ol -
1 ProcCSERVELS:

Configured Components -
COM+ Style

Under COM+, runtime services provided
by COM itself

CoCreatelnstance is smart enough to consult
auxiliary information at activation-time

COM+ CatMan stores still manages extended
attributes in auxiliary database

/—?\

Catalog
Manager

s = e D =/

InprocserversZ=rPAGERNIDE

-

Packages/Applications

<+ The catalog manager segregates classes
into COM+ applications (or MTS packages)

+ Each configured class belongs to exactly
one application

< All classes In an application share
activation settings

+» Configuration orthogonal to physical
packaging
m Xx classes from y DLLs mapped into z
applications
+ Applications can be configured to load in
activator’s process (library) or in distinct
surrogate process (server)

Xx Classes, y Dlls, z
Applications/Packages

DRneAnaiawordll dihirEEeAndEouEdil
o

- =

Packages/Apps

()

| Two .
Two

-

DhHEANGECUINADPPIIGCALION IIWVOANGINEEENARPIICALON

Attributes

The catalog stores attributes that the
runtime interrogates to build an interceptor

The set of attributes is fixed (for now)

Applications/packages, classes, interfaces
and methods can all have attributes

Can set attributes using
COM+/MTS explorer

Will be able to set all attributes from
development environment someday...

Attributes: Applications/Packages

Activation
WpPE
Authentication

tevel

mﬂn ersonation Identify, Impersonate, Delegate

Authorization

Library (inproc)/Server (surrogate)

None, Connect, Call, Packet, Integrity, Privacy

Application Only/Application + Component

ll ~ II -l
CHEeCKS

% Interactive User/Hardcoded User ID + PW

Process

T | Never/N minutes after idle
m Command Line to Launch Debugger/Process

Enabl mpen in
abeo \-‘ sat e On/ Off
ResourceManagers =
Enable 3GB

on/off
i Queued/Queusd siistener

Underlines indicate settings available under MTS

Attributes: Classes, Interfaces,

And Methods

WNon Supported, Supported, Required, Requires New

WNon Supported, Supported, Required, Requires New

On/Off, Max Instances, Min Instances, Timeout

Declarative
gonstruction

Arbitrary Class-specific String

On/Off

Activation-time
EoadaBalancing

On/ Off

Instrumentation

EVERts

On/Off

Declarative
AUuthorization

Zero or more role names

On/ Off

On/ Off

Underlines indicate settings available under MTS

Class

Class

Class

Class

Class

Class

Class

Interface
Mertnod

Method

Class

Exporting Packages/
Applications

» MTS/COM+ allow package/app configuration to be
exported to the file system for distribution

» MTS: Exporting produces a .PAK file that contains
snapshot of catalog for the package

m Also contains flattened references to all DLLs/TLBs

» COM+: Exporting produces a single .MSI file that
contains both catalog info and DLL/TLBs

» .PAK/.MSI file can be imported on other host
machines

m Can be done remotely using remote catalog access

Package/Application Export Residue

MTS

MYAPP.PAK

COM+

MYCOMP1.DLL

code for some classes

MYAPP.MSI

Catalog info

MYCOMP2.DLL

code for other classes

MYPS.DLL

proxy/stub code

MYCOMP1.DLL

code for some classes

MYCOMP2.DLL

code for other classes

MYPS.DLL

proxy/stub code

Server Packages/
Applications

emtsonly

An application can be configured to activate
as a library application or a server application

m Server applications are the norm in MTS/COM+

Only server applications support...

m Remote activation

m Complete Security Support

m Insulating user of component from component faults

MTS Server packages are loaded by the MTS
Surrogate (mtx.exe)

COM+ Server packages are loaded by default COM
surrogate (dllhost.exe)

m dllhst3g.exe if 3GB support is enabled in catalog

MTS Server Packages

emtsonly

CLIENT.EXE MTX.EXE

OLE32.DLL OLE32.DLL

i MTXEX.DLL

YOURSERVER.DLL

:

COM+ Server Applications

emtsonly

CLIENT.EXE

OLE32.DLL

DLLHOST.EXE

OLE32.DLL

: (e)

Library
Applications/Packages

Library applications/packages load in the creator’s
process

m Solves the “1 class used by 3 applications” problem
MTS catalog manager controls registry entries for

components In library packages

Each class’s InprocServer32 key points to the MTS
Executive (mtxex.dll)

MTS Executive creates interceptor between client and
object based on catalog info

MTS Executive manages a thread pool to service activation
calls and general housekeeping

Instances will always always be protected from
concurrent access under MTS!

MTS Library Packages
In Nature

CLIENT.EXE

OLE32.DLL

MTXEX.DLL
YOURSERVER.DLL

:

How COM(+) Library
Applications Work

COM+ catalog manager leaves
InprocServer32 entry alone

m Additional attributes stored

in aux config database
CoCreatelnstance checks for extended
attributes and creates an interceptor as
needed

Instances may or may not be protected from
concurrent access depending on
configuration!

m Default setting at install-time is protected, but
can easily defeat using COM+ Explorer

COM+ Library Applications
In Nature

CLIENT.EXE

OLE32.DLL
YOURSERVER.DLL

:

Summary

«+ The SCM dynamically loads COM class code

» COM+ and MTS exposes services through
interception

» Components configure their interceptors through
declarative attributes stored in a configuration
database

» MTS/COM+ consult configuration database at
activation time

» Classes are grouped into applications/packages
+» The catalog is a scriptable MTS/COM+ component

References

» Programming Dist Apps With Visual Basic
and COM

m Ted Pattison, Microsoft Press

» Inside COM

m Dale Rogerson, Microsoft Press
» Essential COM(+), 2nd Edition (the book)
= Don Box, Addison Wesley Longman (4Q99)

» Essential COM(+) Short Course,
DevelopMentor

m http://www.develop.com
» DCOM Mailing List

m http://discuss.microsoft.com

Where do you want to go today?®

