
AP 04/04

CORBA Services

The Object Management Architecture

AP 04/04

Collection Service

• Grouping of objects
– Sets, queues, sequences

– Iterators for these collections

– Factory classes for object creation

• Collection interface
– Set, Heap, Stack, Queue, SortedSet are subclasses

• Iterator interface
– EqualityIterator, SequentialIterator are subclasses

• Operations interface
– Base class for operations on objects

AP 04/04

Concurrency Service

• Framework for managing concurrent object access
– Analogous to multithreading support in C++/Java

– Facilities for interfacing with transaction service

• Concurrency Service assumes usage of locks
– Read, write-locks, multi-possession, two-phase locks

– Conflicts with existing locks are resolved by a first-come first-served
queuing model

• Interfaces to represent resources:
– LockSet, TransactionalLockSet
– LockSetFactory interface for object creation

AP 04/04

Event Service

• Flexible framework for asynchronous object interactions
– DII provides basic form of asynchrony

– Event Service targeted to notification, rather than interaction

• Event Service allows to set up event channels

• CORBA objects may act as
– Event consumers

– Event suppliers

• Push or pull event communication

• Interfaces:
– PushConsumer, PullConsumer, PushSupplier,

PullSupplier, EventChannel

AP 04/04

Externalization Service

• Means for Object conversion
– Allow export over general media

(network streams, disk storage, etc.)
– Constitute data back into object references

(potentially in a different ORB / process)

• Pluggable data formats for externalized objects
– Standard serialized format for objects is provided
– Streaming model for externalizing and internalizing objects

• Interfaces:
– Stream, StreamFactory, FileStreamFactory, etc;
– Objects must extend Streamable interface

• Externalization Service uses Life Cycle Service

AP 04/04

Licensing Service

• Controlled access to objects and services under a
licensing model
– Conceptually an extension of security service

• Operation
– Client requests licensed service, proofs ownership of license

– Service provider checks with license manager

– Service provider may request notification on license expiration of may
poll for changed in license state

• Interfaces
– LicenseServerManager, ProducerSpecificLicenseService

• License Service depends on Security Service

AP 04/04

Life Cycle Service

• Standard protocols for distributed objects:
– Creation, copying, movement, deletion of remote objects

• Service defined around the concept of object factories

• Interfaces
– LifeCycleObject,

– FactoryFinder interface for locating object factories

• Life Cycle Service references Naming Service
– When dealing with connected graphs of objects, the Relationship

Service structures are referenced

AP 04/04

Naming Service

• Most commonly used service in CORBA
– Provides the principle way for clients to find objects on the network

– Remote object references can be bound to names

– Clients may access object references by providing the name

• A NamingContext represents a directory or
subdirectory of named objects
– This interface can be used to bind, lookup, or unbind objects and

subcontexts within the naming directory

– Names of objects within a NamingContext are composed of
NameComponent arrays

– Browsing can be done with a BindingIterator

AP 04/04

Notification Service

• Extends asynchronous msg exchange of Event Service
– Allows multiple event suppliers to send events to multiple event

consumers

– Supports pull and push models

– Allows event channels to be federated

– Allows clients to attach filters to each proxy in an event channel

• QoS properties:
– Per-channel, per-proxy, per-event

• CORBA Notification Service uses:
– StructuredEvent, EventChannel, EventType classes

– StructuredPushConsumer, StructuredPushSupplier classes

AP 04/04

Persistent Object Service

• Common framework to interact with persistency eng.:
– Relational databases, object databases, etc.

– Middleware between CORBA objects and database protocols (ODMG)

• Persistency…
– Managed at object level or data member level

– Objects typically control their own persistent state

• Interfaces:
– PO (persistent object), PID (persistent object identifier), POM

(persistent object manager)

• Persistent object service depends on:
– Externalization Service, Life Cycle Service

AP 04/04

Property Service

• Defines name/value pairs that can be assigned to
objects
– Without being explicitly defined by their IDL interfaces
– Can represent any application-specific attributes

• Property Service does not specify how properties are
associated with objects
– Implementation detail
– Properties are represnted as string name and an Any value

• Interfaces:
– PropertySet, PropertySetDef (inquire metadata about

properties - read/write, read-only, etc.)
– PropertiesIterator, PropertySetFactory

AP 04/04

Query Service

• General query mechanism for distributed objects
– Collections of objects can be searched to generate subcollections

– Subsets of objects within a collection can be deleted of updated

• Query Service’s facilities can be mapped to persistent
storage facilities
– Relational databases, object databases

• Interfaces:
– Collection objects (with an Iterator), CollectionFactory
– QueryManager, QueryEvaluator
– Result of a query typically is a Collection object

AP 04/04

Relationship Service

• Allows for explicit specification of relationships among
objects
– Defined in terms of type, roles within the relationship, and the

cardinality of each role

– Objects fulfill a role when they participate in a relationship

– Agent/proxy relationship: one agent, multiple proxies

• Interfaces:
– Relationship, Role
– RelationshipFactory, RoleFactory,

RelationshipIterator
– CosGraphs, CosContainment, CosReference

AP 04/04

Security Service

• Provides the tools to secure distributed applications
– Authentication, access control for users
– Secure communication channels

• High-level security framework
– Implementations are free to use any cryptographic framework
– Layers security measures on top of ORB object-to-object model

• Interfaces:
– PrincipleAuthenticator, Credentials object assigned to

each user
– Current object identifies security measures for current execution

context
– Extensions to the org.omg.CORBA.Object interface

AP 04/04

Time Service

• Ability to enquire accurate time value + estimated error
– Uses Universal Coordinated time representation

– Time intervals of 100 nanoseconds since Oct 15, 1582

– Times are relative to Greenwich Time Zone

• Time-based events, linear positioning of events
– Implementation of time service is responsible for communication with

accurate time source (Cesium clock, radio time broadcast, etc.)

• Interfaces:
– TimeService object, UTO (Universal time objects)

– TimerEventT, TimerEventService, TimerEventHandler

• Timer event portion depends on Event service

AP 04/04

Trading Object Service

• Market trading context
– Objects describe services offered to the system

– Clients issue description of desired service

– Trading service performs matching

• Interfaces:
– Lookup interface to advertise needs of importers

– Register interface to advertise properties of a service

– OfferIterator to iterate through multiple offers (hits)

– Admin interface to query for all outstanding offers and queries and to
control matching process

AP 04/04

Transaction Service

• Defines interfaces to allow distributed objects to create
and engage in transactional interactions

• ACID properties
– Atomic - any and all actions carried out as part of a transaction are

committed of undone/cancelled

– Consistent - actions within a transaction produce results that re
consistent

– Isolated - transactions do not see each other’s effects until they are
committed. If they are rolled back, their effects are not seen by other
contexts

– Durable - if a transaction completes successfully, its effects are made
persistent

AP 04/04

Transaction Service (contd.)

• Transaction can involve a series of remote method calls
– Whole transaction is rolled back when a significant error is encountered

– Transaction contexts are propagated along the way

• Service provides framework for notification and
management of transaction boundaries
– Little help with implementation of rollback operations

• Interfaces:
– Current interface: start and end of transactions

– Control interface: manipulation of ongoing transactions

– Terminator, Coordinator, Resource objects

• Depends on Concurrency and Persistent Object Services

