
AP 12/00

From Object-Oriented Programming
to Component Software

• OO Languages:
– Ada, Smalltalk, Java, C++

• Class versus Object:
– Express existence of objects directly in code

– Code is more expressive, easier to develop, less costly to maintain

• Main Concepts:
– Encapsulation – hiding of implementation details

– Inheritance – reuse existing objects in creation of new objects

– Polymorphism – exhibit multiple behavior depending on object used

• Reuse:
– Code must be written in a general enough manner

– Language-independent

AP 12/00

Component Software

• Object-Oriented Analysis and Design:
– Breakdown of a project in its logical components

• Components:
– Reusable pieces of software in binary form

– Interoperability

• Interfaces;
– Semantically related set of methods

– Strongly typed contract between software component and ist clients

– Articulation of expected behavior

– Reusable in a variety of contexts

AP 12/00

Evolution of COM+

Clipboard
1987

OLE
1992

COM
1995

Distributed COM
1996

Distributed
Computing

1980s

OSF DCE RPC
on Windows

1992

Clipboard
1987

OLE
1992

COM
1995

Distributed COM
1996

Distributed
Computing

1980s

OSF DCE RPC
on Windows

1992 Microsoft Distributed
Transaction Coordinator

1996

Microsoft
Transaction Server

1997

Microsoft Message
Queue Server

1997

COM+
1999

COM =
Component

Object Model

AP 12/00

Problems of Complex Software

• Apps are large and complex:
– Time consuming to develop, difficult and costly to maintain,

– Risky to extend with additional funtionality

• Monolythic style:
– Prepackaged with a range of static features

– Add/remove/upgrade/replace features is difficult (impossible)

• Apps do not lend themselves to integration:
– Neither data nor functionality is available to another program

• Programming models reflect provider‘s upbringing:
– No location-transparency

COM Software can better meet these challenges.

AP 12/00

COM and COM+

• COM: Fundamental programming architecture for
building software components
– Unconfigured components

• Plus (+) an integrated suite of component services with
an associated runtime environment
– Configured components

• Support for robust server-size systems
– Threading, concurrency, security

– Administration, robustness

– Example: Microsoft SQL server

AP 12/00

Windows DNA:
a COM+-based three-tier architecture

AP 12/00

Evolution of Component Services

• Standard implementation of services that are frequently
needed by component developers

COM+
load balancing, in-memory database
object pooling, queued components

event model, administration

Microsoft Transaction Server
transaction services, resource pooling

role-based security, administration
just-in-time activation

Distributed COM
remoting architecture

distributed component services

COM
interface-based programming

basic component facilities

AP 12/00

Just-in-time activation

• Scalability of middle-tier components
– Clients obtain references to context objects

– COM+ instantiates actual business objects
(transparently)

– COM+ may de-activate objects
(resource sharing)

Transaction ID
Object-Creator ID

IObjectContext

The Object

ICustom

Transaction ID
Object-Creator ID

IObjectContext

The Object
(deactivated)

ICustom

Transaction ID
Object-Creator ID

IObjectContext

The Object

ICustom

Client

Client

Client

System-created context object
shadows each user object

AP 12/00

Scalability Enhancements

Object Pooling

• COM+ may recycle objects for later reuse
– Automatic instantiation of new objects when pools is empty

– Useful technique when object creation is very expensive (time)

Load Balancing

• Client workload can be distributed among multiple
servers in a network
– Load balancing at component level

– Clients contact load balancing router first

– COM+ uses response-time analysis algorithm to determine server

– Windows 2000 clustering service can be used to eliminate balancing
router as single-point-of-failure

AP 12/00

Queued Components

• Execute method calls against unavailable components
– Based on Microsoft Message Queue Server (MSMQ – Windows 2000)

Client
Proxy

(Recorder)
Stub

(Player)

Component

Send
queue

Receive
queue

ServerMSMQ

AP 12/00

Transactions

• COM+ components may automatically participate in
distributed transactions

• Implemented by Distributed Transaction Coordinator:
– Object-oriented two-phase commit protocol based on COM

(OLE Transaction specification: ITransaction, ITransactionDispenser,
ITransactionOptions, ITransactionOutcomeEvents interfaces)

– Support of the X/OPEN DTP XA standard (two-phase commit)

– Originally bundled with SQL Server

• ACID properties of transactions:
– Atomic, Consistent, Isolated, Durable

• Four levels of transaction support for components:
– Requires/requires new/supports/does not support transactions

AP 12/00

Security & Events

• Role-based Security:
– Leverage Windows 2000 security model

– Declarative and programmatic security

– Security settings on component and interfacce basis

• Events:
– Publisher/subscriber style of communication

– External event model: publisher/subscriber do not need to execute
simultaneously

– Subscriptions are maintained outside of publisher/subscriber:
persistent subscriptions

– Subscriber is any component that implements a given class interface

