
AP 04/03

Behavioral Patterns

• Concerned with algorithms and the assignment of
responsibilities between objects.

• Describe communication flows among objects.

• Behavioral class patterns use inheritance to distributed
behavior between classes.

• Behavioral object patterns use object composition
rather than inheritance - they describe how groups of
peer objects cooperate.

AP 04/03

CHAIN OF RESPONSIBILITY
(Object Behavioral)

• Intent:
– Avoid coupling the sender of a request to its receiver by giving more

than one object a chance to handle the request.

– Chain the receiving objects and pass the request along the chain until
an Object handles it.

• Motivation:
– Consider a context-sensitive help facility for a GUI. Users can obtain

help info on any part of the UI by just clicking on it.

– Help provided depends on the part of the UI selected and its context.

– Object that provides help is not directly known to object (e.g. button)
that initiates the request.

– Chain of responsibility allows to decouple senders and receivers of
requests.

AP 04/03

CHAIN OF RESPONSIBILITY
Motivation

aPrintButton

aSaveDialog

anApplication

handler

handler

anOKButton

handler

aPrintDialog

handler

handler

specific general

AP 04/03

CHAIN OF RESPONDINILITY
Motivation

aPrintDialogaPrintButton

HandleHelp()

HandleHelp()

anApplicaton

• An object in the chain receives the request and either handles it or
forwards it to the next candidate on the chain.

• The request has an implicit receiver.

AP 04/03

CHAIN OF RESPONSIBILITY
Motivation

handler

HelpHandler

HandleHelp()

if can handle {
 ShowHelp()
} else{
 Handler :: HandleHelp()
}

handler ->HandleHelp()

Button

HandleHelp()
ShowHelp()

Dialog

WidgetApplication

AP 04/03

Applicability

• Use Chain of Responsibility when:
– More than one object may handle a request, and the handler is not

known a priori. The handler should be ascertained automatically.

– You want to issue a request to one of several objects without
specifying the receiver explicitly.

– The set of objects that can handle a request should be specified
dynamically.

AP 04/03

CHAIN OF RESPONSIBILITY
Structure

Client Handler

HandleRequest()

ConcreteHandler1

HandleRequest()

ConcreteHandler2

HandleRequest()

successor

aClient
aConcreteHandler

aConcreteHandler
aHandler

successor
successor

A typical object structure might look like this:

AP 04/03

Participants and Collaborations

Participants:

• Handler (HelpHandler)
– Defines an interface for handling requests.

– (optional) implements the successor link.

• ConcreteHandler (PrintButton, PrintDialog)
– Handles requests it is responsible for.

– Can access its successor.

– Either handles requests or forwards it to its successor.

• Client
– Initiates the request to a ConcreteHandler object on the chain.

Collaborations:
– When a client issues a request, the request propagates along the chain until a

ConcreteHandler object takes responsibility for it.

AP 04/03

COMMAND
(Object Behavioral)

• Intent:
– Encapsulate a request as an object,

– Parameterize clients with different requests, queue or log requests,

– Support undoable operations (Transactions).

• Motivation:
– Let toolkit objects make requests of unspecified application objects by

turning the request itself into an object.

– This object can be stored and passed around like other objects.

– Key to this pattern is an abstract Command class which declares an
interface for executing operations.

AP 04/03

COMMAND
Motivation

Application

Add(Document)

Menu

Add(MenuItem)

MenuItem

Clicked()

Command

Execute()

command ->Execute()

Document

Open()
Close()
Cut()

Copy()
Paste()

Application

Add(Document)

Menu

Add(MenuItem)

MenuItem

Clicked()

Command

Execute()

command ->Execute()

Document

Open()
Close()
Cut()

Copy()
Paste()

command

• Menus can be implemented with Command objects. Each choice in a
Menu is an instance of a MenuItem class.

• An App creates menus and their menu items along with the rest of the UI.

Instance variable stores
receiver of an event

AP 04/03

COMMAND
Motivation

Document

Open()
Close()
Cut()

Copy()
Paste()

Document

Open()
Close()
Cut()

Copy()
Paste()

Command

Execute()

PasteCommand

Execute() document –>Paste()

• PasteCommand supports pasting text from the clipboard into a document.
• PasteCommand‘s receiver is the Document object given at instantiation.
• The Execute operation invokes Paste on the receiving document.

AP 04/03

COMMAND
Motivation

Command

Execute()

Application

Add(Document) OpenCommand

Execute()
AskUser()

application

name = AskUser()
doc = new Document(name)
application -> Add(doc)
doc -> Open()

OpenDocument‘s Execute operation prompts the user for a name,
creates the corresponding document object,
adds document to the receiving app, and opens the document

AP 04/03

COMMAND
Motivation

Command

Execute()

MacroCommand

Execute()

for all c in commands
c -> Execute()

command

• MacroCommand is a concrete Command subclass
• It simply executes a sequence of commands.
• MacroCommand has no explicit receiver - commands in the sequence

define their own receivers.

AP 04/03

Applicability

Use the Command pattern when you want to:
• Parameterize objects by an action to perform (as MenuItem did)

– Commands are an object-oriented replacement for callbacks.

• Specify, queue, and execute requests at different times.
– A Command object can have a lifetime independent of the original request.
– If the receiver of a request can be represented in an address space-

independent way, then you can transfer a command object for the request to a
different process and fulfill the request there.

• Support undo.
– The Command´s Execute operation can store state for reversing its effects in

the command itself.
– The Command interface must have an added Un-Execute operation that

reverses the effects of a previous call to Execute.
– Executed commands are stored in a history list.

AP 04/03

Applicability II

Use the Command pattern when you want to:
• Support logging changes so that they can be reapplied in case of a

system crash.
– By augmenting the Command interface with load and store operations, you can

keep a persistent log of changes.
– Recovering from a crash involves reloading logged commands from disk and

reexecuting them with the Execute operation.

• Structure a system around high-level operations built on primitives
operations.
– Such a structure is common in information systems that support transactions.
– A transaction encapsulates a set of changes to data.
– The Command pattern offers a way to model transactions.
– Commands have a common interface, letting you invoke all transactions the

same way.
– The pattern also makes it easy to extend the system with new transactions.

AP 04/03

COMMAND
Structure

Client Invoker Command

Execute()

Receiver

Action()
receiver

receiver -> Action();

ConcreteCommand

Execute()

state

AP 04/03

Participants

• Command
– Declares an interface for executing an operation.

• ConcreteCommand (PasteCommand, OpenCommand)
– Defines a binding between a Receiver object and an action.
– Implements Execute by invoking the corresponding ops on Receiver

• Client (Application)
– Creates a ConcreteCommand object and sets ist receiver.

• Invoker (MenuItem)
– Asks the command to carry out the request.

• Receiver (Document, Application)
– Knows how to perform the operations associated with carrying out a

request. Any class may server as a Receiver.

AP 04/03

Collaborations

• The client creates a ConcreteCommand object and
specifies its receiver.

• An Invoker object stores the ConcreteCommand object.

• The invoker issues a request by calling Execute on the
command. When commands are undoable,
ConcreteCommand stores state for undoing the
command prior to invoking Execute.

• The ConcreteCommand object invokes operations on
its receiver to carry out the request.

AP 04/03

Interactions between objects

aReceiver aClient aCommand anInvoker

new Command(aReceiver)

StoreCommand(aCommand)

Execute()
Action()

AP 04/03

INTERPRETER
(Class Behavioral)

• Intent:

 Given a language, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language

AP 04/03

INTERPRETER
Motivation

RegularExpression

Interpret()

LiteralExpression

Interpret()

literal

SequenceExpression

Interpret()

AlternationExpression

Interpret()Interpret()

RegularExpressionrepetition alternative 1

alternative 2

expression 1

expression 2

AP 04/03

INTERPRETER
Motivation

aSequenceExpression

aLiteralExpression

aRepetitionExpression

expression1
expression 2

‘raining‘

repeat

anAlternationExpression

alternation 1
alternation 2

aLiteralExpression

‘dogs‘

aLiteralExpression

‘cats‘

AP 04/03

Applicability

 Use the Interpreter pattern when there is a language to
interpret, and you can represent statments in the language as
abstract syntax trees. The Interpreter pattern works best
when:

• The grammar is simple. For complex grammars, the class hierarchy for the
grammar becomes large and unmanageable. Tools such as parser
generators are a better alternative in such cases. They can interpret
expressions without building abstract syntax trees, which can save space
and possibly time.

• efficiency is not a critical concern. The most efficient interpreters are
usually not implemented by interpreting parse trees directly but by first
translating them into another form. For example, regular expressions are
often transformed into state machines. But even then, the translator can be
implemented by the Interpreter pattern, so the pattern is still applicable.

AP 04/03

INTERPRETER
Structure

Client

Context

AbstractExpression

Interpret(Context)

TerminalExpression

Interpret(Context)

NoterminalExpression

Interpret(Context)

AP 04/03

Collaborations

• The client builds (or is given) the sentence as an
abstract syntax tree of NonterminalExpression and
TerminalExpression instances. Then the client
initializes the context and invokes the Interpret
operation.

• Each NonterminalExpression node defines Interpret in
terms of Interpret on each subexpression. The Interpret
operation of each TerminalExpression defines the base
case in the recursion.

• The Interpret operations at each node use the context
to store and access the state of the interpreter.

AP 04/03

ITERATOR
(Object Behavioral)

• Intent:

 Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

AP 04/03

ITERATOR
Motivation

List

Count()
Append(Element)
Remove(Element)

...

ListIterator

First()
Next()
IsDone()
CurrentItem()

index

list

AP 04/03

ITERATOR
Motivation

AbstractList

CreateIterator()
Count()
Append(Item)
Remove(Item

...

Iterator

First()
Next()
IsDone()
CurrentItem()

client

List

SkipList

ListIterator

SkipListIterator

AP 04/03

Applicability

 Use the Iterator pattern

• To access an aggregate object´s contents without exposing its internal
representation.

• to support multiple traversals of aggregate objects.

• To provide a uniform interface for traversing different aggregate structures
(that is, to support polymorphic iteration).

AP 04/03

ITERATOR
Structure

Aggregate

CreateIterator()

Iterator

First()
Next()
IsDone()
CurrentItem()

client

ConcreteAggregate

CreateIterator()

return new ConcreteIterator (this)

ConcreteAggregate

AP 04/03

Collaborations

• A ConcreteIterator keeps track of the current object in
the aggregate and can compute the succeeding object
in the traversal.

AP 04/03

MEDIATOR
(Object Behavioral)

• Intent:

 Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently.

AP 04/03

MEDIATOR
Motivation

The quick brown fox ...

New cetury schoolbookFamily

Avant garde
chicago
courier
helvetica
palatino
times roman
zapf dingbats

Weight

Slant

Size

medium bold demibold

 roma italic oblique

condensed34pt

AP 04/03

MEDIATOR
Motivation

aClient

aFontDialogDirector

aListBox

director

aButton

director aEntryField

director

director

AP 04/03

MEDIATOR
Motivation

Mediator
aFontDialogDirectoraClient

SetText()

GetSelection()

WidgetChanged()

Colleagues

aListBox anEntryField

ShowDialog()

AP 04/03

MEDIATOR
Motivation

DialogDirector

ShowDialo()
CreateWidgets()
WidgetChanged(Widget)

Widget

Changed()

FontDialogDirector

CreateWidgets()
WidgetChanged(Widget)

EntryField

SetText()

ListBox

GetSelection()

director ->WidgetChanged(this)

list

field

director

AP 04/03

Applicability

 Use the Mediator pattern when

• A set of objects communicate in well-defined but complex ways. The
resulting interdependencies are unstructured and difficult to understand.

• Reusing an object is difficult because it refers to and communicates with
many other objects.

• A behavior that´s distributed between several classes should be
customizable without a lot of subclassing.

AP 04/03

MEDIATOR
Structure

Mediator Colleague

ConcreteMediator ConcreteColleague1 ConcreteColleague2

mediator

AP 04/03

MEDIATOR
Structure

aColleague

aFontDialogDirector

mediator

aColleague

mediator

aColleague

mediator

aColleague

mediator

aColleague

mediator

AP 04/03

Collaborations

• Colleagues send and receive requests from a Mediator
object. The mediator implements the cooperative
behavior by routing requests between the appropriate
colleague(s).

AP 04/03

MEMENTO
(Object Behavioral)

Intent:

• Without violating encapsulation, capture and externalize
an object´s internal state so that the object can be
restored to this state later.

• Also known as: Token

AP 04/03

MEMENTO
Motivation

Sometimes, a snapshot of the system
state is required
In order to implement „undo“ right

AP 04/03

Applicability

 Use the Memento pattern when

• A snapshot of (some portion of) an object´s state must be saved so that it
can be restored to that state later, and

• a direct interface to obtaining the state would expose implementation details
and break the object´s encapsulation.

AP 04/03

MEMENTO
Structure

Originator

SetMemento(Memento m)
CreateMemento()

state

Memento

GetState()
SetState()

state

Caretaker

return new Memento (state) state = m -> GetState()

memento

AP 04/03

Collaborations

• A caretaker requests a memento from an originator,
holds it for a time, and passes it back to the originator

• Sometimes the caretaker won’t pass the memento back
to the originator, because the originator might never
need to revert to an earlier state

• Mementos are passive. Only the originator that created
a memento will assign or retrieve its state

AP 04/03

OBSERVER
(Object Behavioral)

• Intent:

 Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically.

AP 04/03

OBSERVER
Motivation

observers

 a b c

x 60 30 10

y 50 30 20

z 80 10 10 a b c

a

b

c

a = 50%
b = 30%
c = 20%

subject

change notification

request, modifications

AP 04/03

Applicability

 Use the Observer pattern in any of the following situations:

• When an abstraction has two aspects, one dependent on the other.
Encapsulating these aspects in separate objects lets you vary and reuse
them independently.

• When a change to one object requires changing others, and you don’t know
how many objects need to be changed.

• When an object should be able to notify other objects without making
assumptions about who these objects are. In other words, you don´t want
these objects tightly coupled.

AP 04/03

OBSERVER
Structure

Subject

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

GetState()
SetState()

subjectState

observers
Observers

Update()

return subjectState

for all o in observers{
 o -> Update()
}

ConcreteObserver

Update()

observerState

observerState=
 subject -> GetState()

subject

AP 04/03

Participants

• Subject:
– Knows its observers. Any number of Observer any observe a subject
– Provides an interface for attaching/detaching observer objects

• Observer:
– Defines an updating interface for objects that should be notified of

changes in a subject.

• ConcreteSubject:
– Stores state of interest to ConcreteObserver objects.
– Sends a notification to its observers when its state changes.

• ConcreteObserver:
– Maintains a reference to a ConcreteSubject object.
– Stores state that should stay consistent with the subject’s.
– Implements the Observer updating interface to keep its state

consistent with the subject’s.

AP 04/03

Collaborations

• ConcreteSubject notifies its observers whenever a
change occurs that could make its observers´state
inconsistent with its own.

• After being informed of a change in the concrete
subject, a ConcreteObserver object may query the
subject for information. ConcreteObserver uses this
information to reconcile its state with that of the subject.
The following interaction diagram illustrates the
collaborations between a subject and two observers:

AP 04/03

STATE
 (Object Behavioral)

• Intent:

 Allow an object to alter its behavior when its internal state changes. The
object will appear to change its class.

AP 04/03

STATE
Motivation

TCPConnection

Open()
Close()
Achnowledge()

state -> Open()

TCPState

Open()
Close()
Achnowledge()

TCPEstablished

Open()
Close()
Achnowledge()

TCPListen

Open()
Close()
Achnowledge()

TCPClosed

Open()
Close()
Achnowledge()

state

AP 04/03

Applicability

 Use the State pattern in either of the following cases:

• An object´s behavior depends on its state, and it must change its behavior
at run-time depending on that state.

• Operations have large, multipart conditional statements that depend on the
object´s state. This state is usually represented by one or more enumerated
constants. Often, several operations will contain this same conditional
structure. The State pattern puts each branch of the conditional in a
separate class. This lets you treat the object´s state as an object in its own
right that can vary independently from other objects.

AP 04/03

STATE
Structure

Context

Request()

State

Handle()

State -> Handle() ConcreteStateA

Handle()

ConcreteStateB

Handle()

state

AP 04/03

Collaborations

• Context delegates state-specific requests to the current
Concrete State object.

• A context may pass itself as an argument to the State object
handling the request. This lets the State object access the
context if necessary.

• Context is the primary interface for clients. Clients can
configure a context with State objects. Once a context is
configured, its clients don´t have to deal with the State
objects directly.

• Either Context or the Concrete State subclasses can decide
which state succeeds another and under what
circumstances.

AP 04/03

STRATEGY
 (Object Behavioral)

• Intent:

 Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients
that use it.

AP 04/03

Composition

Traverse()
Repair()

Compositor -> Compose()

compositor

STRATEGY
Motivation

Composition

Compose()

SimpleCompositor

Compose()

TeXCompositor ArrayCompositor

Compose()Compose()

AP 04/03

Applicability

 Use the Strategy pattern when

• May related classes differ only in their behavior. Strategies provide a way to
configure a class with one of many behaviors.

• You need different variants of an algorithm. For example, you might define
algorithms reflecting different space/time trade-offs. Strategies can be used
when these variants are implemented as a class hierarchy of algorithms
[HO87].

• An algorithm uses data that clients shouldn't know about. Use the Strategy
pattern to avoid exposing complex, algorithm-specific data structures.

• A class defines many behaviors, and these appear as multiple conditional
statements in its operations. Instead of many conditionals, move related
conditional branches into their own Strategy class.

AP 04/03

STRATEGY
Structure

Context

ContextInterface()

strategy
Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorighmInterface()

ConcreteStrategyB ConcreteStrategyC

AlgorighmInterface() AlgorighmInterface()

AP 04/03

Collaborations

• Strategy and Context interact to implement the chosen
algorithm. A context may pass all data required by the
algorithm to the strategy when the algorithm is called.
Alternatively, the context can pass itself as an argument to
Strategy operations. That lets the strategy call back on the
context as required.

• A context forwards requests from its clients to its strategy.
Clients usually create and pass a ConcreteStrategy object to
the context; thereafter, clients interact with the context
exclusively. There is often a family of ConcreteStrategy
classes for a client to choose from.

AP 04/03

TEMPLATE METHOD
 (Class Behavioral)

• Intent:

 Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm´s structure.

AP 04/03

TEMPLATE METHOD
Motivation

Document

Save()
Open()
Close()
DoRead()

MyDocument

DoRead()

docs

Application

AddDocument()
OpernDocumenr()
DoCreateDocument()
CanOpenDocument()
AboutToOpenDocument()

MyApplication

DoCreateDocument()
CanOpenDocument()
AboutToOpenDocument()

return new MyDocument

AP 04/03

Applicability

 The Template Method pattern should be used

• To implement the invariant parts of an algorithm once and leave it up to
subclasses to implement the behavior that can vary.

• When common behavior among subclasses should be factored an localized
in a common class to avoid code duplication. This is a good example of
“refactoring to generalize” as described by Opdyke and Johnson [OJ93].You
first identify the differences in the existing code and then separate the
differences into new operation. Finally, you replace the differing code with a
template method that calls one of these new operations.

• To control subclasses extensions. You can define a template method that
calls “hook” operations (see Consequences) at specific points, therevy
permitting extensions only at those points.

AP 04/03

TEMPLATE METHOD
Structure

AbstractClass

TemplateMethod()
PrimitiveOperation1()
PrimitiveOperation2()

ConcreteClass

PrimitiveOperation1()
PrimitiveOperation“()

...
PrimitiveOperation1()

...
PrimitiveOperation2()

...

AP 04/03

Collaborations

• ConcreteClass relies on AbstractClass to implement the
invariant steps of the algorithm.

AP 04/03

VISITOR
 (Object Behavioral)

• Intent:

 Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

AP 04/03

VISITOR
Motivation

Node

TypeCheck()
GenerateCode()
PrettyPrint()

VariableRefNode

TypeCheck()
GenerateCode()
PrettyPrint()

AssignmentNode

TypeCheck()
GenerateCode()
PrettyPrint()

AP 04/03

VISITOR
Motivation

NodeVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

TypeChecingVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

CodeGeneratingVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

AP 04/03

VISITOR
Motivation

Node

Accept(NodeVisitor)

AssignmentNode

Accept(NodeVisitor v)

VariableRefNode

Accept(NodeVisitor v)

v -> VisitAssignment(this) v -> VisitAssignment(this)

Program

AP 04/03

Applicability

 Use the Visitor pattern when

• An object structure contains many classes of objects with differing interfaces,
and you want to perform operations on these objects that depend on their
concrete classes.

• Many distinct and unrelated operations need to be performed on objects in an
object structure, and you want to avoid “polluting” their classes with these
operations. Visitor lets you keep related operations together by defining them in
one class. When the object structure is shared by many applications, use Visitor
to put operations in just those applications that need them.

• The classes defining the object structure rarely change, but you often want to
define new operations over the structure. Changing the object structure classes
requires redefining the interface to all visitors, which is potentially costly. If the
object structure classes change often, then it´s probably better to define the
operations in those classes.

AP 04/03

VISITOR
Structure (I)

Visitor

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ContcreteVisitor1

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ContcreteVisitor2

client

AP 04/03

VISITOR
Structure (II)

ObjectStructure Element

Accept(Visitor)

ConcreteElementA

Accept(Visitor v)
OperationA()

ConcreteElementB

Accept(Visitor v)
OperationB()

V -> VisitConcreteElementA(this) V -> VisitConcreteElementB(this)

AP 04/03

Collaborations

• A client that uses the Visitor pattern must create a
ConcreteVisitor object and then traverse the object structure,
visiting each element with the visitor.

• When an element is visited, it calls the Visitor operation that
corresponds to its class. The element supplies itself as an
argument to this operation to let the visitor access its state, if
necessary. The following interaction diagram illustrates the
collaborations between an object structure, a visitor, ant two
elements:

