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From Object-Oriented Programming
to Component Software

• OO Languages:
– Ada, Smalltalk, Java, C++

• Class versus Object:
– Express existence of objects directly in code

– Code is more expressive, easier to develop, less costly to maintain

• Main Concepts:
– Encapsulation – hiding of implementation details

– Inheritance – reuse existing objects in creation of new objects

– Polymorphism – exhibit multiple behavior depending on object used

• Reuse:
– Code must be written in a general enough manner

– Language-independent



AP 12/00

Component Software

• Object-Oriented Analysis and Design:
– Breakdown of a project in its logical components

• Components:
– Reusable pieces of software in binary form

– Interoperability

• Interfaces;
– Semantically related set of methods

– Strongly typed contract between software component and ist clients

– Articulation of expected behavior

– Reusable in a variety of contexts
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Evolution of COM+
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Problems of Complex Software

• Apps are large and complex:
– Time consuming to develop, difficult and costly to maintain,

– Risky to extend with additional funtionality

• Monolythic style:
– Prepackaged with a range of static features

– Add/remove/upgrade/replace features is difficult (impossible)

• Apps do not lend themselves to integration:
– Neither data nor functionality is available to another program

• Programming models reflect provider‘s upbringing:
– No location-transparency

COM Software can better meet these challenges.
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COM and COM+

• COM: Fundamental programming architecture for
building software components
– Unconfigured components

• Plus (+) an integrated suite of component services with
an associated runtime environment
– Configured components

• Support for robust server-size systems
– Threading, concurrency, security

– Administration, robustness

– Example: Microsoft SQL server
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Windows DNA:
a COM+-based three-tier architecture
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Evolution of Component Services

• Standard implementation of services that are frequently
needed by component developers

COM+
load balancing, in-memory database
object pooling, queued components

event model, administration

Microsoft Transaction Server
transaction services, resource pooling

role-based security, administration
just-in-time activation

Distributed COM
remoting architecture

distributed component services

COM
interface-based programming

basic component facilities
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Just-in-time activation

• Scalability of middle-tier components
– Clients obtain references to context objects

– COM+ instantiates actual business objects
(transparently)

– COM+ may de-activate objects
(resource sharing)
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Scalability Enhancements

Object Pooling

• COM+ may recycle objects for later reuse
– Automatic instantiation of new objects when pools is empty

– Useful technique when object creation is very expensive (time)

Load Balancing

• Client workload can be distributed among multiple
servers in a network
– Load balancing at component level

– Clients contact load balancing router first

– COM+ uses response-time analysis algorithm to determine server

– Windows 2000 clustering service can be used to eliminate balancing
router as single-point-of-failure
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Queued Components

• Execute method calls against unavailable components
– Based on Microsoft Message Queue Server (MSMQ – Windows 2000)
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Transactions

• COM+ components may automatically participate in
distributed transactions

• Implemented by Distributed Transaction Coordinator:
– Object-oriented two-phase commit protocol based on COM

(OLE Transaction specification: ITransaction, ITransactionDispenser,
ITransactionOptions, ITransactionOutcomeEvents interfaces)

– Support of the X/OPEN DTP XA standard (two-phase commit)

– Originally bundled with SQL Server

• ACID properties of transactions:
– Atomic, Consistent, Isolated, Durable

• Four levels of transaction support for components:
– Requires/requires new/supports/does not support transactions
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Security & Events

• Role-based Security:
– Leverage Windows 2000 security model

– Declarative and programmatic security

– Security settings on component and interfacce basis

• Events:
– Publisher/subscriber style of communication

– External event model: publisher/subscriber do not need to execute
simultaneously

– Subscriptions are maintained outside of publisher/subscriber:
persistent subscriptions

– Subscriber is any component that implements a given class interface


