
Towards Predictable CORBA-based
Web-Services

 Andreas Polze, Jan Richling, Janek Schwarz and Miroslaw Malek
Department of Computer Science

Humboldt University of Berlin

 AP 5/99

2nd IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing

Towards Predictable CORBA-based
Web-Services

Composite Objects:
Building Blocks for Predictable CORBA-based Services
Real-time & Call Admission:

- Producer/Consumer/Viewer
- Scheduling Server for predictable execution

Fault-tolerance: - Observer/Observable Objects: FT Netscape
- Broker+Group Communication: FT Maze

Conclusions & Future Work
- FT-DIO: Distributed I/O-Framework

Web-Service
- fault-tolerant
- real-time
- replicated

Composite Object

Web-Service
- fault-tolerant
- real-time
- replicated

Composite Object

Communication Middleware

CORBA

Observer

Client
(Browser)

- fault-tolerant
- ObservableObject
- backup

Client
(Browser)

- fault-tolerant
- ObservableObject
- primary

Endsystem Architecture for Predictable Web-Services

Web-Service
- fault-tolerant
- real-time
- replicated

Composite Object

• Observer/Observable Objects for fault-tolerant clients

• Composite Objects/Consensus for responsive Web-services

CORBA
interface

RT service
methods
RT comm

CORBA
interface

RT service
methods
RT comm

CORBA
interface

RT service
methods
RT comm

consensus object
(Composite Object)

broker object
(transparent)

CORBA client

replicated
request

RT communication
for consensus
protocols (e.g., voting)

Responsive Services

- Fault-tolerance: redundancy in time and space

- Real-time: guarantees from underlying OS (Mach)

- Method invocation as unit of replication/scheduling

Responsive Service

implemented by
replicated, distributed
server objects

CORE/SONiC execution model

Responsive Computing with CORBA:
Mismatch of system assumptions

knowledge about implementation details:
- resource usage,
- timing behavior,
- scheduling policies

0 complete

CORBA MARSCORE/SONiC

Problem:

Solutions:

1) "Realtime CORBA": quality-of-service guarantees for CORBA
 by extending specification

2) "Responsive Services": based on CORE/SONiC and CORBA
 connected by Composite Objects

-> Composite Objects for predictable integration of CORBA with FT RT computing

CORBA and Real-Time Computing:

1. NONINTERFERENCE:
- we should create an environment in which general purpose

computing and real time computing will not burden each other.

2. INTEROPERABILITY:
- the services exported by general purpose computing objects

and by real time computing objects can be utilized by each other.

3. ADAPTIVE ABSTRACTION:
- lower level information and scheduling actions needed by real

time computing is available for real time objects but transparent
to non-real time objects.

Standard CORBA is not sufficient.
Modifications to ORB implementations not desirable.

-> Composite Objects

DCE DCOM CORBA

Composite Obect

RT
FT

Security

Composite Objects: filtering bridge
predictable integration of RT and non-RT (CORBA) functionality

ideally: multiprocessor to separate
RT & non-RT tasks

• use standard scheduling techniques:
- RMA for RT tasks
- interactive scheduling/aging for

non-RT tasks

now: simulate multiprocessor on
uniprocessor

• vertical firewall: time slicing /
Scheduling Server

• horizontal firewall: assign different priority levels to RT/non-RT tasks

• Composite Objects provide functions for assignment of priorities to
methods and for registration with Scheduling Server

Replicate object’s data: RT & non-RT part

Management of data transfer/mirroring between RT & non-RT part of the
Composite Object:

• shadow variables for continous data
• buffers+flush+exceptions+timeouts for discrete data
 (depth of buffer is parameter)
• variables/buffers with different priorities

Memory managment

• memory locking for RT data -> overloaded versions of new/malloc
• paging for non-RT data

CPU Firewalls

vertical

Scheduling Server: restricting CORBA in its CPU usage

• no changes to Object Request Broker required
• without changes to Mach OS kernel (user space server)
• similar work exists for rtLinux, Solaris (URsched)

Scheduling
Server

interactive
tasks

soft RT
tasks

time

priority
31

kernel
tasks

time

priority

RT-priority levels

non-RT priority levels

horizontal

S
cheduling S

erver C
oncept

high priority server m
anipulates client thread’s priority

fixed priority scheduling policy

S
cheduling

S
erver

C
lient

tasks

task list

A
B

C

E
arliest D

eadline F
irst (E

D
F

)
R

ate M
onotonic S

cheduling (R
M

S
)

S
cheduling S

erver im
plem

ents:

deadline

task control port

handoff scheduling - hints to the O
S

’ scheduler

and ensures in
teractive availab

ility !

computing power

num
ber of

background processes

experim
ents

stability of rtLinux version under
varying background loads

Scheduling Server: overhead and stability

cl
ie

nt
 ta

sk
’s

 p
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

re
m

ai
ni

ng
 s

ys
te

m
’s

 p
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

remaining system’s
 performance

client task’s
 performance

 100 experiments per given CPU percentage

M
F

LO
P

S

experiments

number of
background processes

M
F

LO
P

S

experiments

number of
background processes

• implementation based on MachOS
 (NeXTSTEP), HP PA-RISC

• little impact of varying background/
 disk I/O loads

• overhead less than 10%, typical 5%

overhead

stability: background load

stability: disk I/O

Composite Object

CORBA-threads

public NRT data

shared RT/NRT
variables

RT-threads

public RT data

shared RT/NRT
variables

consistency protocol
pipe, rt-fifo

pipe, rt-fifo

handler thread handler thread

write write

read read

Communication inside a Composite Object

- replicated data: shared Real Time / Non-Real Time variables
- weakly consistent memory management

- handler thread implements data mirroring:
• periodically, programmable update rate
• event-triggered

CORBA
client

CORBA
method

RT-
method

data
source

pipe

pipeT7

T3

T2T1
T0

T6 T5
T4

Mach IPCCORBA IIOP

Composite Object´s Overhead

0

40

80

120

160

0 100 200 300 400

t i
n

m
s.

number of experiments

’T7 - T0’
’T6 - T1’
’T5 - T2’

Composite Object - overhead

Scenario:

Environment:

- Composite Object´s host:
 HP 715/50, NeXTSTEP 3.3, ILU 2.0 alpha 12
- CORBA client:
 SparcStation 2, Solaris 2.6, OOC OmniBroker 2.02

Stable timing behaviour inside Composite Object.
Communication latency increased by 1ms.

Observations:

A.P./M.M. 4/98

Restricting the ORB:
call admission via Scheduling Server

• Object Request Broker is restricted in its CPU usage:
- independent of load/number of clients, calls, objects

• tradeoff between predictability and communication latency
• no changes neither to ORB nor OS kernel necessary

Version B: (contd.)
Viewer is CORBA client

Call Admission via Scheduling Server - Communication via pipes

Period: 50ms, CORBA: 10ms quantum Period: 80ms, CORBA: 10ms quantuminitial - no Scheduling Server
Variance: (1 client) 0.072025

(2 clients) 0.091340
(5 clients) 0.146772

Variance: (1 client) 0.077117
(2 clients) 0.077483
(5 clients) 0.088174

Variance: (1 client) 0.074085
(2 clients) 0.056264
(5 clients) 0.059500

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

t in ms.

number of executions

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

t in ms.

number of executions

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

t in ms.

number of executions

Software Fault-tolerance - Fault Model

Omission fault
Crash fault

Timing fault

Byzantine fault

Computation fault

Membership protocols

System diagnosis / Voting protocols

Byzantine agreement

Observer/Observable Object - Software Fault-tolerance

• Recover-and-Retry / primary-backup approach

• Toleration of crash-faults (program, processing node)

• Observer monitors application/wrapper via "alive"-messages

• ObservableObject encapsulates standard UNIX apps.

• Detection of an application’s status / checkpointing:

- stdin/stout
- UNIX signals: kill (pid, 0)
- IPC: pipes, shared memory, messages
- X11 mechanisms: properties
- program specific API, i.e., CORBA interface

• Exposition of backup on failover;
backup instance becomes primary

• Start of a new backup instance

Manager

Observer

Wrapper
App: primary
(netscape)

Wrapper
App: backup
(netscape)

machine
boundaries

createPrimary()

createBackup()

alive ?

alive ?

X
Display

X11

CORBA
Commu-
nication

Fault-tolerant Netscape - Communication Structure

Helper

timer
event

Observable
Factory

ObservableObject

ObservableObject

Observable
Factory

IDL interfaces - Observer / ObservableObjects

Observer:

typedef short Id;

interface ObservableObject;

interface ObservableFactory;

interface ObserverBasics {

exception BadExec { string why; };

void connect(in ObservableObject ref,

in Id id, in Id fid) raises (BadExec);

void connectFactory(ObservableFactory ref,

in Id id,) raises (BadExec);

void disconnect(in ObservableObject ref,

in Id id, in Id fid) raises (BadExec);

};

interface ObserverManager {

exception ManagerOnly { string why; };

exception badExec { string why; };

void start(in short m_id)

raises (ManagerOnly, BadExec);

void stop(in short m_id)

raises (ManagerOnly, BadExec);

};

ObservableObject:

interface ObservableObject {

short state();

short id();

void bePrimary(in short o_id);

void shutdown(in short o_id);

};

ObservableFactory:

include "ObservableObject.idl"

interface ObservableFactory:

ObservableObject {

void create_primary(in short o_id);

void create_backup(in short o_id);

};

Fault-tolerant Netscape - Fault detection mechanism

• X properties for monitoring / controlling Netscape Navigator
- _MOZILLA_URL, _MOZILLA_LOCK,

- _MOZILLA_COMMAND, _MOZILLA_RESPONSE

• Window ID obtained through Xlib-functions
XQueryTree() and XmuClientWindow()
problem: atomicity

• periodic checkpointing: store current URL in file

• access to non-existent X property results in X error
-> wrapper detects application crash (Netscape Navigator)
-> Observer activates backup as new primary

(loading of current URL)
-> Observer starts new backup instance

• invalid CORBA reference to ObservableFactory indicates
crash of computer

Fault-tolerant Netscape - Screendump

Execution of fault-tolerant labyrinth search

FTmaze

• 4 nodes

• right-hand first
 search rule

• load partitioning scheme

Generate Run

Kill Node Reset

Composite Object

Composite Object

Composite Object

Composite Object

alive-messages

Java Frontend

Client

Architecture of a Responsive Service
(FTMaze)

• task generator
• display

• Consensus for group membership
• Automatic reconfiguration on crash faults
• Graceful degradation
• Static load partitioning scheme

task

search engine

search engine

search engine

search engine

partial solutions

task

Consensus

periodic

IIOP

IIOP

Mach IPC

The Unstoppable Robots -
a Fault-tolerant Real-time application

• Fault-tolerance: consensus protocol (voting) among replicated controllers
• Real-time: robots use up fuel with constant rate;

moves have to be computed with 4 Hz frequency

controller

NeXTSTEP

1st World Display

simulation
environment

NeXTSTEP

controller

NeXTSTEP

controller

NeXTSTEP

gateway #2
Composite Object
controller

NeXTSTEP

Java-based
controller

Solaris
WindowsNT

2nd World
Java-based Display

gateway #1
Composite Object

NeXTSTEP

gateway #3
Composite Object

NeXTSTEP

gateway #4
Composite Object

rtLinux

khepera
robot

consensus
algorithm

robot
control

CORBA
IIOP

CORBA
IIOP

CORBA
IIOP

Solaris
WindowsNT

Khepera-Robot

CORBA

• Composite Object is critical: CORBA’s varying communication
latency must not disturb rtLinux driver task

• rtLinux driver task performs trajectory generation and outputs
fine-grained motion commands with frequency of 800Hz

• simulation sends coarse-grained commands with frequency of 4Hz
via CORBA

Composite Object

trajectory generation
driver task

rtLinux

Java Applet showing Unstoppable Robots Simulation

Virtual Joystick for one robot
Java Controller

Web-interface to Unstoppable Robots

• Open interfaces must not
disturb timing behavior of
real-time application

• Web-clients may create
inacceptable high loads

• read accesses are easy:

Composite Object implements
caching and call admission

• write accesses may modify RT-data

• RT-app must kept stable even if deadlines are
missed

Recovery Blocks: RT-part of Composite Object
implements save fallback-method

Java applet

control
algorithm

Composite
Object fallback

procedure

soft real
time
simulation

deadline

NRT exec RT exec

IIOP Mach IPC

Analytic Redundancy - RT fallback procedure

• concept similar to recovery blocks, mutli-version programming

Unstoppable Robots -
CORBA interactions with Java-based external controller

Unstoppable Robots
Soft RT Simulation
NeXTSTEP event loop

Composite Object
Fallback procedure

Composite Object
CORBA communication
Call admission
Scheduling Server

Java-based
Controller

pipes

unloaded
Windows NT
system running
external controller

periods of robots simulation

0

50

100

150

200

0
50 100 150 200 250 300 350 400 450 500

number of experiments

CORBA part
Real time part

t in msec

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

number of experiments

Real time part
CORBA part

t in msec

loaded
Windows NT
system running
external controller

legacy application legacy application legacy application

Group Communication Protocol

Voting

Fault-tolerant Distributed Input/Output (FT-DIO)

• stream-based communication
(sockets + select())

• Group communication protocol
(Totem, Horus, ISIS)

• RPC-style communication
(CORBA + Broker)

Future:

Conclusions

Composite Objects allow for predictable integration of
CORBA and responsive computing with small overhead

Scheduling Server provides basis for true call admission
without changes to CORBA (ORB) and OS kernel

Concepts can be transformed onto many COTS platforms:
-> rtLinux, Solaris, Windows NT

Data replication and weak memory consistency are key
concepts for decoupling CORBA and responsive computing

Open Web interfaces for leagcy real-time applications are
feasible using Composite Objects technology

Demo Applications - Lessons learned

• Observer/ObservableObject:
generic interfaces for fault-tolerance based on CORBA
-> have been successfully reused

• only small subset of CORBA functionality needed for
implementation of responsive services

(architectural approach applicable to minimal/embedded CORBA?)

• Composite Objects decouple CORBA and
real-time consensus protocols

• Java language binding allows Web-access to responsive services

Group, Topics, and Contact Info
• Jan Richling, Ph.D. student

"Real Time and CORBA: Experiments with Composite Objects" (in german)

• Janek Schwarz, M.S. student
"Fault-tolerance techniques for CORBA --
Experiments, Measurements, Evaluation" (in german)

• Oliver Freitag, Mario Schröer, M.S. students
"Automatic Generation of responsive CORBA-services" (in german)

• Martin Meyka, Thomas Lehmann, M.S. students,
"Business Object Framework --
Security- and Consistency-protocols for replicated CORBA-Objects" (in german)

• Robots on the Web:
http://www.informatik.hu-berlin.de/~apolze/rescue

• Contact: Dr. Andreas Polze
Department of Computer Science
Humboldt University of Berlin
10099 Berlin, Germany apolze@informatik.hu-berlin.de

Responsive CORBA Unified Environment (RESCUE)

