
Pattern-Oriented Software Architecture
Applying Concurrent & Networked Objects

to Develop & Use
Distributed Object Computing Middleware

Pattern-Oriented Software ArchitecturePattern-Oriented Software Architecture
Applying Concurrent & Networked Objects

to Develop & Use
Distributed Object Computing Middleware

Dr. Douglas C. Schmidt
schmidt@uci.edu

http://www.posa.uci.edu/

Electrical & Computing Engineering Department
The Henry Samueli School of Engineering

University of California, Irvine

Montag, 19. April 2004

2

Distributed Architecture

Middleware Patterns Tutorial Outline

Describe OO techniques & language
features to enhance software quality

Stand-alone
Architecture

Illustrate how/why it’s hard to build robust, efficient,
& extensible concurrent & networked applications
• e.g., we must address many complex topics that are less
problematic for non-concurrent, stand-alone applications

OO techniques & language features include:
•Patterns (25+), which embody reusable software
architectures & designs

•Frameworks & components, which embody reusable
software implementations

•OO language features, e.g., classes, inheritance &
dynamic binding, parameterized types & exceptions

Tutorial Organization
1. Background & motivation
2. Concurrent & network

challenges & solution
approaches

3. Multiple case studies
4. Wrap-up and Q&A

3

CPUs and networks have
increased by 3-7 orders of
magnitude in the past decade2,400 bits/sec to

1 Gigabits/sec

10 Megahertz to
1 Gigahertz

These advances stem
largely from standardizing
hardware & software APIs
and protocols, e.g.:

The Road Ahead

• TCP/IP, ATM
• POSIX & JVMs
• Middleware & components

• Intel x86 & Power PC chipsets

• Ada, C, C++, RT Java

Extrapolating this trend to
2010 yields

• ~100 Gigahertz desktops
• ~100 Gigabits/sec LANs
• ~100 Megabits/sec wireless
• ~10 Terabits/sec Internet
backbone

In general, software has not
improved as rapidly or as
effectively as hardware

In general, software has not
improved as rapidly or as
effectively as hardware

Increasing software productivity
and QoS depends heavily on COTS
Increasing software productivity
and QoS depends heavily on COTS

4

Addressing the COTS “Crisis”

However, this trend presents many vexing
R&D challenges for mission-critical
systems, e.g.,
• Inflexibility and lack of QoS
• Security & global competition

Distributed systems must increasingly
reuse commercial-off-the-shelf (COTS)
hardware & software
• i.e., COTS is essential to R&D success

Why we should care:

•Despite IT commoditization, progress in
COTS hardware & software is often not
applicable for mission-critical
distributed systems

•Recent advances in COTS software
technology can help to fundamentally
reshape distributed system R&D

5

R&D Challenges & Opportunities

High-performance, real-time,
fault-tolerant, & secure systems

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

BSE

BSE

BSE

BSE

BSE

BSE

BSEBSE

BSE

Power-aware ad hoc,
mobile, distributed, &
embedded systems

Middleware,
Frameworks, &
Components

Patterns &
Pattern
Languages

Standards
& Open-
source

Challenges Opportunities

Autonomous systems

6

The Evolution of COTS

There are multiple COTS
layers & research/

business opportunities

Historically, mission-critical apps were
built directly atop hardware

The domain-specific services layer is
where system integrators can provide the
most value & derive the most benefits

The domain-specific services layer is
where system integrators can provide the
most value & derive the most benefits

Standards-based COTS middleware helps:
•Manage end-to-end resources
•Leverage HW/SW technology advances
•Evolve to new environments & requirements

& OS
•Tedious, error-prone, & costly over lifecycles

Prior R&D efforts have address some, but by
no means all, of these issues

• Layered QoS specification
& enforcement

• Separating policies &
mechanisms across layers

• Time/space optimizations
for middleware & apps

• Multi-level global
resource mgmt. &
optimization

• High confidence
• Stable & robust
adaptive systems

Key R&D challenges include:

7

•More emphasis on integration rather
than programming

•Increased technology convergence &
standardization

•Mass market economies of scale for
technology & personnel

•More disruptive technologies & global
competition

•Lower priced--but often lower quality--
hardware & software components

•The decline of internally funded R&D
•Potential for complexity cap in next-
generation complex systems

Consequences of COTS
& IT Commoditization

Not all trends bode well for
long-term competitiveness
of traditional R&D leaders

Ultimately, competitiveness will depend
on success of long-term R&D efforts on
complex distributed & embedded systems

8

Why middleware-centric reuse works
1.Hardware advances

•e.g., faster CPUs & networks
2.Software/system architecture

advances
•e.g., inter-layer optimizations &
meta-programming mechanisms

3.Economic necessity
•e.g., global competition for
customers & engineers

Why We are Succeeding Now
Recent synergistic advances in fundamentals:

Revolutionary changes in software
process: Open-source, refactoring,
extreme programming (XP), advanced
V&V techniques

Patterns & Pattern Languages:
Generate software architectures
by capturing recurring structures
& dynamics & by resolving
design forces

Standards-based QoS-enabled
Middleware: Pluggable service &
micro-protocol components &
reusable “semi-complete”
application frameworks

9

Example:

Applying COTS in Real-time Avionics

Key System Characteristics
•Deterministic & statistical deadlines

•~20 Hz
•Low latency & jitter

•~250 usecs
•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

•Test flown at China Lake NAWS by Boeing
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

•Test flown at China Lake NAWS by Boeing
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

Key Results

Goals
•Apply COTS & open systems to
mission-critical real-time avionics

10

Time-critical targets require immediate response because:
•They pose a clear and present danger to friendly forces &
•Are highly lucrative, fleeting targets of opportunity

Example:

Applying COTS to Time-Critical Targets

Adapted from “The Future of AWACS”,
by LtCol Joe Chapa

Joint Forces
Global Info Grid

Joint Forces
Global Info Grid Challenge

 is to make this
possible!

Challenges are
also relevant to
TBMD & NMD

Goals
• Detect, identify,
track, & destroy
time-critical
targets

• Real-time mission-critical
sensor-to-shooter needs

• Highly dynamic QoS
requirements & environmental
conditions

• Multi-service & asset
coordination

Key System
Characteristics

Key Solution Characteristics
•Efficient & scalable
•Affordable & flexible
•COTS-based

•Efficient & scalable
•Affordable & flexible
•COTS-based

•Adaptive & reflective
•High confidence
•Safety critical

•Adaptive & reflective
•High confidence
•Safety critical

Example:

Applying COTS to Large-scale Routers

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

IOM

BSE

BSE

BSE

BSE

BSE

BSE

BSEBSE

BSE Goal
•Switch ATM cells +
IP packets at terabit
rates

Key Software Solution Characteristics

•High confidence & scalable computing architecture
•Networked embedded processors
•Distribution middleware
•FT & load sharing
•Distributed & layered resource management

•Affordable, flexible, & COTS

•High confidence & scalable computing architecture
•Networked embedded processors
•Distribution middleware
•FT & load sharing
•Distributed & layered resource management

•Affordable, flexible, & COTS

Key System
Characteristics
•Very high-speed WDM
links

•102/103 line cards
•Stringent requirements
for availability

•Multi-layer load
balancing, e.g.:
•Layer 3+4
•Layer 5

www.arl.wustl.edu

12

Example:

Applying COTS to Hot Rolling Mills
Goals
•Control the processing of molten
steel moving through a hot rolling
mill in real-time

System Characteristics
•Hard real-time process automation
requirements
• i.e., 250 ms real-time cycles

•System acquires values
representing plant’s current state,
tracks material flow, calculates new
settings for the rolls & devices, &
submits new settings back to plant

Key Software Solution Characteristics

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•Windows NT/2000
•Real-time CORBA (ACE+TAO)

www.siroll.de

13

Example:

Applying COTS to Real-time Image Processing

Goals
•Examine glass bottles
for defects in real-
time

System
Characteristics
•Process 20 bottles
per sec
• i.e., ~50 msec per
bottle

•Networked
configuration

•~10 cameras
Key Software Solution Characteristics

•Affordable, flexible, & COTS
•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Affordable, flexible, & COTS
•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Remote booted by DHCP/TFTP
•Real-time CORBA (ACE+TAO)

www.krones.com

14

Concurrency & Synchronization
Motivations
•Leverage
hardware/software
advances

•Simplify program
structure

• Increase
performance

• Improve response-
time

Key Opportunities & Challenges in
Concurrent & Networked Applications

Networking &
Distribution
Motivations
• Collaboration
• Performance
• Reliability & availability
• Scalability & portability
• Extensibility
• Cost effectiveness

Inherent Complexities
•Latency
•Reliability
•Load balancing
•Scheduling
•Causal ordering
•Synchronization
•Deadlocks

Accidental Complexities
•Low-level APIs
•Poor debugging tools
•Algorithmic
decomposition

•Continuous re-invention
& re-discover of core
concepts & components

15

•Present solutions to common software
problems arising within a certain context

Overview of Patterns & Pattern Languages

• Define a vocabulary for
talking about software
development problems

• Provide a process for the
orderly resolution of these
problems

• Help to generate & reuse
software architectures

Patterns

Pattern Languages

•Help resolve key design forces

•Flexibility

•Extensibility

•Dependability

•Predictability

•Scalability

•Efficiency

The Proxy
Pattern

•Capture recurring structures & dynamics
among software participants to facilitate
reuse of successful designs

•Generally codify expert knowledge of
design constraints & “best practices”

www.posa.uci.edu

16

Software Design Abstractions for
Concurrent & Networked Applications

Problem
•Distributed application functionality
is subject to change since it is
often reused in unforeseen
contexts, e.g.,
•Accessed from different clients
•Run on different platforms
•Configured into different run-time
contexts

A component is an
encapsulation unit with
one or more interfaces
that provide clients with
access to its services

A framework is an integrated
collection of classes that
collaborate to produce a
reusable architecture for a
family of related applications

A class is a unit of
abstraction &
implementation in
an OO
programming
language

MIDDLEWARE

Solution
•Don‘t structure distributed applications as a
monoliths, but instead decompose them into
classes, frameworks, & components

Solution
•Don‘t structure distributed applications as a
monoliths, but instead decompose them into
classes, frameworks, & components

17

A Comparison of Class Libraries,
Frameworks, & Components

Class
Libraries

Frameworks

Macro-levelMeso-levelMicro-level

Borrow caller’s
thread

Inversion of
control

Borrow
caller’s thread

Domain-specific or
Domain-independent

Domain-
specific

Domain-
independent

Stand-alone
composition

entities

“Semi-
complete”

applications

Stand-alone
language
entities

Components

Class Library Architecture

ADTs

Strings

Locks
IPC

Math
LOCAL
INVOCATIONSAPPLICATION-

SPECIFIC
FUNCTIONALITY

EVENT
LOOP

GLUE
CODE

Files

GUI

Logging

Component Architecture
LOCAL/REMOTE
INVOCATIONSAPPLICATION-

SPECIFIC
FUNCTIONALITY

EVENT
LOOP

GLUE
CODE

Naming

Trading

Events

Locking

Framework Architecture

ADTs

Locks

INVOKES

Strings

Files

18

Overview of the ACE Framework
Features
•Open-source
•200,000+ lines
of C++

•30+ person-
years of effort

•Ported to
Win32, UNIX, &
RTOSs

• e.g., VxWorks,
pSoS, LynxOS,
Chorus, QNX

•Large open-source user community
•www.cs.wustl.edu/~schmidt/ACE-
users.html

•Commercial support by Riverace
• www.riverace.com/

www.cs.wustl.edu/~schmidt/ACE.html

19

Event HandlingService Access & Control

Concurrency Synchronization

Key Capabilities Provided by ACE

20

Observation
•Failure rarely results
from unknown scientific
principles, but from
failing to apply proven
engineering practices &
patterns

Benefits of POSA2 Patterns
•Preserve crucial design
information used by
applications & underlying
frameworks/components

•Facilitate design reuse
•Guide design choices for
application developers

URL for POSA Books
www.posa.uci.edu
URL for POSA Books
www.posa.uci.edu

The POSA2 Pattern Language

21

POSA2 Pattern Abstracts
Service Access & Configuration Patterns

The Wrapper Facade design pattern
encapsulates the functions and data provided by
existing non-object-oriented APIs within more
concise, robust, portable, maintainable, and
cohesive object-oriented class interfaces.

The Component Configurator design pattern
allows an application to link and unlink its
component implementations at run-time without
having to modify, recompile, or statically relink
the application. Component Configurator further
supports the reconfiguration of components into
different application processes without having to
shut down and re-start running processes.

The Interceptor architectural pattern allows
services to be added transparently to a
framework and triggered automatically when
certain events occur.

The Extension Interface design pattern allows
multiple interfaces to be exported by a
component, to prevent bloating of interfaces and
breaking of client code when developers extend
or modify the functionality of the component.

Event Handling Patterns

The Reactor architectural pattern allows event-
driven applications to demultiplex and dispatch
service requests that are delivered to an
application from one or more clients.

The Proactor architectural pattern allows
event-driven applications to efficiently
demultiplex and dispatch service requests
triggered by the completion of asynchronous
operations, to achieve the performance
benefits of concurrency without incurring
certain of its liabilities.

The Asynchronous Completion Token design
pattern allows an application to demultiplex
and process efficiently the responses of
asynchronous operations it invokes on
services.

The Acceptor-Connector design pattern
decouples the connection and initialization of
cooperating peer services in a networked
system from the processing performed by the
peer services after they are connected and
initialized.

22

POSA2 Pattern Abstracts (cont’d)
Synchronization Patterns

The Scoped Locking C++ idiom
ensures that a lock is acquired when
control enters a scope and released
automatically when control leaves the
scope, regardless of the return path
from the scope.

The Strategized Locking design pattern
parameterizes synchronization
mechanisms that protect a component’s
critical sections from concurrent
access.

The Thread-Safe Interface design
pattern minimizes locking overhead and
ensures that intra-component method
calls do not incur ‘self-deadlock’ by
trying to reacquire a lock that is held by
the component already.

The Double-Checked Locking
Optimization design pattern reduces
contention and synchronization
overhead whenever critical sections of
code must acquire locks in a thread-
safe manner just once during program
execution.

Concurrency Patterns

The Active Object design pattern decouples method
execution from method invocation to enhance concurrency
and simplify synchronized access to objects that reside in
their own threads of control.

The Monitor Object design pattern synchronizes concurrent
method execution to ensure that only one method at a time
runs within an object. It also allows an object’s methods to
cooperatively schedule their execution sequences.

The Half-Sync/Half-Async architectural pattern decouples
asynchronous and synchronous service processing in
concurrent systems, to simplify programming without
unduly reducing performance. The pattern introduces two
intercommunicating layers, one for asynchronous and one
for synchronous service processing.

The Leader/Followers architectural pattern provides an
efficient concurrency model where multiple threads take
turns sharing a set of event sources in order to detect,
demultiplex, dispatch, and process service requests that
occur on the event sources.

The Thread-Specific Storage design pattern allows multiple
threads to use one ‘logically global’ access point to retrieve
an object that is local to a thread, without incurring locking
overhead on each object access.

23

Example of Applying Patterns & Frameworks:

Real-time CORBA & The ACE ORB (TAO)
TAO Features
•Open-source
•500+ classes &
500,000+ lines of C++

•ACE/patterns-based
•30+ person-years of
effort

•Ported to UNIX,
Win32, MVS, & many
RT & embedded OSs

• e.g., VxWorks, LynxOS,
Chorus, QNX

www.cs.wustl.edu/~schmidt/TAO.html

Protocol
Properties Explicit Binding

Thread
Pools

Scheduling Service

Standard Synchronizers

Portable Priorities

•Large open-source user community
•www.cs.wustl.edu/~schmidt/TAO-
users.html

•Commercial support by OCI
• www.theaceorb.com/

End-to-end Priority Propagation

24

Tutorial Example 1:

Electronic Medical Imaging Systems

Modalities
e.g., MRI, CT, CR,

Ultrasound, etc.

www.syngo.com

Goal
•Route, manage, & manipulate
electronic medical images robustly,
efficiently, & securely thoughout a
distributed environment

System Characteristics
•Large volume of “blob” data

•e.g.,10 to 40 Mps
•“Lossy” compression isn’t viable
due to liability concerns

•Diverse QoS requirements, e.g.,
• Synchronous & asynchronous
communication

• Streaming communication
• Prioritization of requests & streams
• Distributed resource management

Key Software Solution Characteristics

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•General-purpose & embedded
OS platforms

•Middleware technology agnostic

25

8. New

Modalities
e.g., MRI, CT, CR, Ultrasound, etc.

9. Return Ref

7.New

1. Deploy

3. Bind
Factory

Image Xfer
 Interface

Image Xfer
 Interface

Configuration
Database

ConfigurationConfiguration

ContainerContainer

Image Acquisition Scenario

Image Xfer
Component

Servant

Image Xfer
Component

Servant

2. Enter
 info

6. Intercept
 & delegate

Xfer ProxyXfer Proxy

Factory ProxyFactory Proxy

10. Invoke get_image() call

11. Query
 Config.

12. Check
 Authorization

5. Find Image

Diagnostic & Clinical Workstations

13. Activate

Factory/FinderFactory/Finder
Security ServiceSecurity Service

Naming
Service
Naming
Service

4. Find
 Factory

Radiology
Client

Radiology
Client

14. Delegate

Key Tasks
1.Image

routing
2.Image

delivery

Image
Database

26

Image Xfer
 Interface

Image Xfer
 Interface

Configuration
Database ConfigurationConfiguration

ContainerContainer

Image Xfer
Component

Servant

Image Xfer
Component

Servant

Xfer ProxyXfer Proxy

Factory ProxyFactory Proxy

Image
Database

Factory/FinderFactory/FinderSecurity ServiceSecurity Service

Naming
Service
Naming
Service

Radiology
Client

Radiology
Client

Applying Patterns to Resolve Key
Design Challenges

Patterns help resolve the following common design challenges:
•Decoupling suppliers & consumers
•Providing mechanisms to find &
create remote components

•Locating & creating components
effectively

•Extending components transparently
•Minimizing resource utilization
•Enhancing server (re)configurability

•Decoupling suppliers & consumers
•Providing mechanisms to find &
create remote components

•Locating & creating components
effectively

•Extending components transparently
•Minimizing resource utilization
•Enhancing server (re)configurability

•Separating concerns between tiers
•Improving type-safety &
performance

•Enabling client extensibility
•Ensuring platform-neutral &
network-transparent OO comm.

•Supporting async comm.
•Supporting OO async comm.

•Separating concerns between tiers
•Improving type-safety &
performance

•Enabling client extensibility
•Ensuring platform-neutral &
network-transparent OO comm.

•Supporting async comm.
•Supporting OO async comm.

Proxy

Broker

Active Object

Publisher/
Subscriber

Component
Configurator

Extension
Interface

Factory/Finder

Async
Forwarder/
Receiver

Layers

Interceptor

Activator

27

Solution
•Apply the Layers architectural
pattern to create a multi-tier
architecture that separates
concerns between groups of
subtasks occurring at distinct
layers in the distributed system

Solution
•Apply the Layers architectural
pattern to create a multi-tier
architecture that separates
concerns between groups of
subtasks occurring at distinct
layers in the distributed system

Separating Concerns Between Tiers
Context
• Distributed systems are now
common due to the advent of
• The global Internet
• Ubiquitous mobile & embedded
devices

Problem
• One reason it’s hard to build COTS-
based distributed systems is because
a large number of capabilities must
be provided to meet end-to-end
application requirements

•Services in the middle-tier participate
in various types of tasks, e.g.,
•Workflow of integrated “business”
processes

•Connect to databases & other
backend systems for data storage
& access

Database Tier
• e.g., persistent
data

DB
Server

DB
Server

Middle Tier
• e.g., common
business logic

comp

comp

Application

Server

Presentation Tier
• e.g., thin clients

Client Client

28

Applying the Layers Pattern to
Image Acquisition

Image servers are middle tier components that:
•Provide server-side functionality

•e.g., they are responsible for scalable concurrency & networking
•Can run in their own address space
•Are integrated into containers that hide low-level system details

Image servers are middle tier components that:
•Provide server-side functionality

•e.g., they are responsible for scalable concurrency & networking
•Can run in their own address space
•Are integrated into containers that hide low-level system details

Image
Database

Image
Database

Database Tier
•e.g., persistent
image data

Middle Tier
•e.g., image
routing & image
transfer logic

comp

comp

Image

Server

Presentation Tier
•e.g., radiology
clients

Diagnostic
Workstations

Clinical
Workstations

Diagnostic & clinical
workstations are
presentation tier components
that:
•Typically represent
sophisticated GUI
elements

•Share the same address
space with their clients
• Their clients are containers
that provide all the
resources

•Exchange messages with
the middle tier components

29

Pros & Cons of the Layers Pattern

This pattern has four benefits:
•Reuse of layers

• If an individual layer embodies a well-
defined abstraction & has a well-defined &
documented interface, the layer can be
reused in multiple contexts

•Support for standardization
• Clearly-defined and commonly-accepted
levels of abstraction enable the
development of standardized tasks &
interfaces

•Dependencies are localized
• Standardized interfaces between layers
usually confine the effect of code changes
to the layer that is changed

•Exchangeability
• Individual layer implementations can be
replaced by semantically-equivalent
implementations without undue effort

This pattern also has liabilities:
•Cascades of changing behavior

• If layer interfaces & semantics
aren’t abstracted properly then
changes can ripple when behavior
of a layer is modified

•Lower efficiency
• A layered architecture can be less
efficient than a monolithic
architecture

•Unnecessary work
• If some services performed by lower
layers perform excessive or
duplicate work not actually required
by the higher layer, performance
can suffer

•Difficulty of establishing the
correct granularity of layers
• It’s important to avoid too many &
too few layers

30

Overview of Distributed Object Computing
Communication Mechanisms

Solution
•DOC middleware provides multiple types of communication mechanisms

•Collocated client/server (i.e., native function call)
•Synchronous & asynchronous RPC/IPC
•Group communication
•Data streaming

Problem
•A single communication
mechanism does not fit all
uses!

Context
In multi-tier systems both the tiers & the
components within the tiers must be
connected via communication mechanisms

Next, we’ll explore
various patterns that
applications can apply
to leverage these
communication
mechanisms

Next, we’ll explore
various patterns that
applications can apply
to leverage these
communication
mechanisms

31

Improving Type-safety & Performance

Context
• The configuration of
components in
distributed systems is
often subject to change
as requirements evolve

• A Service implements the object, which is not
accessible directly

• A Proxy represents the Service and
ensures the correct access to it
• Proxy offers same interface as Service

• Clients use the Proxy to access the Service

Proxy

service

Client

Service

service
1 1

AbstractService

serviceSolution
Apply the Proxy design pattern to
provide an OO surrogate through
which clients can access remote
objects

Solution
Apply the Proxy design pattern to
provide an OO surrogate through
which clients can access remote
objects

Problems
• Low-level message passing is fraught with
accidental complexity

• Remote components should look like local
components from an application perspective

• i.e., clients & servers should be oblivious to
communication issues

: Service: Proxy: Client
service

service

pre-processing:
marshaling

post-processing:
unmarshaling

32

Applying the Proxy Pattern
to Image Acquisition

Proxy

get_image()

Client

Image Xfer

get_image()
1 1

AbstractService

get_image()

Invoke get_image() call

We can apply the Proxy pattern
to provide a strongly-typed
interface to initiate & coordinate
the downloading of images
from an image database

When proxies are generated automatically by middleware they
can be optimized to be much more efficient than manual
message passing
•e.g., improved memory management, data copying, &
compiled marshaling/demarshaling

When proxies are generated automatically by middleware they
can be optimized to be much more efficient than manual
message passing
•e.g., improved memory management, data copying, &
compiled marshaling/demarshaling

Image Xfer
 Service

Image Xfer
 ServiceXfer ProxyXfer Proxy

Image
Database

Radiology
Client

Radiology
Client

33

Pros & Cons of the Proxy Pattern

This pattern provides three benefits:
•Decoupling clients from the location
of server components
• By putting all location information &
addressing functionality into a proxy
clients are not affected by migration of
servers or changes in the networking
infrastructure

•Potential for time & space
optimizations
• Proxy implementations can be loaded “on-
demand” and can also be used to cache
values to avoid remote calls

• Proxies can also be optimized to improve
both type-safety & performance

•Separation of housekeeping &
functionality
• A proxy relieves clients from burdens that
do not inherently belong to the task the
client performs

This pattern has two liabilities:
•Potential overkill via
sophisticated strategies
• If proxies include overly
sophisticated functionality they many
introduce overhead that defeats their
intended purpose

•Less efficiency due to
indirection
• Proxies introduce an additional layer
of indirection that can be excessive if
the proxy implementation is
inefficient

34

Enabling Client Extensibility

Context
• Object models define how
components import & export
functionality
•e.g., UML class diagrams
specify well-defined OO
interfaces

Problem
• Many object models assign a single interface
to each component

• This design makes it hard to evolve
components without
• Breaking existing client interfaces
• Bloating client interfaces

Solution
• Apply the Extension
Interface design pattern to
allow multiple interfaces to
be exported by a
component, to prevent
bloating of interfaces &
breaking of client code
when developers extend
or modify component
functionality

Solution
• Apply the Extension
Interface design pattern to
allow multiple interfaces to
be exported by a
component, to prevent
bloating of interfaces &
breaking of client code
when developers extend
or modify component
functionality

CreateComponent

 Factory

*

*

CreateInstance

CreateComponent

 Component
new

*1

QueryInterface

Root

implements

1+

<<extends>>

Ask for a reference
to an interface

Call an
operation on an
interface

Initialize

unititialize

 Server
QueryInterface

service_i

Extension
Interface i

Call_service

Client

35

Extension Interface Pattern Dynamics

: Client

Start_client

: Factory

CreateInstance(Ext.Intf. 1)
new

Ref. To Extension1

create

create

service_1

QueryInterface(Extension Interface 2)

Ref. To Extension2

service2

Note how each extension interface can
serve as a “factory” to return object
reference to other extension interfaces

Note how each extension interface can
serve as a “factory” to return object
reference to other extension interfaces

: Component : Extension 1 : Extension 2

service_2

36

Pros & Cons of the
Extension Interface Pattern

This pattern has five benefits:
•Separation of concerns

• Interfaces are strictly decoupled from
implementations

•Exchangeability of components
• Component implementations can evolve
independently from clients that access
them

•Extensibility through interfaces
• Clients only access components via their
interfaces, which reduces coupling to
representation & implementation details

•Prevention of interface bloating
• Interfaces need not contain all possible
methods, just the ones associated with a
particular capability

•No subclassing required
• Delegation—rather than inheritance—is
used to customize components

This pattern also has liabilities:
•Overhead due to indirection

• Clients must incur the
overhead of several round-trips
to obtain the appropriate object
reference from a server
component

•Complexity & cost for
development & deployment
• This pattern off-loads the
responsibility for determining
the appropriate interface from
the component designer to the
client application

37

Ensuring Platform-neutral & Network-
transparent OO Communication

Problem
•We need an architecture that:

•Supports remote method invocation
•Provides location transparency
•Allows the addition, exchange, or
remove of services dynamically

•Hides system details from the
developer

Solution
•Apply the
Broker pattern
to provide OO
platform-neutral
communication
between
networked client
& server
components

Solution
•Apply the
Broker pattern
to provide OO
platform-neutral
communication
between
networked client
& server
components

Context
•Using the Proxy pattern is
insufficient since it doesn‘t address
how
•Remote components are located
•Connections are established
•Messages are exchanged across a
network

•etc.

calls
1

message
exchange

message
exchange

*

marshal
unmarhal
receive_result
service_p

 Client Proxy

calls*

*

call_service_p
start_task

Client

1

marshal
unmarshal
forward_message
transmit_message

Bridge

marshal
unmarshal
dispatch
receive_request

 Server Proxy

calls*

start_up
main_loop
service_i

Server

1

1

main_loop
srv_registration
srv_lookup
transmit_message

Broker1

38

Broker Pattern Dynamics

method
(proxy) locate_server

server port

receive_request

marshal

unmarshal

dispatch
method (impl.)

 result

marshal
receive_result

unmarshal

 result

start_up
register_service

: Broker: Client Proxy : Server Proxy: Client : Server

assigned port

Broker tools provide the
generation of necessary client
& server proxies from higher
level interface definitions

GeneratorGenerator ProxyProxy
CodeCode

InterfaceInterface
Specif.Specif.

39

Applying the Broker Pattern
to Image Acquisition

•Common Object Request
Broker Architecture (CORBA)

•A family of specifications
•OMG is the standards body
•Over 800 companies

•CORBA defines interfaces
•Rather than implementations

•Simplifies development of
distributed applications by
automating

•Object location
•Connection management
•Memory management
•Parameter (de)marshaling
•Event & request demuxing
•Error handling
•Object/server activation
•Concurrency

Interface
Repository

IDL
Compiler

Implementation
Repository

Client
OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII
IDL

STUBS
ORB

INTERFACE

IDL
SKEL

DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

•CORBA shields applications from environment
heterogeneity
•e.g., programming languages, operating
systems, networking protocols, hardware

40

Pros & Cons of the Broker Pattern
This pattern has five benefits:
•Portability enhancements

• A broker hides OS & network system details
from clients and servers by using indirection &
abstraction layers, such as APIs, proxies,
adapters, & bridges

• Interoperability with other brokers
• Different brokers may interoperate if they
understand a common protocol for exchanging
messages

•Reusability of services
• When building new applications, brokers
enable application functionality to reuse
existing services

•Location transparency
• A broker is responsible for locating servers, so
clients need not know where servers are
located

•Changeability & extensibility of
components
• If server implementations change without
affecting interfaces clients should not be
affected

This pattern also has liabilities:

•Restricted efficiency
• Applications using brokers may
be slower than applications
written manually

•Lower fault tolerance
• Compared with non-distributed
software applications,
distributed broker systems may
incur lower fault tolerance

•Testing & debugging may be
harder
• Testing & debugging of
distributed systems is tedious
because of all the components
involved

41

Supporting Async Communication

Solution
•Apply the Async Forwarder/Receiver design
pattern to allow asynchronous communication
between clients & servers

Solution
•Apply the Async Forwarder/Receiver design
pattern to allow asynchronous communication
between clients & servers

Context
• Some clients want
to send requests,
continue their work,
& receive the
results at some
later point in time

Problem
•Broker implementations based on conventional RPC
semantics often just support blocking operations
• i.e., clients must wait until two-way invocations return

•Unfortunately, this design can reduce scalability &
complicate certain use-cases

Introduce intermediary queue(s) between clients &
servers:
• A queue is used to store messages

• A queue can cooperate with other queues to
route messages

• Messages are sent from sender to receiver
• A client sends a message, which is queued &
then forwarded to a message processor on a
server that receives & executes them

• A Message API is provided for clients & servers to
send/receive messages

Local Queue

store
forward
remove

Message <<route>>

Client Message API<<send>>

Remote Queue

store
forward
remove<<exec>>

Message
Processor Message API<<recv>>

42

Async Forwarder/Receiver Pattern Dynamics

: Client

: Message
create

store
Message

forward
Message

: Message
Processor

create
receive

receive

Message

Message

exec

send Message

: Message
 API

: Local
Queue

: Remote
Queue

: Message
API

Reply

store

forward
Reply

recv Reply

send

Reply

recv

Other
processing

43

Applying the Async Forwarder/Receiver
Pattern to Image Acquisition

We can apply the Async Forwarder/Receiver
pattern to
•Queue up image request messages remotely
without blocking the diagnostic/clinical
workstation clients

•Execute the requests at a later point & return the
results to the client

Local Queue

store
forward
remove

Message <<route>>

Radiology
Client Message API<<send>>

Remote Queue

store
forward
remove<<exec>>

Message API<<recv>>

Image Server
Message

Processor

Image Xfer
 Service

Image Xfer
 Service

Image
Database

Radiology
Client

Radiology
Client

This design also enables other, more advanced capabilities, e.g.,
•Multi-hop store & forward persistence
•QoS-driven routing, where requests can be delivered to the
“best” image database

This design also enables other, more advanced capabilities, e.g.,
•Multi-hop store & forward persistence
•QoS-driven routing, where requests can be delivered to the
“best” image database

44

This pattern provides three benefits:
•Enhances concurrency by
transparently leveraging available
parallelism
• Messages can be executed remotely on
servers while clients perform other
processing

•Simplifies synchronized access to
a shared object that resides in its
own thread of control
• Since messages are processed serially
by a message processor target objects
often need not be concerned with
synchronization mechanisms

•Message execution order can differ
from message invocation order
• This allows reprioritizing of messages to
enhance quality of service

This pattern also has some
liabilities:

•Message execution order can
differ from message invocation
order
• As a result, clients must be careful not
to rely on ordering dependencies

•Lack of type-safety
• Clients & servers are responsible for
formatting & passing messages

•Complicated debugging
• As with all distributed systems,
debugging & testing is complex

Pros & Cons of the Async
Forwarder/Receiver Pattern

45

Supporting OO Async Communication

Solution
•Apply the Active Object design pattern to decouple method invocation from
method execution using an object-oriented programming model

Solution
•Apply the Active Object design pattern to decouple method invocation from
method execution using an object-oriented programming model

• A proxy provides an interface that allows
clients to access methods of an object

• A concrete method request is created for
every method invoked on the proxy

• A scheduler receives the method requests
& dispatches them on the servant when
they become runnable

• An activation list maintains pending
method requests

• A servant implements the methods
• A future allows clients to access the
results of a method call on the proxy

Context
• Some clients want to invoke
remote operations, continue
their work, & retrieve the
results at a later point in time

Problem
•Using the explicit message-passing API of
the Async Forwarder/Receiver pattern can
reduce type-safety & performance
•Similar to motivation for Proxy pattern...

Future

Scheduler

enqueue
dispatch

MethodRequest

guard
call

*

Proxy

method_1
method_n

Activation
List

enqueue
dequeue

Servant

method_1
method_n

creates creates maintains

Concrete
MethodRequest1

Concrete
MethodRequest2

46

• A client invokes a method on the
proxy

• The proxy returns a future to the
client, & creates a method
request, which it passes to the
scheduler

• The scheduler enqueues the
method request into the
activation list (not shown here)

• When the method request
becomes runnable, the scheduler
dequeues it from the activation
list (not shown here) & executes
it in a different thread than the
client

• The method request executes the
method on the servant & writes
results, if any, to the future

• Clients obtain the method’s
results via the future

Active Object Pattern Dynamics

: Future

method

enqueue

: Proxy : Scheduler : Servant

: Method
Request

dispatch call method

read

write

: Client

Clients can obtain result from futures
via blocking, polling, or callbacks
Clients can obtain result from futures
via blocking, polling, or callbacks

47

Applying the Active Object Pattern
to Image Acquisition

•OO developers generally prefer
method-oriented request/response
semantics to message-oriented
semantics

•The Active Object pattern supports
this preference via strongly-typed
async method APIs:
•Several types of parameters can
be passed:
•Requests contain in/inout
arguments

•Results carry out/inout
arguments & results

•Callback object or poller object can
be used to retrieve results

Future

Scheduler

enqueue
dispatch

MethodRequest
guard
call

*

Proxy

method_1
method_n

Activation
List

enqueue
dequeue

Servant
method_1
method_n

creates creates maintains

get_image() put_image()

Image Xfer
 Service

Image Xfer
 Service

Image
Database

Radiology
Client

Radiology
Client

get_image()

future results

48

This pattern provides four benefits:
•Enhanced type-safety

• Compared with async message passing
•Enhances concurrency & simplifies
synchronized complexity
• Concurrency is enhanced by allowing client threads
& asynchronous method executions to run
simultaneously

• Synchronization complexity is simplified by using a
scheduler that evaluates synchronization
constraints to guarantee serialized access to
servants

•Transparent leveraging of available
parallelism
• Multiple active object methods can execute in
parallel if supported by the OS/hardware

•Method execution order can differ from
method invocation order
• Methods invoked asynchronous are executed
according to the synchronization constraints
defined by their guards & by scheduling policies

This pattern also has some
liabilities:

• Performance overhead
• Depending on how an active
object’s scheduler is
implemented, context
switching, synchronization, &
data movement overhead may
occur when scheduling &
executing active object
invocations

• Complicated debugging
• It is hard to debug programs
that use the Active Object
pattern due to the concurrency
& non-determinism of the
various active object
schedulers & the underlying
OS thread scheduler

Pros & Cons of the Active Object Pattern

49

Decoupling Suppliers & Consumers

Decouple suppliers (publishers) &
consumers (subscribers) of events:
• An Event Channel stores/forwards events
• Publishers create events & store them in a
queue maintained by the Event Channel

• Consumers register with event queues,
from which they retrieve events

• Events are used to transmit state change
info from publishers to consumers

• For event transmission push-models &
pull-models are possible

• Filters can filter events for consumers
Event

*

Subscriber

consume

creates receives

Event Channel

attachPublisher
detachPublisher
attachSubscriber
detachSubscriber

Filter

filter

Publisher

produce

Problem
•Having each client call a specific server
is inefficient & non-scalable
•A polling strategy leads to
performance bottlenecks

•Work lists could be spread across
different servers

•More than one client may be
interested in work list content

Context
• In large-scale electronic medical
imaging systems, radiologists may
share “work lists” of patient images
to balance workloads effectively

Solution
•Apply the Publisher/Subscriber
pattern to decouple image
suppliers from image consumers

Solution
•Apply the Publisher/Subscriber
pattern to decouple image
suppliers from image consumers

50

Publisher/Subscriber Pattern Dynamics

•The Publisher/Subscriber
pattern helps keep the
state of cooperating
components synchronized

•To achieve this it enables
one-way propagation of
changes: one publisher
notifies any number of
subscribers about
changes to its state

attachSubscriber

produce

pushEvent
event

event
pushEvent

consume

detachSubscriber

: Event

: Subscriber: Event Channel: Publisher

Key design considerations for the Publisher/Subscriber pattern include:
•Push vs. pull interaction models
•Control vs. data event notification models
•Multicast vs. unicast communication models
•Persistence vs. transient queueing models

Key design considerations for the Publisher/Subscriber pattern include:
•Push vs. pull interaction models
•Control vs. data event notification models
•Multicast vs. unicast communication models
•Persistence vs. transient queueing models

51

Applying the Publisher/Subscriber
Pattern to Image Acquisition

Event

*

Radiologist

consume

creates receives

Event Channel

attachPublisher
detachPublisher
attachSubscriber
detachSubscriber

Filter

filter

Modality

produce

Image
Database

Radiology
Client

Radiology
Client

Radiology
Client

Radiology
Client

Radiology
Client

Radiology
Client

Radiology
Client

Radiology
Client

Radiology
Client

Radiology
Client

Event
Channel
Event

Channel

•Radiologists can subscribe to
an event channel in order to
receive notifications produced
when modalities publish events
indicating the arrival of a new
image

•This design enables a group of
distributed radiologists to
collaborate effectively in a
networked environment

52

Pros & Cons of the
Publisher/Subscriber Pattern

This pattern has two benefits:
•Decouples consumers &
producers of events
• All an event channel knows is that it
has a list of consumers, each
conforming to the simple interface of
the Subscriber class

• Thus, the coupling between the
publishers and subscribers is abstract
& minimal

•n:m communication models are
supported
• Unlike an ordinary request/response
interaction, the notification that a
publisher sends needn’t designate its
receiver, which enables a broader
range of communication topologies,
including multicast & broadcast

There is also a liability:
•Must be careful with potential
update cascades
• Since subscribers have no
knowledge of each other’s presence,
applications can be blind to the
ultimate cost of publishing events
through an event channel

• Thus, a seemingly innocuous
operation on the subject may cause
a cascade of updates to observers &
their dependent objects

53

Locating & Creating Components Effectively

• An Abstract Home declares an interface for
operations that find and/or create abstract
instances of components

• Concrete Homes implements the abstract
Home interface to find specific instances and/or
create new ones

• Abstract Comp declares interface for a specific
type of component class

• Concrete Comp define instances
• A Primary Key is associated with a component

Context
• Our electronic medical
imaging system contains
many components
distributed in a network

Solution
•Apply the Factory/Finder pattern to separate the management of component
lifecycles from their use by client applications

Solution
•Apply the Factory/Finder pattern to separate the management of component
lifecycles from their use by client applications

AbstractComp

operation

ConcreteComp

operation

Primary Key

ConcreteHome

find
create

AbstractHome

find
create

Problem
•How to create new components and/or find
existing ones
• Simple solutions appropriate for stand-alone
applications don’t scale

• “Obvious” solutions for distribution also don’t scale

54

Factory/Finder Pattern Dynamics

• Homes enable the creation &
location of components, but
we still need a global naming
service to locate the homes

• Homes enable the creation &
location of components, but
we still need a global naming
service to locate the homes

find (“ImageXYZ”); Primary Key

Component

operation

lookup

: Client : Home : Component

: Primary Keycreate

Node

Binding Directory

*

resolve
listNodes
navigate
newBinding
newSubDir
remove

getName

getObject

Client

•The Factory/Finder pattern
is supported by distributed
component models
•e.g., EJB, COM+, & the
CCM

55

Applying the Factory/Finder Pattern
to Image Acquisition

AbstractComp

operation

ImageXferComp

operation

Primary Key

ImageXferHome

find
create

AbstractHome

find
create

1. Deploy

2. Bind
Factory

Image Xfer
 Interface

Image Xfer
 Interface

4. Intercept
 & delegate

Factory ProxyFactory Proxy6. Find Image

Factory/FinderFactory/Finder

Naming
Service
Naming
Service

3. Find
 Factory

Image
Database

Radiology
Client

Radiology
Client

5.New

ConfigurationConfiguration

ContainerContainer

•We can apply the Factory/Finder
pattern to create/locate image
transfer components for images
needed by radiologists

• If a suitable component already
exists the component home will
use it, otherwise, it will create a
new component

56

Pros & Cons of the Factory/Finder Pattern

This pattern has three benefits:
•Separation of concerns

• Finding/creating individual
components is decoupled from
locating the factories that find/create
these components

• Improved scalability
• e.g., general-purpose directory
mechanisms need not manage the
creation & location of large amounts of
finer-grained components whose
lifetimes may be short

•Customized capabilities
• The location/creation mechanism can
be specialized to support key
capabilities that are unique for various
types of components

This pattern also has some liabilities:
•Overhead due to indirection

• Clients must incur the overhead of
several round-trips to obtain the
appropriate object reference

•Complexity & cost for
development & deployment
• There are more steps involved in
obtaining object references, which can
complicate client programming

57

Context
•Component developers may
not know a priori where their
components will execute

•Thus, containers are
introduced to:
• Shield clients & components
from the details of the
underlying middleware,
services, network & OS

• Manage the lifecycle of
components & notify
components about lifecycle
events
• e.g., activation, passivation, &

transaction progress
• Provide components uniform
access to infrastructure
services
• e.g., transactions, security, &

persistence
• Register & deploy components

Declarative
Programming

Server
Component

Transaction
Security
Resources
...

Server
Component

Transaction
Security
Resources
...

...

Imperative
Programming

Container

Client Client

Extending Components Transparently

58

Extending Components Transparently (cont‘d)

Problem
• Components should be able to specify
declaratively in configuration files which
execution environment they require

• Containers then should provide the right
execution environment
•e.g., by creating a new transaction or
new servant when required

• Framework represents the concrete
framework to which we attach interceptors

• Concrete Interceptors implement the
event handler for the system-specific
events they have subscribed for

• Context contains information about the
event & allows modification of system
behavior after interceptor completion

• The Dispatcher allows applications to
register & remove interceptors with the
framework & to delegate events to
interceptors

Context

ConcreteInterceptor

handle_event
*

callbackcallback

provideprovide

Dispatcher

attachattach

Framework

attach_interceptor
manage_interceptorsAbstractInterceptor

handle_event

Solution
•Apply the Interceptor
architectural pattern to attach
interceptors to a framework
that can handle particular
events by invoking associated
interceptors automatically

Solution
•Apply the Interceptor
architectural pattern to attach
interceptors to a framework
that can handle particular
events by invoking associated
interceptors automatically

59

Interceptor Pattern Dynamics
• Interceptor are a “meta-
programming mechanism”

•Other meta-programming
mechanisms include
•Smart proxies
•Pluggable protocols
•Gateways/bridges
• Interface repositories & DII

•These mechanisms provide
building-blocks to handle
variation translucently &
reflectively

•More information on meta-
programming mechanisms
can be found at
www.cs.wustl.edu/
~schmidt/PDF/IEEE.pdf

• Interception can also enable performance
enhancement strategies
• e.g., just-in-time activation, object
pooling, & caching

: Application: Framework

: Interceptorcreate

run_event_loop

attach
interceptor

Place interceptor in
internal interceptor
map

event

Look for
registered
interceptors

: Contextcreate

context

handle_event

: Dispatcher

delegate

60

Context

Container

handle_event
*

callbackcallback

provideprovide

Dispatcher

attachattach

Image Server
Framework

attach_interceptor
manage_interceptorsAbstractInterceptor

handle_event

Applying the Interceptor Pattern
to Image Acquisition

• A container provides generic
interfaces to a component that it
can use to access container
functionality
•e.g., transaction control,
persistence, security,etc.

• A container intercepts all incoming
requests from clients
•It reads the component’s
requirements from a XML
configuration file & does some
pre-processing before actually
delegating the request to the
component

• A component provides event
interfaces the container invokes
automatically when particular
events occur
•e.g., activation or passivation

Container

Component

XML
config

61

Pros & Cons of the Interceptor Pattern
This pattern has five benefits:
•Extensibility & flexibility

• Interceptors allow an application to evolve
without breaking existing APIs &
components

•Separation of concerns
• Interceptors decouple the “functional”
path from the “meta” path

•Support for monitoring & control of
frameworks
• e.g., generic logging mechanisms can be
used to unobtrusively track application
behavior

•Layer symmetry
• Interceptors can perform transformations
on a client-side whose inverse are
performed on the server-side

•Reusability
• Interceptors can be reused for various
general-purpose behaviors

This pattern also has liabilities:
•Complex design issues

• Determining interceptor APIs &
semantics is non-trivial

•Malicious or erroneous
interceptors
• Mis-behaving interceptors can
wreak havoc on application
stability

•Potential interception
cascades
• Interceptors can result in infinite
recursion

62

Minimizing Resource Utilization

Problem
• It may not feasible to have all image
server implementations running all
the time since this ties up end-
system resources unnecessarily

Solution
• Apply the Activator pattern to spawn servers on-demand in
order to minimize end-system resource utilization

Solution
• Apply the Activator pattern to spawn servers on-demand in
order to minimize end-system resource utilization

Context
• Image servers are simply one of
many services running throughout
an distributed electronic medical
image system

• When incoming requests arrive, the
Activator looks up whether a target object is
already active & if the object is not running it
activates the implementation

• The Activation Table stores associations
between services & their physical location

• The Client uses the Activator to get service
access

• A Service implements a specific type of
functionality that it provides to clients

Activator

(de)activate
getService
register
unregister
onShutdown

Activation Table

insertEntry
removeEntry
lookupEntry
changeEntry

Service

service
shutdown

getServicegetService

Client

useService

63

Activator Pattern Dynamics

: Activator : Client

getService

: Implementationactivate

lookupEntry

[not active]

changeEntry
object

service

result

port

onShutdown

changeEntry

: Activ. Table

• A container can be used to activate & passivate a component
•A component can be activated/passivated by itself, the container,
after each method call, after each transaction, etc.

• A container can be used to activate & passivate a component
•A component can be activated/passivated by itself, the container,
after each method call, after each transaction, etc.

64

ImR (ringil:5000)Client

ringil:4500plane.exeairplane_poa

server.exepoa_name ringil:5500
iiop://ringil:5000/poa_name/object_name

Applying the Activator Pattern
to Image Acquisition

Activator

(de)activate
getService
register
unregister
onShutdown

Activation Table

insertEntry
removeEntry
lookupEntry
changeEntry

getServicegetService

Client

useService

ImageXferService

service
shutdown

Server (ringil:5500)

1. some_request

4. LOCATION_FORWARD

2. ping
3. is_running

6. some_response

5. some_request

2.1 start

•The Activator pattern is available in
various COTS technologies:
•UNIX Inetd “super server”
•CORBA Implementation Repository

•We can use the Activator pattern
to launch image transfer servers
on-demand

iiop://ringil:5500/poa_name/object_name

65

Pros & Cons of the Activator Pattern
This pattern has three benefits:
•Uniformity
• By imposing a uniform activation
interface to spawn & control servers

•Modularity, testability, & reusability
• Application modularity & reusability is
improved by decoupling server
implementations from the manner in
which the servers are activated

•More effective resource utilization
• Servers can be spawned “on-demand,”
thereby minimizing resource utilization
until clients actually require them

This pattern also has liabilities:
•Lack of determinism & ordering
dependencies
• This pattern makes it hard to
determine or analyze the behavior
of an application until its
components are activated at run-
time

•Reduced security or reliability
• An application that uses the
Activator pattern may be less
secure or reliable than an
equivalent statically-configured
application

• Increased run-time overhead &
infrastructure complexity
• By adding levels of abstraction &
indirection when activating &
executing components

66

Enhancing Server (Re)Configurability

This pattern allows an application to link & unlink its
component implementations at run-time so new &
enhanced services can therefore be added without
having to modify, recompile, statically relink, or shut
down & restart a running application

•Certain factors are static, such as
the number of available CPUs &
operating system support for
asynchronous I/O

•Other factors are dynamic, such
as system workload

Context
The implementation of certain
image server components depends
on a variety of factors:

Problem
Prematurely committing to a particular
image server component configuration
is inflexible and inefficient:
•No single image server configuration is
optimal for all use cases

•Certain design decisions cannot be
made efficiently until run-time

Solution
•Apply the Component Configurator design
pattern to enhance server configurability

Solution
•Apply the Component Configurator design
pattern to enhance server configurability

<<contains>>

components
*

Component
Configurator

Component
Repository

Concrete
Component A

Concrete
Component B

Component
 init()
 fini()
 suspend()
 resume()
 info()

67

Component Configurator Pattern Dynamics

: Component
Configurator

init()

: Concrete
Component A

: Concrete
Component B

: Component
Repository

insert()

insert()

init()

Concrete

run_component()

run_component()

fini()

remove()

remove()

fini()

Comp. A

Concrete
Comp. B

Concrete
Comp. A

Concrete
Comp. B

1.Component
initialization

2.Component
processing

3.Component
termination

68

Applying the Component Configurator
Pattern to Image Acquisition

<<contains>>

components
*

Component
Configurator

Component
Repository

LRU
File Cache

LFU
File Cache

Component
 init()
 fini()
 suspend()
 resume()
 info()

•For example, an image server can apply
the Component Configurator pattern to
configure various Cached Virtual
Filesystem strategies
•e.g., least-recently used (LRU) or
least-frequently used (LFU)

Image servers can use the
Component Configurator pattern to
dynamically optimize, control, &
reconfigure the behavior of its
components at installation-time or
during run-time

Concrete components can be
packaged into a suitable unit of
configuration, such as a
dynamically linked library (DLL)

Concrete components can be
packaged into a suitable unit of
configuration, such as a
dynamically linked library (DLL)

Only the components
that are currently in use
need to be configured
into an image server

Only the components
that are currently in use
need to be configured
into an image server

69

Reconfiguring an Image Server
Image servers
can also be
reconfigured
dynamically to
support new
components &
new component
implementations

IDLE

RUNNING

SUSPENDED

CONFIGURE
init()

RECONFIGURE
init()

fini()

fini()

resume()

suspend()

EXECUTE
run_component()

SUSPEND

RESUME

TERMINATE

TERMINATE

Reconfiguration State Chart

LRU File
Cache

Image
Server

Configure an image server.
dynamic File_Cache Component *

img_server.dll:make_File_Cache()
"-t LRU"

INITIAL
CONFIGURATION

AFTER
RECONFIGURATION

LFU File
Cache

Image
Server

Reconfigure an image server.
Remove File_Cache
dynamic File_Cache Component *

img_server.dll:make_File_Cache()
"-t LFU"

70

Pros and Cons of the
Component Configurator Pattern

This pattern offers four benefits:
•Uniformity

• By imposing a uniform configuration &
control interface to manage components

•Centralized administration
• By grouping one or more components into
a single administrative unit that simplifies
development by centralizing common
component initialization & termination
activities

•Modularity, testability, & reusability
• Application modularity & reusability is
improved by decoupling component
implementations from the manner in which
the components are configured into
processes

•Configuration dynamism & control
• By enabling a component to be
dynamically reconfigured without
modifying, recompiling, statically relinking
existing code & without restarting the
component or other active components
with which it is collocated

This pattern also incurs liabilities:
•Lack of determinism & ordering
dependencies
• This pattern makes it hard to
determine or analyze the behavior of
an application until its components are
configured at run-time

•Reduced security or reliability
• An application that uses the
Component Configurator pattern may
be less secure or reliable than an
equivalent statically-configured
application

• Increased run-time overhead &
infrastructure complexity
• By adding levels of abstraction &
indirection when executing
components

•Overly narrow common interfaces
• The initialization or termination of a
component may be too complicated or
too tightly coupled with its context to
be performed in a uniform manner

71

Tutorial Example 2:

High-performance Content Delivery Servers

•Support many content delivery server
design alternatives seamlessly
• e.g., different concurrency & event models

•Design is guided by patterns to leverage
time-proven solutions

•Support many content delivery server
design alternatives seamlessly
• e.g., different concurrency & event models

•Design is guided by patterns to leverage
time-proven solutions

Key Solution Characteristics
• Implementation is based on ACE
framework components to reduce
effort & amortize prior effort

•Open-source to control costs & to
leverage technology advances

• Implementation is based on ACE
framework components to reduce
effort & amortize prior effort

•Open-source to control costs & to
leverage technology advances

Key System
Characteristics
•Robust implementation

• e.g., stop malicious clients
•Extensible to other protocols

• e.g., HTTP 1.1, IIOP, DICOM
•Leverage advanced multi-
processor hardware &
software

Goal
•Download content scalably
& efficiently
•e.g., images & other
multi-media content types

Graphics

Adapter

GUI

Event Dispatcher

Transfer Protocol

e.g. , HTTP 1.0

Requester

File

Cache

Protocol

Handlers

HTML

Parser

HTTP Client
HTTP Server

GET /index.html HTTP/1.0

<H1>POSA page</H1>...

www.posa.uci.edu

TCP/IP Network

OS Kernel

& Protocols

OS Kernel

& Protocols

72

JAWS Content Server Framework
Key Sources of Variation
•Concurrency models

• e.g.,thread pool vs. thread-per
request

•Event demultiplexing models
• e.g.,sync vs. async

•File caching models
• e.g.,LRU vs. LFU

•Content delivery protocols
• e.g.,HTTP 1.0+1.1, HTTP-NG,
IIOP, DICOM

Event Dispatcher
• Accepts client connection

request events, receives
HTTP GET requests, &
coordinates JAWS’s event
demultiplexing strategy
with its concurrency
strategy.

• As events are processed
they are dispatched to the
appropriate Protocol
Handler.

Protocol Handler
• Performs parsing & protocol

processing of HTTP request
events.

• JAWS Protocol Handler design
allows multiple Web protocols, such
as HTTP/1.0, HTTP/1.1, & HTTP-
NG, to be incorporated into a Web
server.

• To add a new protocol, developers
just write a new Protocol Handler
component & configure it into the
JAWS framework.

Cached Virtual Filesystem
• Improves Web server

performance by reducing the
overhead of file system accesses
when processing HTTP GET
requests.

• Various caching strategies, such as
least-recently used (LRU) or least-
frequently used (LFU), can be
selected according to the actual or
anticipated workload & configured
statically or dynamically.

73

Applying Patterns to Resolve Key
JAWS Design Challenges

Patterns help resolve the following common design challenges:
•Efficiently demuxing asynchronous
operations & completions

•Transparently parameterizing
synchronization into components

•Ensuring locks are released
properly

•Minimizing unnecessary locking
•Synchronizing singletons correctly
•Logging access statistics efficiently

•Efficiently demuxing asynchronous
operations & completions

•Transparently parameterizing
synchronization into components

•Ensuring locks are released
properly

•Minimizing unnecessary locking
•Synchronizing singletons correctly
•Logging access statistics efficiently

•Encapsulating low-level OS APIs
•Decoupling event demultiplexing &
connection management from
protocol processing

•Scaling up performance via threading
•Implementing a synchronized request
queue

•Minimizing server threading overhead
•Using asynchronous I/O effectively

•Encapsulating low-level OS APIs
•Decoupling event demultiplexing &
connection management from
protocol processing

•Scaling up performance via threading
•Implementing a synchronized request
queue

•Minimizing server threading overhead
•Using asynchronous I/O effectively

Double-
checked
Locking

Optimization

Thread-specific Storage

74

Encapsulating Low-level OS APIs
Problem
• The diversity of hardware & operating
systems makes it hard to build portable
& robust Web server software by
programming directly to low-level
operating system APIs, which are
tedious, error-prone, & non-portable

The Wrapper Facade pattern
encapsulates data & functions
provided by existing non-OO APIs
within more concise, robust,
portable, maintainable, & cohesive
OO class interfaces

: Application

method()

: Wrapper
Facade

: APIFunctionA

functionA()

: APIFunctionB

functionB()

Application
calls methods

calls
API FunctionA()

calls
API FunctionB()

calls
API FunctionC()

void methodN(){
functionA();

}

void method1(){
functionA();

}
functionB();

Wrapper Facade

data

method1()
…
methodN()Solution

• Apply the Wrapper Facade design
pattern to avoid accessing low-level
operating system APIs directly

Solution
• Apply the Wrapper Facade design
pattern to avoid accessing low-level
operating system APIs directly

Context
• A Web server must manage a variety of
OS services, including processes,
threads, Socket connections, virtual
memory, & files. Most operating systems
provide low-level APIs written in C to
access these services

75

Other ACE wrapper facades used in
JAWS encapsulate Sockets, process &
thread management, memory-mapped
files, explicit dynamic linking, & time
operations

Other ACE wrapper facades used in
JAWS encapsulate Sockets, process &
thread management, memory-mapped
files, explicit dynamic linking, & time
operations

Applying the Wrapper Façade Pattern in JAWS

JAWS uses the wrapper facades defined by ACE to ensure its framework
components can run on many operating systems, including Windows, UNIX,
& many real-time operating systems

For example, JAWS uses
the Thread_Mutex
wrapper facade in ACE
to provide a portable
interface to operating
system mutual exclusion
mechanisms

Thread_Mutex

mutex

acquire()
tryacquire()
release()

void acquire(){

calls
methods

calls
mutex_lock()

calls
mutex_trylock()

calls
mutex_unlock()

void release(){
mutex_unlock(mutex);

}
mutex_lock(mutex);

}

JAWS

The Thread_Mutex wrapper in the diagram
is implemented using the Solaris thread API
The Thread_Mutex wrapper in the diagram
is implemented using the Solaris thread API

www.cs.wustl.edu/~schmidt/ACE/

The ACE Thread_Mutex wrapper facade is
also available for other threading APIs, e.g.,
pSoS, VxWorks, Win32 threads or POSIX
Pthreads

The ACE Thread_Mutex wrapper facade is
also available for other threading APIs, e.g.,
pSoS, VxWorks, Win32 threads or POSIX
Pthreads

76

Pros and Cons of the Wrapper Façade Pattern
This pattern provides three benefits:
•Concise, cohesive, & robust higher-
level object-oriented programming
interfaces
• These interfaces reduce the tedium &
increase the type-safety of developing
applications, which descreases certain
types of programming errors

•Portability & maintainability
• Wrapper facades can shield application
developers from non-portable aspects of
lower-level APIs

•Modularity, reusability &
configurability
• This pattern creates cohesive & reusable
class components that can be ‘plugged’
into other components in a wholesale
fashion, using object-oriented language
features like inheritance & parameterized
types

This pattern can incur liabilities:
•Loss of functionality

• Whenever an abstraction is layered
on top of an existing abstraction it is
possible to lose functionality

•Performance degradation
• This pattern can degrade
performance if several forwarding
function calls are made per method

•Programming language &
compiler limitations
• It may be hard to define wrapper
facades for certain languages due
to a lack of language support or
limitations with compilers

77

Problem
•Developers often couple
event-demuxing &
connection code with
protocol-handling code

Decoupling Event Demuxing & Connection
Management from Protocol Processing

Context

•Web servers can be accessed
simultaneously by multiple
clients

Client

Client

Client

HTTP GET
request

Connect
request

HTTP GET
request

Web Server

Socket
Handles

•They must demux & process
multiple types of indication
events arriving from clients
concurrently

Solution
Apply the Reactor architectural pattern & the Acceptor-Connector design
pattern to separate the generic event-demultiplexing & connection-
management code from the web server’s protocol code

Solution
Apply the Reactor architectural pattern & the Acceptor-Connector design
pattern to separate the generic event-demultiplexing & connection-
management code from the web server’s protocol code

Event Dispatcher

Sockets

select()

•A common way to demux events
in a server is to use select()

•This code cannot then
be reused directly by
other protocols or by
other middleware &
applications

•Thus, changes to event-
demuxing & connection code
affects the server protocol
code directly & may yield
subtle bugs
• e.g., porting it to use TLI or
WaitForMultipleObjects()

78

The Reactor Pattern
The Reactor architectural
pattern allows event-driven
applications to demultiplex
& dispatch service requests
that are delivered to an
application from one or
more clients.

Handle
owns

dispatches
*

notifies*
*

handle set

 Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Synchronous
Event Demuxer

select ()

<<uses>>

: Main Program : Concrete
Event Handler

: Reactor : Synchronous
Event

Demultiplexer

register_handler()

get_handle()

handle_events() select()

handle_event()

Handle

Handles

Handles

Con. Event
Handler Events

service()

event

Observations
•Note inversion
of control

•Also note how
long-running
event handlers
can degrade the
QoS since
callbacks steal
the reactor’s
thread!

1. Initialize
phase

2. Event
handling
phase

79

The Acceptor-Connector Pattern
The Acceptor-Connector design pattern decouples the connection &
initialization of cooperating peer services in a networked system from the
processing performed by the peer services after being connected & initialized.

<<activate>>

owns

*

uses uses

<<creates>>owns

uses

owns

<<activate>>

* * *

*
**

uses

notifies

notifies notifies

Connector

Connector()
connect()
complete()
handle_event ()

Concrete Service
Handler B

Concrete Service
Handler A

Concrete
Acceptor

Concrete
Connector

Acceptor

Acceptor()
Accept()
handle_event ()

peer_acceptor_

Service
Handler

open()
handle_event ()
set_handle()

peer_stream_

Dispatcher

select()
handle_events()
register_handler()
remove_handler()

Transport
Handle

Transport
Handle

Transport
Handle

80

Acceptor Dynamics

Service
Handler Events

: Application : Acceptor : Dispatcher

register_handler()

handle_events()

accept()

open()

register_handler()

handle_event()

service()

: Service
Handler

open()

ACCEPT_
EVENTHandle1Acceptor

: Handle2

Handle2

Handle2

1.Passive-mode
endpoint
initialize phase

2.Service
handler
initialize phase

3.Service
processing
phase

•The Acceptor ensures that passive-
mode transport endpoints aren’t used
to read/write data accidentally
•And vice versa for data transport
endpoints…

•There is typically one Acceptor
factory per-service/per-port
•Additional demuxing can be done
at higher layers, a la CORBA

81

Synchronous Connector Dynamics

Handle

Addr

: Application : Connector : Dispatcher: Service
Handler

handle_events()

connect()

open()

register_handler()

handle_event()

service()

Service
Handler

EventsService
Handler Handle

get_handle()

Motivation for Synchrony

1.Sync
connection
initiation phase

2.Service
handler
initialize phase

3.Service
processing
phase

• If the services must be
initialized in a fixed
order & the client can’t
perform useful work
until all connections
are established

•If connection latency is
negligible
•e.g., connecting with
a server on the
same host via a
‘loopback’ device

• If multiple threads of
control are available & it
is efficient to use a
thread-per-connection
to connect each service
handler synchronously

82

Asynchronous Connector Dynamics

Addr

: Application : Connector : Dispatcher: Service
Handler

handle_events()

complete()

connect()

open()

register_handler()

handle_event()

service()

Service
Handler

Connector
CONNECT

EVENT

Events

register_handler()
Service
Handler

Handle
Handle

Handle

get_handle()

Motivation for Asynchrony

1.Async
connection
initiation
phase

2.Service
handler
initialize
phase

3.Service
processing
phase

• If client is initializing many
peers that can be connected
in an arbitrary order

• If client is establishing
connections over high
latency links

• If client is a
single-threaded
applications

83

Applying the Reactor and Acceptor-
Connector Patterns in JAWS

handle_event ()
get_handle()

handle_event ()
get_handle()

Handle
owns

dispatches
*

notifies*
*

handle set

 Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

HTTP
Acceptor

HTTP
HandlerSynchronous

Event Demuxer

select ()

<<uses>>

The Reactor architectural
pattern decouples:
1.JAWS generic

synchronous event
demultiplexing &
dispatching logic from

2.The HTTP protocol
processing it performs
in response to events

1.The connection & initialization of peer client & server HTTP services
from

2.The processing activities performed by these peer services once
they are connected & initialized

The Acceptor-Connector design pattern can use a Reactor as its
Dispatcher in order to help decouple:

84

Reactive Connection Management
& Data Transfer in JAWS

85

Pros and Cons of the Reactor Pattern
This pattern offers four benefits:
•Separation of concerns

• This pattern decouples application-
independent demuxing & dispatching
mechanisms from application-specific hook
method functionality

•Modularity, reusability, &
configurability
• This pattern separates event-driven
application functionality into several
components, which enables the configuration
of event handler components that are loosely
integrated via a reactor

•Portability
• By decoupling the reactor’s interface from
the lower-level OS synchronous event
demuxing functions used in its
implementation, the Reactor pattern
improves portability

•Coarse-grained concurrency control
• This pattern serializes the invocation of event
handlers at the level of event demuxing &
dispatching within an application process or
thread

This pattern can incur liabilities:
•Restricted applicability

• This pattern can be applied
efficiently only if the OS supports
synchronous event demuxing on
handle sets

•Non-pre-emptive
• In a single-threaded application,
concrete event handlers that
borrow the thread of their reactor
can run to completion & prevent the
reactor from dispatching other
event handlers

•Complexity of debugging &
testing
• It is hard to debug applications
structured using this pattern due to
its inverted flow of control, which
oscillates between the framework
infrastructure & the method call-
backs on application-specific event
handlers

86

Pros and Cons of the Acceptor-
Connector Pattern

This pattern provides three benefits:
•Reusability, portability, & extensibility

• This pattern decouples mechanisms for
connecting & initializing service handlers from
the service processing performed after service
handlers are connected & initialized

•Robustness
• This pattern strongly decouples the service
handler from the acceptor, which ensures that a
passive-mode transport endpoint can’t be used
to read or write data accidentally

•Efficiency
• This pattern can establish connections actively
with many hosts asynchronously & efficiently
over long-latency wide area networks

• Asynchrony is important in this situation
because a large networked system may have
hundreds or thousands of host that must be
connected

This pattern also has liabilities:
•Additional indirection

• The Acceptor-Connector pattern
can incur additional indirection
compared to using the underlying
network programming interfaces
directly

•Additional complexity
• The Acceptor-Connector pattern
may add unnecessary complexity
for simple client applications that
connect with only one server &
perform one service using a
single network programming
interface

87

Scaling Up Performance via Threading

Solution
•Apply the Half-Sync/Half-Async
architectural pattern to scale up
server performance by processing
different HTTP requests
concurrently in multiple threads

Solution
•Apply the Half-Sync/Half-Async
architectural pattern to scale up
server performance by processing
different HTTP requests
concurrently in multiple threads

Context
•HTTP runs over TCP, which uses
flow control to ensure that senders
do not produce data more rapidly
than slow receivers or congested
networks can buffer and process

•Since achieving efficient end-to-end
quality of service (QoS) is important
to handle heavy Web traffic loads, a
Web server must scale up
efficiently as its number of clients
increases

Problem
•Processing all HTTP GET requests
reactively within a single-threaded
process does not scale up, because
each server CPU time-slice spends
much of its time blocked waiting for I/O
operations to complete

•Similarly, to improve QoS for all its
connected clients, an entire Web server
process must not block while waiting for
connection flow control to abate so it
can finish sending a file to a client

This solution yields two benefits:
1. Threads can be mapped to separate CPUs

to scale up server performance via multi-
processing

2. Each thread blocks independently, which
prevents a flow-controlled connection from
degrading the QoS other clients receive

88

The Half-Sync/Half-Async Pattern
Sync
Service
Layer

Async
Service
Layer

Queueing
Layer

<<read/write>>
<<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Sync Service 1 Sync Service 2 Sync Service 3

External
Event Source

Queue

Async Service

The Half-Sync/Half-Async
architectural pattern
decouples async & sync
service processing in
concurrent systems, to
simplify programming
without unduly reducing
performance

• This pattern defines two service
processing layers—one async & one
sync—along with a queueing layer
that allows services to exchange
messages between the two layers

• The pattern allows sync services,
such as HTTP protocol processing,
to run concurrently, relative both to
each other & to async services, such
as event demultiplexing

: External Event
Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message

work()

notification

89

Applying the Half-Sync/Half-Async
Pattern in JAWS

<<get>>
<<get>>

<<get>>

<<put>>

<<ready to read>>

Synchronous
Service Layer

Asynchronous
Service Layer

Queueing
Layer

Worker Thread 1 Worker Thread 3

Reactor
Socket

Event Sources

Request Queue

HTTP AcceptorHTTP Handlers,

Worker Thread 2

•JAWS uses the Half-
Sync/Half-Async
pattern to process
HTTP GET requests
synchronously from
multiple clients, but
concurrently in
separate threads

•JAWS uses the Half-
Sync/Half-Async
pattern to process
HTTP GET requests
synchronously from
multiple clients, but
concurrently in
separate threads

•The worker thread
that removes the
request
synchronously
performs HTTP
protocol processing &
then transfers the file
back to the client

•The worker thread
that removes the
request
synchronously
performs HTTP
protocol processing &
then transfers the file
back to the client

• If flow control occurs
on its client connection
this thread can block
without degrading the
QoS experienced by
clients serviced by
other worker threads in
the pool

• If flow control occurs
on its client connection
this thread can block
without degrading the
QoS experienced by
clients serviced by
other worker threads in
the pool

90

Pros & Cons of the
Half-Sync/Half-Async Pattern

This pattern has three benefits:
•Simplification & performance

• The programming of higher-level
synchronous processing services are
simplified without degrading the
performance of lower-level system
services

•Separation of concerns
• Synchronization policies in each
layer are decoupled so that each
layer need not use the same
concurrency control strategies

•Centralization of inter-layer
communication
• Inter-layer communication is
centralized at a single access point,
because all interaction is mediated
by the queueing layer

This pattern also incurs liabilities:
•A boundary-crossing penalty may
be incurred
• This overhead arises from context
switching, synchronization, & data
copying overhead when data is
transferred between the sync & async
service layers via the queueing layer

•Higher-level application services
may not benefit from the efficiency
of async I/O
• Depending on the design of operating
system or application framework
interfaces, it may not be possible for
higher-level services to use low-level
async I/O devices effectively

•Complexity of debugging & testing
• Applications written with this pattern can
be hard to debug due its concurrent
execution

91

Context
•The Half-Sync/Half-Async
pattern contains a queue

•The JAWS Reactor thread is a
‘producer’ that inserts HTTP
GET requests into the queue

•Worker pool threads are
‘consumers’ that remove &
process queued requests

<<get>>
<<get>>

<<get>>

<<put>>

Worker
Thread 1

Worker
Thread 3

Reactor

Request Queue

HTTP AcceptorHTTP Handlers,

Worker
Thread 2

Implementing a Synchronized Request Queue

Problem
•A naive implementation of a request queue will incur race
conditions or ‘busy waiting’ when multiple threads insert & remove
requests
•e.g., multiple concurrent producer & consumer threads can
corrupt the queue’s internal state if it is not synchronized properly

•Similarly, these threads will ‘busy wait’ when the queue is empty
or full, which wastes CPU cycles unnecessarily

92

The Monitor Object Pattern

•This pattern synchronizes
concurrent method execution
to ensure that only one
method at a time runs within
an object

• It also allows an object’s
methods to cooperatively
schedule their execution
sequences

2..*

usesuses *

Monitor Object

sync_method1()
sync_methodN()

Monitor Lock

acquire()
release()

Client

Monitor Condition

wait()
notify()
notify_all()

Solution
•Apply the Monitor Object design pattern to synchronize the queue efficiently
& conveniently

Solution
•Apply the Monitor Object design pattern to synchronize the queue efficiently
& conveniently

• It’s instructive to compare Monitor Object pattern solutions with Active Object
pattern solutions
•The key tradeoff is efficiency vs. flexibility

93

Monitor Object Pattern Dynamics
: Monitor

Object
: Monitor

Lock
: Monitor
Condition

sync_method1()

wait()

dowork()

: Client
Thread1

: Client
Thread2

acquire()

dowork()

acquire()
sync_method2()

release()

notify()

dowork()

release()

the OS thread scheduler
automatically suspends
the client thread

the OS thread
scheduler
automatically
resumes
the client
thread and the
synchronized
method

the OS thread scheduler
atomically reacquires
the monitor lock

the OS thread scheduler
atomically releases
the monitor lock

1. Synchronized
method
invocation &
serialization

2. Synchronized
method thread
suspension

3. Monitor
condition
notification

4. Synchronized
method thread
resumption

94

Applying the Monitor Object Pattern in JAWS

The JAWS synchronized
request queue
implements the queue’s
not-empty and not-full
monitor conditions via a
pair of ACE wrapper
facades for POSIX-style
condition variables

usesuses 2

Request Queue

put()
get()

Thread_Mutex

acquire()
release()

HTTP
Handler

Thread Condition

wait()
notify()
notify_all()

Worker
Thread

<<put>> <<get>>

•When a worker thread attempts to dequeue an HTTP GET request
from an empty queue, the request queue’s get() method
atomically releases the monitor lock & the worker thread suspends
itself on the not-empty monitor condition

•The thread remains suspended until the queue is no longer empty,
which happens when an HTTP_Handler running in the Reactor
thread inserts a request into the queue

•When a worker thread attempts to dequeue an HTTP GET request
from an empty queue, the request queue’s get() method
atomically releases the monitor lock & the worker thread suspends
itself on the not-empty monitor condition

•The thread remains suspended until the queue is no longer empty,
which happens when an HTTP_Handler running in the Reactor
thread inserts a request into the queue

95

Pros & Cons of the Monitor Object Pattern

This pattern provides two benefits:
•Simplification of concurrency
control
• The Monitor Object pattern presents
a concise programming model for
sharing an object among
cooperating threads where object
synchronization corresponds to
method invocations

•Simplification of scheduling
method execution
• Synchronized methods use their
monitor conditions to determine the
circumstances under which they
should suspend or resume their
execution & that of collaborating
monitor objects

This pattern can also incur liabilities:
•The use of a single monitor lock can
limit scalability due to increased
contention when multiple threads
serialize on a monitor object

•Complicated extensibility
semantics
• These result from the coupling between
a monitor object’s functionality & its
synchronization mechanisms

•It is also hard to inherit from a monitor
object transparently, due to the
inheritance anomaly problem

•Nested monitor lockout
• This problem is similar to the preceding
liability & can occur when a monitor
object is nested within another monitor
object

96

accept()

Minimizing Server Threading Overhead

•When a connection request arrives, the
operating system’s transport layer creates a new
connected transport endpoint, encapsulates this
new endpoint with a data-mode socket handle &
passes the handle as the return value from
accept()

Context
•Socket implementations in certain multi-threaded
operating systems provide a concurrent accept()
optimization to accept client connection requests &
improve the performance of Web servers that
implement the HTTP 1.0 protocol as follows:

passive-mode
socket handle

accept()

accept()

accept()

•The OS allows a pool of threads in a Web server
to call accept() on the same passive-mode
socket handle

•The OS then schedules one of the threads in
the pool to receive this data-mode handle,
which it uses to communicate with its
connected client

accept()

accept()

97

Drawbacks with the Half-Sync/
Half-Async Architecture

Solution
•Apply the Leader/Followers
architectural pattern to
minimize server threading
overhead

Solution
•Apply the Leader/Followers
architectural pattern to
minimize server threading
overhead

Problem
•Although Half-Sync/Half-Async
threading model is more
scalable than the purely reactive
model, it is not necessarily the
most efficient design

•CPU cache updates

<<get>>
<<get>>

<<get>>

<<put>>

Worker
Thread 1

Worker
Thread 3

Reactor

Request Queue

HTTP AcceptorHTTP Handlers,

Worker
Thread 2

•e.g., passing a request
between the Reactor thread
& a worker thread incurs:

•This overhead makes JAWS’ latency
unnecessarily high, particularly on
operating systems that support the
concurrent accept() optimization

•Dynamic memory (de)allocation,

•A context switch, &
•Synchronization operations,

98

The Leader/Followers Pattern

This pattern eliminates the need for—&
the overhead of—a separate Reactor
thread & synchronized request queue
used in the Half-Sync/Half-Async pattern

This pattern eliminates the need for—&
the overhead of—a separate Reactor
thread & synchronized request queue
used in the Half-Sync/Half-Async pattern

The Leader/Followers architectural
pattern provides an efficient
concurrency model where multiple
threads take turns sharing event
sources to detect, demux, dispatch, &
process service requests that occur on
the event sources

TCP Sockets +
select()/poll()

UDP Sockets +
select()/poll()

Iterative
Handle Sets

TCP Sockets +
WaitForMultpleObjects()

UDP Sockets +
WaitForMultipleObjects(

)

Concurrent
Handle Sets

Iterative HandlesConcurrent Handles
Handles

Handle Sets

Handle
uses

demultiplexes

*

*

Handle Set

handle_events()
deactivate_handle()
reactivate_handle()
select()

Event Handler

handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer

99

Leader/Followers Pattern Dynamics
: Concrete

Event Handler

join()

handle_event()

: Thread
Pool

: Handle
Set

join()

thread 2 sleeps
until it becomes
the leader

event

thread 1 sleeps
until it becomes
the leader

deactivate_
handle()

join()

Thread 1 Thread 2

handle_
events() reactivate_

handle()

handle_event()

event

thread 2
waits for a
new event,
thread 1
processes
current
event

deactivate_
handle()

handle_events()

new_leader()

1.Leader
thread
demuxing

2.Follower
thread
promotion

3.Event
handler
demuxing &
event
processing

4.Rejoining the
thread pool

promote_

100

Applying the Leader/Followers
Pattern in JAWS

Handle
uses

demultiplexes

*

*

Reactor

handle_events()
deacitivate_handle()
reactivate_handle()
select()

Event Handler

handle_event ()
get_handle()

HTTP
Acceptor

handle_event ()
get_handle()

HTTP
Handler

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer

Two options:
1.If platform supports accept()

optimization then the Leader/Followers
pattern can be implemented by the OS

2.Otherwise, this pattern can be
implemented as a reusable framework •The Half-Sync/Half-Async

design can reorder &
prioritize client requests
more flexibly, because it
has a synchronized request
queue implemented using
the Monitor Object pattern

• It may be more scalable,
because it queues requests
in Web server virtual
memory, rather than the OS
kernel

Although Leader/Followers thread
pool design is highly efficient the
Half-Sync/Half-Async design may be
more appropriate for certain types of
servers, e.g.:

101

Pros and Cons of the
Leader/Followers Pattern

This pattern provides two benefits:
•Performance enhancements

• This can improve performance as follows:
• It enhances CPU cache affinity and
eliminates the need for dynamic memory
allocation & data buffer sharing between
threads

• It minimizes locking overhead by not
exchanging data between threads, thereby
reducing thread synchronization

• It can minimize priority inversion because
no extra queueing is introduced in the
server

• It doesn’t require a context switch to
handle each event, reducing dispatching
latency

•Programming simplicity
• The Leader/Follower pattern simplifies the
programming of concurrency models where
multiple threads can receive requests,
process responses, & demultiplex
connections using a shared handle set

This pattern also incur liabilities:

• Implementation complexity
• The advanced variants of the
Leader/ Followers pattern are
hard to implement

•Lack of flexibility
• In the Leader/ Followers
model it is hard to discard or
reorder events because there
is no explicit queue

•Network I/O bottlenecks
• The Leader/Followers pattern
serializes processing by
allowing only a single thread
at a time to wait on the handle
set, which could become a
bottleneck because only one
thread at a time can
demultiplex I/O events

102

Using Asynchronous I/O Effectively
Context
•Synchronous multi-threading may not be the
most scalable way to implement a Web server
on OS platforms that support async I/O more
efficiently than synchronous multi-threading

passive-mode
socket handle

AcceptEx()
AcceptEx()
AcceptEx()

I/O Completion
Port

GetQueued
CompletionStatus()

GetQueued
CompletionStatus()

GetQueued
CompletionStatus()

•When these async operations complete, WinNT
1.Delivers the associated completion events

containing their results to the Web server
2.Processes these events & performs the appropriate

actions before returning to its event loop

•For example, highly-efficient Web servers can
be implemented on Windows NT by invoking
async Win32 operations that perform the
following activities:
•Processing indication events, such as TCP
CONNECT and HTTP GET requests, via
AcceptEx() & ReadFile(), respectively

•Transmitting requested files to clients
asynchronously via WriteFile() or
TransmitFile()

103

The Proactor Pattern
Problem
•Developing software that achieves
the potential efficiency & scalability
of async I/O is hard due to the
separation in time & space of async
operation invocations & their
subsequent completion events

Solution
•Apply the Proactor architectural pattern
to make efficient use of async I/O

Solution
•Apply the Proactor architectural pattern
to make efficient use of async I/O

Handle

<<executes>>

*

<<uses>>
is associated with

<<enqueues>>

<<dequeues>>

<<uses>> <<uses>>
Initiator

<<demultiplexes
& dispatches>>

<<invokes>>

Event Queue
Completion

Asynchronous
Operation Processor

execute_async_op()

Asynchronous
Operation

async_op()

Asynchronous
Event Demuxer

get_completion_event()

Proactor

handle_events()

Completion
Handler

handle_event()

Concrete
Completion

Handler

This pattern allows event-driven
applications to efficiently demultiplex &
dispatch service requests triggered by the
completion of async operations, thereby
achieving the performance benefits of

concurrency
without incurring
its many liabilities

104

Dynamics in the Proactor Pattern

Result

Completion
Handler

Completion

: Asynchronous
Operation

: Proactor Completion
Handler

exec_async_

handle_

Result

service()

: Asynchronous
Operation
Processor

: Initiator

async_operation()

Result

handle_events()

event

event

Ev. Queue

operation ()

: Completion

Event Queue

Result

event()

1. Initiate
operation

2. Process
operation

3. Run event
loop

4. Generate
& queue
completion
event

5. Dequeue
completion
event &
perform
completion
processing Note similarities & differences with the Reactor pattern, e.g.:

•Both process events via callbacks
•However, it’s generally easier to multi-thread a proactor

Note similarities & differences with the Reactor pattern, e.g.:
•Both process events via callbacks
•However, it’s generally easier to multi-thread a proactor

105

Applying the Proactor Pattern in JAWS
The Proactor pattern
structures the JAWS
concurrent server to
receive & process
requests from multiple
clients asynchronously

Handle

<<executes>>

*

<<uses>>
is associated with

<<enqueues>>

<<dequeues>>

<<uses>> <<uses>>
Web Server

<<demultiplexes
& dispatches>>

<<invokes>>

I/O Completion
Port

Windows NT
Operating System

execute_async_op()

Asynchronous
Operation

AcceptEx()
ReadFile()
WriteFile()

Asynchronous
Event Demuxer

GetQueuedCompletionStatus()

Proactor

handle_events()

Completion
Handler

handle_event()

HTTP
Acceptor

HTTP
Handler

JAWS HTTP components are split into two parts:
1. Operations that execute asynchronously

•e.g., to accept connections & receive client HTTP GET
requests

2. The corresponding completion handlers that process the
async operation results
•e.g., to transmit a file back to a client after an async
connection operation completes

106

Proactive Connection Management
& Data Transfer in JAWS

107

Pros and Cons of the Proactor Pattern
This pattern offers five benefits:
•Separation of concerns

• Decouples application-independent async
mechanisms from application-specific
functionality

•Portability
• Improves application portability by allowing its
interfaces to be reused independently of the OS
event demuxing calls

•Decoupling of threading from
concurrency
• The async operation processor executes long-
duration operations on behalf of initiators so
applications can spawn fewer threads

•Performance
• Avoids context switching costs by activating
only those logical threads of control that have
events to process

•Simplification of application
synchronization
• If concrete completion handlers spawn no
threads, application logic can be written with
little or no concern for synchronization issues

This pattern incurs some liabilities:
•Restricted applicability

• This pattern can be applied most
efficiently if the OS supports
asynchronous operations
natively

•Complexity of programming,
debugging, & testing
• It is hard to program applications
& higher-level system services
using asynchrony mechanisms,
due to the separation in time &
space between operation
invocation and completion

•Scheduling, controlling, &
canceling asynchronously
running operations
• Initiators may be unable to
control the scheduling order in
which asynchronous operations
are executed by an
asynchronous operation
processor

108

Efficiently Demuxing Asynchronous
Operations & Completions

Context
• In a proactive Web
server async I/O
operations will yield
I/O completion event
responses that must
be processed
efficiently

Problem
•As little overhead as possible should be incurred to
determine how the completion handler will demux &
process completion events after async operations
finish executing

•When a response arrives, the application should
spend as little time as possible demultiplexing the
completion event to the handler that will process the
async operation’s response

•Together with each async operation
that a client initiator invokes on a
service, transmit information that
identifies how the initiator should
process the service’s response

Solution
•Apply the Asynchronous Completion Token design pattern to demux &
process the responses of asynchronous operations efficiently

Solution
•Apply the Asynchronous Completion Token design pattern to demux &
process the responses of asynchronous operations efficiently

•Return this information to the initiator
when the operation finishes, so that it
can be used to demux the response
efficiently, allowing the initiator to
process it accordingly

109

The Asynchronous Completion Token Pattern

Structure and Participants

Dynamic Interactions

handle_event()

110

Applying the Asynchronous
Completion Token Pattern in JAWS

Detailed
Interactions

(HTTP_Acceptor
is both initiator &

completion handler)

111

Pros and Cons of the Asynchronous
Completion Token Pattern

This pattern has some liabilities:
•Memory leaks

• Memory leaks can result if initiators use
ACTs as pointers to dynamically
allocated memory & services fail to
return the ACTs, for example if the
service crashes

•Authentication
• When an ACT is returned to an initiator
on completion of an asynchronous
event, the initiator may need to
authenticate the ACT before using it

•Application re-mapping
• If ACTs are used as direct pointers to
memory, errors can occur if part of the
application is re-mapped in virtual
memory

This pattern has four benefits:
•Simplified initiator data structures

• Initiators need not maintain complex
data structures to associate service
responses with completion handlers

•Efficient state acquisition
• ACTs are time efficient because they
need not require complex parsing of
data returned with the service response

•Space efficiency
• ACTs can consume minimal data space
yet can still provide applications with
sufficient information to associate large
amounts of state to process
asynchronous operation completion
actions

•Flexibility
• User-defined ACTs are not forced to
inherit from an interface to use the
service’s ACTs

112

Transparently Parameterizing
Synchronization into Components

Context
•The various concurrency
patterns described earlier impact
component synchronization
strategies in various ways

•e.g.,ranging from no locks to
readers/writer locks

•In general, components must run
efficiently in a variety of
concurrency models

Problem
•It should be possible to customize JAWS
component synchronization mechanisms
according to the requirements of particular
application use cases & configurations

•Hard-coding synchronization strategies
into component implementations is
inflexible

•Maintaining multiple versions of
components manually is not scalable

Solution
•Apply the Strategized Locking design pattern to parameterize JAWS
component synchronization strategies by making them ‘pluggable’ types

Solution
•Apply the Strategized Locking design pattern to parameterize JAWS
component synchronization strategies by making them ‘pluggable’ types

•Each type objectifies a
particular synchronization
strategy, such as a mutex,
readers/writer lock,
semaphore, or ‘null’ lock

•Instances of these pluggable types can be
defined as objects contained within a
component, which then uses these objects to
synchronize its method implementations
efficiently

113

Applying Polymorphic Strategized
Locking in JAWS

class File_Cache {
public:
 // Constructor.
 File_Cache (Lock &l): lock_ (&l) { }

 // A method.
 const void *lookup (const string &path) const {
 lock_->acquire();
 // Implement the <lookup> method.
 lock_->release ();
 }

 // ...
private:
 // The polymorphic strategized locking object.
 mutable Lock *lock_;
 // Other data members and methods go here...
};

Polymorphic
Strategized

Locking

class Lock {
public:
 // Acquire and release the lock.
 virtual void acquire () = 0;
 virtual void release () = 0;

 // ...
};
class Thread_Mutex : public Lock {
 // ...
};

114

Applying Parameterized
Strategized Locking in JAWS

template <class LOCK>
class File_Cache {
public:
 // A method.
 const void *lookup
 (const string &path) const {
 lock_.acquire ();
 // Implement the <lookup> method.
 lock_.release ();
 }

 // ...
private:
 // The polymorphic strategized locking object.
 mutable LOCK lock_;
 // Other data members and methods go here...
};

Parameterized
Strategized

Locking

•Single-threaded file cache.
typedef File_Cache<Null_Mutex>

Content_Cache;
•Multi-threaded file cache using a thread mutex.
typedef File_Cache<Thread_Mutex>

Content_Cache;
•Multi-threaded file cache using a readers/writer
lock.
typedef File_Cache<RW_Lock>

Content_Cache;

Note that the various
locks need not inherit
from a common base
class or use virtual

methods!

Note that the various
locks need not inherit
from a common base
class or use virtual

methods!

115

Pros and Cons of the
Strategized Locking Pattern

This pattern provides three benefits:
•Enhanced flexibility & customization

• It is straightforward to configure &
customize a component for certain
concurrency models because the
synchronization aspects of components are
strategized

•Decreased maintenance effort for
components
• It is straightforward to add enhancements &
bug fixes to a component because there is
only one implementation, rather than a
separate implementation for each
concurrency model

• Improved reuse
• Components implemented using this pattern
are more reusable, because their locking
strategies can be configured orthogonally to
their behavior

This pattern also incurs liabilities:
•Obtrusive locking

• If templates are used to
parameterize locking aspects this
will expose the locking strategies to
application code

•Over-engineering
• Externalizing a locking mechanism
by placing it in a component’s
interface may actually provide too
much flexibility in certain situations
•e.g., inexperienced developers
may try to parameterize a
component with the wrong type
of lock, resulting in improper
compile- or run-time behavior

116

Ensuring Locks are Released Properly
Context
•Concurrent
applications,
such as JAWS,
contain shared
resources that
are manipulated
by multiple
threads
concurrently

Problem
•Code that shouldn’t execute concurrently must be
protected by some type of lock that is acquired & released
when control enters & leaves a critical section, respectively

•If programmers must acquire & release locks explicitly, it is
hard to ensure that the locks are released in all paths
through the code

Solution
•In C++, apply the Scoped Locking
idiom to define a guard class whose
constructor automatically acquires a
lock when control enters a scope &
whose destructor automatically
releases the lock when control leaves
the scope

Solution
•In C++, apply the Scoped Locking
idiom to define a guard class whose
constructor automatically acquires a
lock when control enters a scope &
whose destructor automatically
releases the lock when control leaves
the scope

// A method.
const void *lookup
 (const string &path) const {
 lock_.acquire ();
 // The <lookup> method
 // implementation may return
 // prematurely…
 lock_.release ();
}

•e.g., in C++ control can leave a scope due to a return,
break, continue, or goto statement, as well as from an
unhandled exception being propagated out of the scope

117

Applying the Scoped Locking
Idiom in JAWS

template <class LOCK>
class Guard {
public:
 // Store a pointer to the lock and acquire the lock.
 Guard (LOCK &lock)
 : lock_ (&lock)
 { lock_->acquire (); }

 // Release the lock when the guard goes out of scope,
 ~Guard () { lock_->release (); }
private:
 // Pointer to the lock we’re managing.
 LOCK *lock_;
};

Generic Guard Wrapper Facade

template <class LOCK>
class File_Cache {
public:
 // A method.
 const void *lookup
 (const string &path) const {
 // Use Scoped Locking idiom to acquire
 // & release the <lock_>
automatically.
 Guard<LOCK> guard (*lock);
 // Implement the <lookup> method.
 // lock_ released automatically…
 }

Applying the Guard
Instances of the guard
class can be allocated
on the run-time stack to
acquire & release locks
in method or block
scopes that define
critical sections

Instances of the guard
class can be allocated
on the run-time stack to
acquire & release locks
in method or block
scopes that define
critical sections

118

Pros and Cons of the
Scoped Locking Idiom

This idiom has one benefit:
• Increased robustness

• This idiom increases the
robustness of concurrent
applications by eliminating
common programming errors
related to synchronization &
multi-threading

• By applying the Scoped
Locking idiom, locks are
acquired & released
automatically when control
enters and leaves critical
sections defined by C++
method & block scopes

This idiom also has liabilities:
•Potential for deadlock when used
recursively
• If a method that uses the Scoped Locking idiom
calls itself recursively, ‘self-deadlock’ will occur if
the lock is not a ‘recursive’ mutex

•Limitations with language-specific
semantics
• The Scoped Locking idiom is based on a C++
language feature & therefore will not be integrated
with operating system-specific system calls
• Thus, locks may not be released automatically
when threads or processes abort or exit inside a
guarded critical section

• Likewise, they will not be released properly if
the standard C longjmp() function is called
because this function does not call the
destructors of C++ objects as the run-time stack
unwinds

119

Minimizing Unnecessary Locking

Context
•Components in multi-threaded
applications that contain intra-
component method calls

•Components that have applied the
Strategized Locking pattern

Problem
•Thread-safe components should be
designed to avoid unnecessary
locking

•Thread-safe components should be
designed to avoid “self-deadlock”

Solution
•Apply the Thread-safe Interface design pattern to minimize locking overhead
& ensure that intra-component method calls do not incur ‘self-deadlock’ by
trying to reacquire a lock that is held by the component already

Solution
•Apply the Thread-safe Interface design pattern to minimize locking overhead
& ensure that intra-component method calls do not incur ‘self-deadlock’ by
trying to reacquire a lock that is held by the component already

• Interface methods check
•All interface methods, such as C++
public methods, should only
acquire/release component lock(s),
thereby performing synchronization
checks at the ‘border’ of the component.

This pattern structures all components that process intra-component method
invocations according two design conventions:

• Implementation methods trust
• Implementation methods, such as
C++ private and protected
methods, should only perform
work when called by interface
methods.

120

Motivating the Need for the
Thread-safe Interface Pattern

template <class LOCK>
class File_Cache {
public:
 // Return a pointer to the memory-mapped file associated with
 // <path> name, adding it to the cache if it doesn’t exist.
 const void *lookup (const string &path) const {
 // Use the Scoped Locking idiom to acquire
 // & release the <lock_> automatically.
 Guard<LOCK> guard (lock_);
 const void *file_pointer = check_cache (path);
 if (file_pointer == 0) {
 // Insert the <path> name into the cache.
 // Note the intra-class <insert> call.
 insert (path);
 file_pointer = check_cache (path);
 }
 return file_pointer;
 }
 // Add <path> name to the cache.
 void insert (const string &path) {
 // Use the Scoped Locking idiom to acquire
 // and release the <lock_> automatically.
 Guard<LOCK> guard (lock_);
 // ... insert <path> into the cache...
 }
private:
 mutable LOCK lock_;
 const void *check_cache (const string &) const;
 // ... other private methods and data omitted...
};

Since File_Cache
is a template we
don’t know the

type of lock used
to parameterize it.

121

Applying the Thread-safe Interface
Pattern in JAWS

template <class LOCK>
class File_Cache {
public:
 // Return a pointer to the memory-mapped file associated with
 // <path> name, adding it to the cache if it doesn’t exist.
 const void *lookup (const string &path) const {
 // Use the Scoped Locking idiom to acquire
 // and release the <lock_> automatically.
 Guard<LOCK> guard (lock_);
 return lookup_i (path);
 }
private:
 mutable LOCK lock_; // The strategized locking object.

 // This implementation method doesn’t acquire or release
 // <lock_> and does its work without calling interface methods.
 const void *lookup_i (const string &path) const {
 const void *file_pointer = check_cache_i (path);
 if (file_pointer == 0) {

// If <path> name isn’t in the cache then
// insert it and look it up again.
insert_i (path);
file_pointer = check_cache_i (path);
// The calls to implementation methods <insert_i> and
// <check_cache_i> assume that the lock is held & do work.

}
return file_pointer;

Note fewer constraints
on the type of LOCK…

122

Pros and Cons of the Thread-safe
Interface Pattern

This pattern has some liabilities:
•Additional indirection and extra methods

• Each interface method requires at least one
implementation method, which increases the
footprint of the component & may also add an
extra level of method-call indirection for each
invocation

•Potential for misuse
• OO languages, such as C++ and Java, support
class-level rather than object-level access
control

• As a result, an object can bypass the public
interface to call a private method on another
object of the same class, thus bypassing that
object’s lock

•Potential overhead
• This pattern prevents multiple components from
sharing the same lock & prevents locking at a
finer granularity than the component, which can
increase lock contention

This pattern has three benefits:
• Increased robustness

• This pattern ensures that self-
deadlock does not occur due to
intra-component method calls

•Enhanced performance
• This pattern ensures that locks
are not acquired or released
unnecessarily

•Simplification of software
• Separating the locking and
functionality concerns can help
to simplify both aspects

123

Synchronizing Singletons Correctly

Context
•JAWS uses various singletons to implement components where only one
instance is required
•e.g., the ACE Reactor, the request queue, etc.

Problem
•Singletons can be problematic in multi-threaded programs

class Singleton {
public:
 static Singleton *instance ()
 {
 if (instance_ == 0) {
 // Enter critical section.
 instance_ = new Singleton;
 // Leave critical section.
 }
 return instance_;
 }
 void method_1 ();
 // Other methods omitted.
private:
 static Singleton *instance_;
 // Initialized to 0 by linker.
};

Either too little locking…
class Singleton {
public:
 static Singleton *instance ()
 {
 Guard<Thread_Mutex> g (lock_);
 if (instance_ == 0) {
 // Enter critical section.
 instance_ = new Singleton;
 // Leave critical section.
 }
 return instance_;
 }
private:
 static Singleton *instance_;
 // Initialized to 0 by linker.
 static Thread_Mutex lock_;
};

… or too much

124

The Double-checked Locking
Optimization Pattern

Solution
•Apply the Double-Checked Locking Optimization design pattern to reduce
contention & synchronization overhead whenever critical sections of code
must acquire locks in a thread-safe manner just once during program
execution

Solution
•Apply the Double-Checked Locking Optimization design pattern to reduce
contention & synchronization overhead whenever critical sections of code
must acquire locks in a thread-safe manner just once during program
execution

// Perform first-check to
// evaluate ‘hint’.
if (first_time_in is FALSE)
{
 acquire the mutex
 // Perform double-check to
 // avoid race condition.
 if (first_time_in is FALSE)
 {
 execute the critical section
 set first_time_in to TRUE
 }
 release the mutex
}

class Singleton {
public:
 static Singleton *instance ()
 {
 // First check
 if (instance_ == 0) {
 Guard<Thread_Mutex> g(lock_);
 // Double check.
 if (instance_ == 0)
 instance_ = new Singleton;
 }
 return instance_;
 }
private:
 static Singleton *instance_;
 static Thread_Mutex lock_;
};

125

Applying the Double-Checked Locking
Optimization Pattern in ACE

template <class TYPE>
class ACE_Singleton {
public:
 static TYPE *instance () {
 // First check
 if (instance_ == 0) {
 // Scoped Locking acquires and release lock.
 Guard<Thread_Mutex> guard (lock_);
 // Double check instance_.
 if (instance_ == 0)
 instance_ = new TYPE;
 }
 return instance_;
 }
private:
 static TYPE *instance_;
 static Thread_Mutex lock_;
};

ACE defines a
“singleton adapter”
template to automate
the double-checked
locking optimization

typedef ACE_Singleton
<Request_Queue>
Request_Queue_Singleton;

Thus, creating a “thread-
safe” singleton is easy

126

Pros and Cons of the Double-Checked
Locking Optimization Pattern

This pattern has two benefits:
•Minimized locking overhead

• By performing two first-time-in
flag checks, this pattern
minimizes overhead for the
common case

• After the flag is set the first
check ensures that subsequent
accesses require no further
locking

•Prevents race conditions
• The second check of the first-
time-in flag ensures that the
critical section is executed just
once

This pattern has some liabilities:
•Non-atomic pointer or integral
assignment semantics
• If an instance_ pointer is used as the flag in
a singleton implementation, all bits of the
singleton instance_ pointer must be read &
written atomically in a single operation

• If the write to memory after the call to new is
not atomic, other threads may try to read an
invalid pointer

•Multi-processor cache coherency
• Certain multi-processor platforms, such as the
COMPAQ Alpha & Intel Itanium, perform
aggressive memory caching optimizations in
which read & write operations can execute ‘out
of order’ across multiple CPU caches, such
that the CPU cache lines will not be flushed
properly if shared data is accessed without
locks held

127

Logging Access Statistics Efficiently

Context
•Web servers often need
to log certain information
•e.g., count number of
times web pages are
accessed

Problem
•Having a central logging object in a multi-
threaded server process can become a
bottleneck
•e.g., due to synchronization required to
serialize access by multiple threads

Solution
•Apply the Thread-Specific Storage
pattern to allow multiple threads to
use one ‘logically global’ access
point to retrieve an object that is
local to a thread, without incurring
locking overhead on each object
access

Solution
•Apply the Thread-Specific Storage
pattern to allow multiple threads to
use one ‘logically global’ access
point to retrieve an object that is
local to a thread, without incurring
locking overhead on each object
access

Application <<uses>>
callsThread

n m

n x mmaintains

m Thread-Specific
Object Set
get(key)
set(key, object)

Thread-Specific
Object Proxy

key
method1()
…
methodN()

Thread-Specific
Object
method1()
…
methodN()

Key Factory

create_key()

128

key 1

key n

thread m

Thread-Specific
Object

Thread-Specific
Object Proxy

Thread-Specific
Object Set

accesses

manages

The application thread identifier, thread-specific
object set, & proxy cooperate to obtain the
correct thread-specific object

[k,t]

thread 1

Thread-Specific Storage Pattern Dynamics

: Thread-Specific
Object Proxy

method()

: Application
Thread

: Thread-Specific
Object Set

: Thread-Specific
Object

key

set()

create_key()

: Key
Factory

keyTSObject

129

class Error_Logger {
public:
 int last_error ();
 void log (const char *format,
 ...);
};

Applying the Thread-Specific
Storage Pattern to JAWS

Application
Thread

<<uses>>
calls

n m

n x mmaintains

m

Key Factory

create_key()

Thread-Specific
Object Set
get(key)
set(key, object)

ACE_TSS

key

operator->()

Error_Logger
last_error()
log()
…

template <class TYPE>
Class ACE_TSS {
public:
 TYPE *operator->() const {
 TYPE *tss_data = 0;
 if (!once_) {
 Guard <Thread_Mutex> guard (keylock_);
 if (!once_) {
 ACE_OS::thr_keycreate
 (&key_, &cleanup_hook);
 once_ = true;
 }
 }
 ACE_OS::thr_getspecific
 (key, (void **) &tss_data);
 if (tss_data == 0) {
 tss_data = new TYPE;
 ACE_OS::thr_setspecific
 (key, (void *) tss_data);
 }
 return tss_data;
 }
private:
 mutable pthread_key_t key_;
 mutable bool once_;
 mutable Thread_Mutex keylock_;
 static void cleanup_hook (void *ptr);
};

ACE_TSS <Error_Logger>
 my_logger;
// ...
if (recv (……) == -1 &&
 my_logger->last_error () !=
 EWOULDBLOCK)
 my_logger->log
 (“recv failed, errno = %d”,
 my_logger->last_error ());
};

130

Pros & Cons of the Thread-Specific
Storage Pattern

This pattern has four benefits:
•Efficiency

• It’s possible to implement this pattern
so that no locking is needed to
access thread-specific data

•Ease of use
• When encapsulated with wrapper
facades, thread-specific storage is
easy for application developers to
use

•Reusability
• By combining this pattern with the
Wrapper Façade pattern it’s possible
to shield developers from non-
portable OS platform characteristics

•Portability
• It’s possible to implement portable
thread-specific storage mechanisms
on most multi-threaded operating
systems

This pattern also has liabilities:
• It encourages use of thread-
specific global objects
• Many applications do not require
multiple threads to access thread-
specific data via a common access point

• In this case, data should be stored so
that only the thread owning the data can
access it

• It obscures the structure of the
system
• The use of thread-specific storage
potentially makes an application harder
to understand, by obscuring the
relationships between its components

• It restricts implementation options
• Not all languages support
parameterized types or smart pointers,
which are useful for simplifying the
access to thread-specific data

131

UML models of
a software
architecture
can illustrate
how a system
is designed, but
not why the
system is
designed in a
particular way

Tutorial Example 3:
Applying Patterns to Real-time CORBA

Patterns are used throughout The ACE ORB (TAO) Real-
time CORBA implementation to codify expert knowledge &
to generate the ORB’s software architecture by capturing
recurring structures & dynamics & resolving common
design forces

Patterns are used throughout The ACE ORB (TAO) Real-
time CORBA implementation to codify expert knowledge &
to generate the ORB’s software architecture by capturing
recurring structures & dynamics & resolving common
design forces

http://www.posa.uci.edu

132

The Evolution of TAO
TAO ORB
• Compliant with CORBA
2.4 & some CORBA 3.0
• AMI
• INS
• Portable Interceptors

• Pattern-centric design
• Key capabilities

• QoS-enabled
• Configurable
• Pluggable protocols

• IIOP
• UIOP
• Shared memory
• SSL
• VME

• Open-source
• Commercially supported

• www.theaceorb.com
• Available now

• ZEN (RT Java/RT CORBA)

• www.zen.uci.edu

133

The Evolution of TAO

A/V STREAMING

DYNAMIC/STATIC
SCHEDULING

A/V Streaming Service
• QoS mapping
• QoS monitoring
• QoS adaptation
ACE QoS API (AQoSA)
• GQoS + RAPI
• Integration with A/V
Streaming ETA Winter
2001

Static Scheduling
• Rate monotonic analysis
Dynamic Scheduling
• Earliest deadline first
• Minimum laxity first
• Maximal urgency first
Hybrid Dynamic/Static
• Demo in WSOA
• ETA Winter 2001

134

The Evolution of TAO
DYNAMIC/STATIC

SCHEDULING
FT-CORBA

& LOAD
BALANCING

FT-CORBA
• Entity redundancy
• Multiple models

• Cold passive
• Warm passive
• Active

• IOGR
• ETA Winter 2001

Load Balancing
• Static & dynamic
• LOCATION_FORWARDING

SSL Support
• Integrity
• Confidentiality
• Authentication (limited)
Security Service
• Authentication
• Access control
• Non-repudiation
• Audit
• ETA Winter 2001

A/V STREAMING
SECURITY

135

The Evolution of TAO
NOTIFICATIONS

A/V STREAMING
SECURITY

TRANSACTIONS

DYNAMIC/STATIC
SCHEDULING

FT-CORBA
& LOAD

BALANCING

CORBA Component
Model (CCM)
• Extension Interfaces
• Component navigation
• Standardized life-
cycles

• Dynamic configuration
• QoS-enabled
containers

• Reflective collocation
• ETA Winter 2001

Notification Service
• Structured events
• Event filtering
• QoS properties

• Priority
• Expiry times
• Order policy

• Compatible w/Events
Object Transaction
Service
• Encapsulates RDBMs
• ETA Winter 2001

136

Concluding Remarks

R&D

User
Needs

Standard
COTS R&D

•Researchers & developers of distributed
applications face common challenges

R&D Synergies

•Patterns, frameworks, &
components help to resolve
these challenges

•These techniques can yield efficient,
scalable, predictable, & flexible
middleware & applications

•e.g., connection management,
service initialization, error handling,
flow & congestion control, event
demuxing, distribution, concurrency
control, fault tolerance
synchronization, scheduling, &
persistence

“Secrets” to R&D success:
•Embrace & lead COTS standards
•Leverage open-source
•Be entrepreneurial & use the Web

•Solve “real” problems
•See ideas thru to completion
•Leave an enduring legacy

