
AP 04/02

What is a Design Pattern

„Each pattern describes a problem which occurs
over and over again in our environment,

and then describes the core of the solution to that problem,

in such a way that you can use this solution
a million times over,

without ever doing it the same way twice“

(Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson,
Ingrid Fiksdahl-King, Shlomo Angel, “A Pattern Language: Towns/Buildings/
Construction”, Oxford University Press, New York, 1977)

AP 04/02

Elements of Design Patterns

• Pattern Name
– Increases design vocabulary, higher level of abstraction

• Problem
– When to apply the pattern

– Problem and context, conditions for applicability of pattern

• Solution
– Relationships, responsibilities, and collaborations of design elements

– Not any concrete design or implementation, rather a template

• Consequences
– Results and trade-offs of applying the pattern

– Space and time trade-offs, reusability, extensibility, portability

AP 04/02

What is a Design Pattern (II)

• Description of communicating objects and classes that
are customized to solve a general design problem in a
particular context.
(Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design

Patterns – Elements of Reusable Object-Oriented Software”, Addison-
Wesley, 1994 (22nd printing July 2001))

• Each pattern focuses in a particular object-oriented
design problem or issue

AP 04/02

Design Patterns in Smalltalk MVC

• Model
– Implements algorithms (business logic)
– Independent of environment

• View:
– Communicates with environment
– Implements I/O interface for model

• Controller:
– Controls data exchange (notification protocol) between model and view

View
GUI, Document 2

Controller
Model

US $ -> EUR

Model
EUR -> US $

View
GUI, Document 1

View
character-based

AP 04/02

Model/View/Controller (contd.)

• MVC decouples views from models – more general:
– Decoupling objects so that changes to one can affect any number of

others
– without requiring the object to know details of the others
– Observer pattern solves the more general problem

• MVC allows view to be nested:
– CompositeView objects act just as View objects
– Composite pattern describes the more general problem of grouping

primitive and composite objects into new objects with identical
interfaces

• MVC controls appearance of view by controller:
– Example of the more general Strategy pattern

• MVC uses Factory and Decorator patterns as well

AP 04/02

Purpose
BehavioralStructuralCreational

Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Interpreter
Template Method

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Adapter (class)Factory Method

Abstract Factory
Builder
Prototype
Singleton

Object

ClassScope

Defer object creation to
another class

Defer object creation to
another object

Describe algorithms and
flow control

Describe ways to
assemble objects

Design Pattern Space

AP 04/02

How Design Patterns Solve
Design Problems

• Finding Appropriate Objects
– Decomposing a system into objects is the hard part

– OO-designs often end up with classes with no counterparts in real
world (low-level classes like arrays)

– Strict modeling of the real world leads to a system that reflects today’s
realities but not necessarily tomorrows

– Design patterns identify less-obvious abstractions

• Determining Object Granularity
– Objects can vary tremendously in size and number

– Facade pattern describes how to represent subsystems as objects

– Flyweight pattern describes how to support huge numbers of objects

AP 04/02

Specifying Object Interfaces

• Interface:
– Set of all signatures defined by an object’s operations
– Any request matching a signature in the objects interface may be sent

to the object
– Interfaces may contain other interfaces as subsets

• Type:
– Denotes a particular interfaces
– An object may have many types
– Widely different object may share a type
– Objects of the same type need only share parts of their interfaces
– A subtype contains the interface of its supertype

• Dynamic binding, polymorphism

AP 04/02

Program to an interface,
not an implementation

• Manipulate objects solely in terms of interfaces
defined by abstract classes!

• Benefits:
1. Clients remain unaware of the specific types of objects they use.

2. Clients remain unaware of the classes that implement the objects.
Clients only know about abstract class(es) defining the interfaces

• Do not declare variables to be instances of particular concrete classes

• Use creational patterns to create actual objects.

AP 04/02

Favor object composition
over class inheritance

• White-box reuse:
– Reuse by subclassing (class inheritance)

– Internals of parent classes are often visible to subclasses

– works statically, compile-time approach

– Inheritance breaks encapsulation

• Black-box reuse:
– Reuse by object composition

– Requires objects to have well-defined interfaces

– No internal details of objects are visible

AP 04/02

Delegation

Makes composition as powerful for reuse as inheritance
– Two objects involved in handling requests

– Explicit object references, no this-pointer

– Extreme example of object composition to achieve code reuse

Window

Area()

Rectangle

Area()

width
height

rectangle

return rectangle->Area() return width * height

But: Dynamic, hard to understand, run-time inefficiencies

AP 04/02

Designing for Change –
Causes for Redesign (I)

• Creating an object by specifying a class explicitly
– Commits to a particular implementation instead of an interface

– Can complicate future changes

– Create objects indirectly

– Patterns: Abstract Factory, Factory Method, Prototype

• Dependence on specific operations
– Commits to one way of satisfying a request

– Compile-time and runtime modifications to request handling can be
simplified by avoiding hard-coded requests

– Patterns: Chain of Responsibility, Command

AP 04/02

Causes for Redesign (II)

• Dependence on hardware and software platform
– External OS-APIs vary

– Design system to limit platform dependencies

– Patterns: Abstract Factory, Bridge

• Dependence on object representations or
implementations
– Clients that know how an object is represented, stored, located, or

implemented might need to be changed when object changes

– Hide information from clients to avoid cascading changes

– Patterns: Abstract factory, Bridge, Memento, Proxy

AP 04/02

Causes for Redesign (III)

• Algorithmic dependencies
– Algorithms are often extended, optimized, and replaced during

development and reuses

– Algorithms that are likely to change should be isolated

– Patterns: Builder, Iterator, Strategy, Template Method, Visitor

• Tight coupling
– Leads to monolithic systems

– Tightly coupled classes are hard to reuse in isolation

– Patterns: Abstract Factory, Bridge, Chain of Responsibility, Command,
Facade, Mediator, Observer

AP 04/02

Causes for Redesign (IV)

• Extending functionality by subclassing
– Requires in-depth understanding of the parent class

– Overriding one operation might require overriding another

– Can lead to an explosion of classes (for simple extensions)

– Patterns: Bridge, Chain of Responsibility, Composite, Decorator,
Observer, Strategy

• Inability to alter classes conveniently
– Sources not available

– Change might require modifying lots of existing classes

– Patterns: Adapter, Decorator, Visitor

AP 04/02

Relations among Design Patterns

Builder

Proxy
saving state
of iteration

creatingcomposites

Memento

Adapter

Bridge

Command

Iterator
Avoidinghysteresis

Composite

Decorator

Enumerating
children

adding
respnsibilities
to objects

composed
using

sharing
composites

Flyweight
defining
grammar

Interpreter

Visitor

addingoperations

defining
traversals

definingthe chain

Chain of
Responsibility

sharing

strategies

changing skin
versus guts

Strategy

adding

operations

State

sharing
strategies

sharingterminal
symbols

Mediator Observer

complex
dependency
management

Template Method

defining
algorithm´s
steps

Prototype

Abstract Factory

Singleton Facade

Factory Method

implement

using
single
instance

single
instance

configure factory
dynamically

often uses

AP 04/02

List of Design Patterns

• Creational Patterns
– Abstract Factory

– Builder

– Factory Method

– Prototype

– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Facade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility

– Command

– Interpreter

– Iterator

– Mediator

– Memento

– Observer

– State

– Strategy

– Template Method

– Visitor

AP 04/02

How to Select a Design Pattern

• Consider how design patterns solve design problems
– Find appropriate objects

– Determine object granularity

– Specifiy object interfaces

• Scan intent sections

• Study how patterns interrelate

• Study patterns of like purpose
– Creational, structural, behavioral patterns

• Examine cause of redesign

• Consider what should be variable in your design

AP 04/02

How to Use a Design Pattern

• Read the pattern once through for an overview
– Study applicability and consequences

• Study Structure, Participants, Collaborations

• Choose names for pattern participants that are
meaningful in the application context

• Define the classes
– Declare interfaces, inheritance relationships; define instance variables

– Identify existing classes in your app that the pattern will affect

• Define application-specific names for ops in the pattern

• Implement operations to carry out responsibilities and
collaborations in the pattern

AP 04/02

Design aspects that design patterns
let you vary

How an object is accessed, its locationProxy

Storage cost of objectsFlyweight

Interface to a subsystemFacade

Responsibilities of an object without
subclassing

Decorator

Structure and composition of an objectComposite

Implementation of an objectBridge

Interface to an objectAdapterStructural

The sole instance of a classSingleton

Class of object that is instantiatedPrototype

Sublass of object that is instantiatedFactory Method

How a composite object gets createdBuilder

Families of product objectsAbstract FactoryCreational

Aspect(s) that can varyDesign PatternPurpose

AP 04/02

Design aspects that design patterns
let you vary (contd.)

Operations that can be applied to object(s) without
changing their class(es)

Visitor

Steps of an algorithmTemplate Method

An algorithmStrategy

States of an objectStae

Number of objects that depend on another object;
how the dependent objects stay up to date

Observer

What private information is stored outside an object,
and when

Memento

How and which objects interact with each otherMediator

How an aggregate‘s elements are accessed,
traversed

Iterator

Grammar and interpretation of a languageInterpreter

When and how a request is fulfilledCommand

Object that can fulfill a requestChain of Resp.Behavioral

Aspect(s) that can varyDesign PatternPurpose

AP 04/02

Creational Patterns

• Abstract the instantiation process
– Make a system independent of how ist objects are created, composed,

and represented

• Important if systems evolve to depend more on object
composition than on class inheritance
– Emphasis shifts from hardcoding fixed sets of behaviors towards a

smaller set of composable fundamental behaviors

• Encapsulate knowledge about concrete classes a
system uses

• Hide how instances of classes are created and put
together

AP 04/02

ABSTRACT FACTORY
(Object Creational)

• Intent:
– Provide an interface for creating families of related or dependent objects

without specifying their concrete classes

– Also known as: Kit

• Motivation:
– User interface toolkit supports multiple look-and-feel standards

(Motif, Presentation Manager)

– Different appearances and behaviors for UI widgets

– Apps should not hard-code its widgets

• Solution:
– Abstract WidgetFactory class

– Interfaces for creating each basic kind of widget

– Abstract class for each kind of widgets,

– Concrete classes implement specific look-and-feel

AP 04/02

Widget Factory

CreateScrollBar()

CreateWindow()

MotifWidgetFactory

CreateScrollBar()

CreateWindow()

PMWidgetFactory

CreateScrollBar()

CreateWindow()

Client

Windows

PMWindow MotifWindow

ScrollBar

PMScrollBar MotifScrollBar

ABSTRACT FACTORY
Motivation

AP 04/02

Applicability

Use the Abstract Factory pattern when
– A system should be independent of how its products are created,

composed, and represented

– A system should be configured with one of multiple families of
produces

– A family of related product objects is designed to be used together,
and you need to enforce this constraint

– You want to provide a class library of products, and you want to reveal
just their interfaces, not their implementations

AP 04/02

Abstract Factory

CreateProductA()

CreateProductB()

ConcreteFactory1 ConcreteFactory2

Client

AbstractProductA

ProductA2 ProductA1

ProductB2 ProductB1

CreateProductA()

CreateProductB()

CreateProductA()

CreateProductB()
AbstractProductB

ABSTRACT FACTORY
Structure

AP 04/02

ABSTRACT FACTORY
Participants

• AbstractFactory
– Declares interface for operations that create abstract product objects

• ConcreteFactory
– Implements operations to create concrete product objects

• AbstractProduct
– Declares an interface for a type of product object

• ConcreteProduct
– Defines a product object to be created by concrete factory
– Implements the abstract product interface

• Client
– Uses only interfaces declared by AbstractFactory and AbstractProduct

classes

AP 04/02

BUILDER
(Object Creational)

• Intent:
– Separate the construction of a complex object from its representation

so that the same construction process can create different
representations

• Motivation:
– RTF reader should be able to convert RTF to many text format
– Adding new conversions without modifying the reader should be easy

• Solution:
– Configure RTFReader class with a TextConverter object
– Subclasses of TextConverter specialize in different conversions and

formats
– TextWidgetConverter will produce a complex UI object and lets the

user see and edit the text

AP 04/02

RTFReader

ParseRTF()

while(t=get the next token){

switch t.Type{

CHAR:
 builder->ConvertCharacter(t.Char)
FONT:
 builder->ConvertFontCharnge(t.Font)
PARA:
 builder->ConvertParagraph()
 }
}

TextConverter

ConvertCharacter(char)

ConvertFontChange(Font)

ConvertParagraph()

ASCIIConverter

ConvertCharacter(char)

GetASCIIText()

TeXConverter

ConvertCharacter(char)

ConvertFontChange(Font)

ConvertParagraph()

GetTeXText()

TextWidgetConverter

ConvertCharacter(char)

ConvertFontChange(Font)

ConvertParagraph()

GetTextWidget()

ASCIIText TeXText TextWidget

builders

BUILDER
Motivation

AP 04/02

Applicability

• Use the Builder pattern when
– The algorithm for creating a complex object should be independent of

the parts that make up the object and how they are assembled

– The construction process must allow different representations for the
object that is constructed

AP 04/02

Director

Construct ()

for all objects in structure {
 builder->BuildPart ()
}

Builder

BuildPart ()

ConcreteBuilder

BuildPart ()
GetResult ()

Product

builders

BUILDER
Structure

AP 04/02

Builder - Collaborations

• Client creates Director object and configures it with the
desired Builder object

• Director notifies Builder whenever a part of the product
should be built

• Builder handles requests from the Director and adds
parts to the product

• Client retrieves the product from the Builder

AP 04/02

aDirectoraClient

new ConcreteBuilder

new Director (aConcreteBuilder)

GetResult ()

BuildPart C ()

BuilPart B ()

BuildPart A ()

aConcreteBuilder

BUILDER
Collaborations

AP 04/02

FACTORY METHOD
(Class Creational)

• Intent:
– Define an interface for creating an object, but let subclasses decide

which class to instantiate.

– Factory Method lets a class defer instantiation to subclasses.

– Also known as: Virtual Constructor

• Motivation:
– Framework use abstract classes to define and maintain relationships

between objects

– Framework has to create objects as well - must instantiate classes but
only knows about abstract classes - which it cannot instantiate

– Factory method encapsulates knowledge of which subclass to create -
moves this knowledge out of the framework

AP 04/02

docs
Document

Open()

Close()

Save()

Revert()

Application

MyDocument

CreateDocument()

NewDocument()

OpenDocument()

MyApplication

CreateDocument()

Document* doc=CreateDocument();
docs.Add(doc);
doc->Open();

return new MyDocument

FACTORY METHOD
Motivation

AP 04/02

Applicability

• Use the Factory Method pattern when
– a class can´t anticipate the class of objects it must create.

– a class wants its subclasses to specify the objects it creates.

– classes delegate responsibility to one of several helper subclasses,
and you want to localize the knowledge of which helper subclass is the
delegate.

AP 04/02

Product

Creator

ConcreteProduct

FactoryMethod()

AnOperation()

ConcreteCreator

FactoryMethod()

...
product = FactoryMethod()
...

return new ConcreteProduct

FACTORY METHOD
Structure

AP 04/02

Participants

• Product
– Defines the interface of objects the factory method creates

• ConcreteProduct
– Implements the product interface

• Creator
– Declares the factory method which returns object of type product

– May contain a default implementation of the factory method

– Creator relies on its subclasses to define the factory method so that it
returns an instance of the appropriate Concrete Product.

• ConcreteCreator
– Overrides factory method to return instance of ConcreteProduct

AP 04/02

PROTOTYPE
(Object Creational)

• Intent:
– Specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype.

• Motivation:
– Framework implements Graphic class for graphical components and

GraphicTool class for tools manipulating/creating those components

– Actual graphical components are application-specific

– How to parameterize instances of GraphicTool class with type of
objects to create?

– Solution: create new objects in GraphicTool by cloning a prototype
object instance

AP 04/02

Tool

Manipulate()

Rotate Tool

Manipulate()

Graphic Tool

Manipulate()

Graphic

Staff MusicalNote

WholeNote

Return copy of self

HalfNote
p = prototype ->Clone()

while(user drags mouse){

 p ->Draw(new position)

}

Insert p into drawing

Draw(Position)

Clone()

Draw(Position)

Clone()

Draw(Position)

Clone()

Return copy of self

Draw(Position)

Clone()

prototype

Return copy of self

PROTOTYPE
Motivation

AP 04/02

Applicability

• Use the Prototype pattern when a system should be
independent of how its products are created, composed,
and represented;
– when the classes to instantiate are specified at run-time, for example,

by dynamic loading; or

– to avoid building a class hierarchy of factories that parallels the class
hierarchy of products; or

– when instances of a class can have one of only a few different
combinations of state. It may be more convenient to install a
corresponding number of prototypes and clone them rather than
instantiating the class manually, each time with the appropriate state.

AP 04/02

client

Operation()

p = prototype ->Clone()

Prototype

ConcretePrototype1

return copy of self

prototype

Clone()

return copy of self

Clone()

ConcretePrototype2

Clone()

PROTOTYPE
Structure

AP 04/02

Participants and Collaborations

Participants:

• Prototype (Graphic)
– Declares an interface for cloning itself

• ConcretePrototype (Staff, WholeNote, HalfNote)
– Implements an interface for cloning itself

• Client (GraphicTool)
– Creates a new object by asking a prototype to clone itself

Collaborations:

• A client asks a prototype to clone Itself.

AP 04/02

SINGELTON
(Object Creational)

• Intent:
– Ensure a class only has one instance, and provide a global point of

access to it.

• Motivation:
– Some classes should have exactly one instance

(one print spooler, one file system, one window manager)

– A global variable makes an object accessible but doesn’t prohibit
instantiation of multiple objects

– Class should be responsible for keeping track of its sole interface

AP 04/02

Applicability

• Use the Singleton pattern when
– there must be exactly one instance of a class, and it must be

accessible to clients from a well-known access point.

– when the sole instance should be extensible by subclassing, and
clients should be able to use an extended instance without modifying
their code.

AP 04/02

Singleton

return uniquelnstancestatic Instance()

SingletonOperation()

GetSingletonData()

Static uniquelnstance

singletonData

SINGLETON
Structure

AP 04/02

Participants and Collaborations

• Singleton:
• Defines an instance operation that lets clients access

its unique interface
• Instance is a class operation (static in Java)
• May be responsible for creating its own unique instance
• Collaborations:
• Clients access a Singleton instance solely through

Singleton’s Instance operation.

