JAVA FOR
WEBOBJECTS
DEVELOPERS

Version 2.0

We at Apple have tried to make the information contained in guide as accurate
and reliable as possible. Nevertheless, Apple disclaims any warranty of any
kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any
particular purpose. Apple will from time to time revise the software described
in this manual and the manual itself, and reserves the right to make such
changes without obligation to notify the purchaser. In no event shall Apple be
liable for any indirect, special, incidental, or consequential damages arising out
of purchase or use of this manual or the information contained herein.

Java for WebObjects Developers
Version 2.0
May, 2000

2000 Apple Computer, Inc. All rights reserved under the copyright laws of the
United States and other countries.
1 Infinite Loop, M/S 38-ET, Cupertino, CA 95014 USA

Apple, the Apple logo, and WebObects are trademarks of Apple Computer,
Inc., registered in the United States and other countries. Use in commerce
other than as "fair use" is prohibited by law except by express license from
Apple Computer, Inc. Enterprise Objects Framework is a registered
trademark of NeXT Computer, Inc. Java and all Java-based trademarks and
logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All other trademarks mentioned belong to
their respective owners.

Produced by Apple Enterprise Training. Written by Kai Christiansen.
Publication management by Renata Stachura Poray.

Dedicated to one of the finest objects | have ever known—Paddy the Cat.

Table of Contents

Introduction v
Chapter 0 Evaluting Your Java Skill xiii
Chapter 1 Using Objects 1
Chapter 2 Creating Classes 45
Another Chapter Getting A Bigger Picture 79
Chapter 3 Exception Handling 93

Appendix Additional Resources 107

Introduction

Mandatory Reading

Introduction

Java for WebObjects developers—Java in 21 minutes

Java is a popular programming language available in many diverse contexts for
implementing real software solutions. If you plan on building WebObjects
applications, you need to become a Java programmer. But Java is more than
just a programming language—it is a set of tools, a runtime with a virtual
machine, a broad landscape of packages full of reusable classes. Java is

an environment.

Learning Java “the environment” seems overwhelming the first time you
approach it. There are reams of on-line materials and bookstores are brimming

with all kinds of Java books. What to do?

Aside from the glamour of applets with sophisticated graphical user interfaces
and the rigors of multi-threaded or networked programming, Java turns out to
be a rather simple language for humble, general purpose jobs running on a
plain old computer. With some basic ideas and some familiarity with the most
commonly used language constructs, you can go a long way. This is especially
true when your Java code is part of a larger system that handles a lot of the
details already. "To get started, all you need is the Java relevant for a
WebObjects developer.

But Java “the language” is still something to learn. It is a general purpose
programming language and its odject-oriented. The term object-oriented is
vague and spooky to some, fresh and intuitive to others, even old hat to a few.
Mostly, it means just good, modern software technology. Object-oriented
programming is based on a small set of powerful concepts and somewhat
specialized terminology. From this perspective, it should be clear that Java is a
way of thinking.

Your real job is to communicate your thinking to others—a computer, another
programmer. From this perspective, Java is @ way of speaking.

The basic goal—getting you to think and speak Java

While it may take a bit longer than 21 minutes to digest this guide, it will likely
take a lot less of your time and energy than other approaches while achieving
similar results. The content is based on the fact that you don’t need to know
everything in the Java environment, nor even everything about the Java
language itself. This is the Java you absolutely must know before you start
programming, and it includes just about everything you will probably ever
need. It is certainly a great place to start.

"The approach is designed to be simple and direct. Java and the world of
object-oriented programming is in some ways so simple and direct that it is

vii

viii

Introduction

paradoxically confusing. The obvious meaning is somehow elusive. This is not
to say that there isn’t great sophistication and complexity in object-oriented
design and implementation. But the basic way of thinking and the general
style of coding—in Java—is clear and straightforward.

The style and content of this guide is based on exactly what you need to
master—expressing ideas in Java code. It tries to do exactly what you yourself
will do. Some pictures always help so there are a few included. Explanatory
text 1s another useful medium—it is included as well. But the text is
intentionally kept to a minimum. Focus on the code and what it is actually
saying, in its own words.

"This guide follows a straightforward narrative. In order to see the forest for the
trees, and to be convinced that the forest is a nice place to live, you need to
hear a simple, useful Java story. Without exhaustive detail, exceptions, or a
survey of many different clever ways to do the same thing, the story describes
typical Java usage—real and useful Java usage.

On the other hand, this guide is hardly a detailed or comprehensive text on
either Java or object-oriented programming, and it does not claim to make
them unnecessary for your success. It offers enough so that you can get to work
and start getting something done. As soon as you are engaged in real work,
your own experience will tell you what more you need to know. You should
consult the additional resources at the end of this guide.

Prerequisites and assumptions—where are you coming from?

From the perspective of its richest and most powerful capabilities,
WebObjects is a programming environment. The chief assumption this guide
makes about your background is that your are a programmer. From a
multitude of languages, you have used at least one, ideally two or more. You
should be familiar with the following terms and the concepts they convey—
data type, variable, operator, expression, statement, conditional, loop, procedure or
Sfunction, argument ot parameter, and return value. This much is required.

You don’t necessarily have to know much about object-oriented programming,
but it certainly helps if you have been exposed to the vocabulary and the
concepts. This is the hard part of Java programming it seems—how to think
like an object-oriented programmer. Terms are essential. But it is the ideas
that the terms convey, the way of thinking that is both simple and elusive.
"This guide does not accept the challenge of presenting object-oriented
programming in rich literary detail. It takes the opposite view—Iearn by
example and gain your own understanding simply by using it.

There are a number of good and proper resources to strengthen your skills in
both programming and object-oriented thinking listed at the end of the guide.

You're a Java hacker—do you even need this guide?

The best way to determine if you are already Java-savvy enough to work with
WebObjects is to see if you understand some Java code typically found in a
WebObjects application. The guide includes a small self-evaluation. It is
realistic and intentionally uses just about everything presented in this guide.
"The ultimate goal of this guide is to enable you to understand that particular
bit of code. Go over the code carefully—very carefully. Read the guide, then
go over the code again. If you are already Java-savvy, consider it a sanity check,
a refresher, a bit of stretching before coding. For you, this may truly be Java in
21 minutes.

Javain 2 1 hour chapters

Java programming focuses on useful objects and they way they are classified.
An effective Java programmer must cultivate two different perspectives about
objects: using the object from the outside and implementing the object from
the inside. More properly put, you must think like a consumer of objects on one
hand, and like a producer of the classes that define them, on the other. This
division is indeed the very spirit of encapsulation, one of the chief concepts in
object-oriented programming. It is surprising that more Java books don’t
introduce the language the same way. How can you discover how useful an
object is from the outside if you have to simultaneously learn about how and
why it is constructed from the inside? How can you design a useful class from
the inside unless you first step back and feel what it is like from the outside?

"This guide has two core chapters to support these two perspectives and they
move from outside to inside:

» Using Objects—Thinking like a class consumer
» Creating Classes— Thinking like a class producer

The problem is that in order to write a7y code in Java, you must create a new
class. It is a bit of a chicken and the egg problem. As such, you cannot do
anything real in Java until you have covered the second chapter. While the first
chapter presents real and useful Java code examples, they are incomplete
outside of a class definition. While reading the first chapter, you might wonder
where and how these code samples are used. Who calls them? Where do |
place them in order to compile and run? The answers will become clear by the
time you are finished with the guide. Some answers may not become clear
until you begin building a WebObjects application. In the meantime, relax and
absorb what’s at hand.

An optional third chapter is included to help you understand how your Java
code fits in with the rest of the WebObjects infrastructure to form a complete
application. Here is where you learn a bit about compilers, class files, and the
big bang that launches the application and activates your code. But these are
incidental details; they are not part of the core spirit of thinking—and
speaking—Ilike a Java programmer. The third chapter is optional.

X

Introduction

What'’s not covered and why

There are a number of Java features typically covered in Java books that are
not covered here. Some aspects of the Java environment are not used in
WebObjects applications. A good example is the AW, a package for building
graphical interfaces. Although you may eventually use Java applets, you don’t
have to. Java programming in WebObjects is fundamentally server-side Java.
Learning the core Java language is different from learning any number of
packages that you can use with Java. As a WebObjects developer, your job is,
first, to learn the Java language. Next, you need to learn the packages that are
specific to WebObjects. You may not necessarily ever have to learn any of the
“standard” Java packages, at least for developing WebObjects applications.

There are also aspects of the Java language itself that are not included in the
guide—Dbitwise operators, initialization blocks, arrays, exceptions, inner
classes—among others. For topics that are included, the guide does not say
everything. The goal of Java For WebObjects Developers is to present the most
practical and commonly used features of the language without excessive
detail, nuance or caveat. The more advanced your code becomes, the more
likely you will need some of these additional features. Eventually, you will
need a comprehensive resource. See the suggestions at the end of this guide.

What about different versions of Java? WebObjects 4.0 works with Java 1.1.6.
It does not yet support Java 1.2 (Java 2.0). As such, everything presented in this
guide is backwards compatible to Java 1.1.6 and does not make use of any
specific features new to Java 1.2. Most of the changes to Java 1.2 involve
packages and the functionality of standard classes—the larger Java
environment. This guide is mostly about the core Java language itself.

A bit about WebObjects

WebObjects is the premier award-winning cross-platform Web-based
application server. With frameworks that define a coherent, rich, and mature
object model, WebObjects gives Java developers a first class object-oriented
environment. With a complete rutime support infrastructure, WebObjects
provides everything for packaging and serving components that focus on your
application-specific logic.

WebObjects is a complete development and deployment environment. The
integrated graphical tools encompass the full open-ended life cycle of
production Web applications—prototyping, development, documentation,
debugging, performance analysis and stress testing, deployment, monitoring,
reusing, and evolving,.

The WebObjects framework handles Web-based transactions. It features a
flexible component-based design for dynamic HTML generation, request
processing, navigation, and state management. The framework defines
application and session abstractions, and a multi-threaded service
infrastructure for robust and scaleable designs.

Enterprise Objects Framework, a second framework bundled with
WebObjects, defines a sophisticated model for integrating persistent data
stores such as relational databases. It implements session-based change
tracking, object faulting, caching, and dynamic SQL generation. It is
ultimately driven by your enterprise-specific model definition which is
language and schema independent.

Both frameworks use an adaptor pattern to transparently run on multiple
servers—H'T'TP and database—without compromising the object model nor
the portability of your implementation. The architecture maintains a multi-
tier modularity that cleanly separates the user interface, the business logic, the
persistent object store, and the application server infrastructure. WebObjects
supports and even enforces the modular focus of enterprise developers.

WebObjects, now in its forth iteration, has been on the market for three years.
Its core technology derives from over ten years of iterative development and
deployment experience. There are now thousands of commercial Web sites
from an impressive list of enterprise customers, all powered by WebObjects.
WebObjects continues to define the highest standard for inspired developers
and intelligent online success stories.

For more information, visit www.apple.confwebobjects.

xi

xii

Introduction

Apple Enterprise Training

Apple Enterprise Training provides high quality training for WebObjects

developers. Currently, we offer two courses:

>

Programming WebObjects —A comprehensive exploration of designing and
implementing WebObjects applications including an overview of
deployment. This course assumes Java programming experience as
represented by the content of Java for WebObjects Developers.

Programming WebObjects [[—An in-depth exploration of Enterprise
Objects Framework for integrating database access in WebObjects
applications. Includes advanced WebObjects development issues and an
overview of Java Client.

WebObyjects Deployment for System Administrators—A complete and in-depth
exploration of the WebObjects application server from a deployment and
administrative perspective including software components, hardware
components, installation, configuration, monitoring and performance
tuning.

Java for WebObyjects Developers reflects the style and format of student guides for
WebObjects courses from Apple Enterprise "Training. We’ve developed this

guide to help students prepare for training. We occasionally use this guide for

impromptu Java introductions. Although the style reflects its use for live

presentations, we feelitis useful as a “stand alone” guide for self-study as well.

For more information about WebObjects training or Apple Enterprise

Software in general, locate us on the Web. You will find a course schedule,

detailed course summaries, and information about registering as a student.

Visit www.apple.comfwebobjects for detalils.

Chaprer 0 Evaluating Your Java Skill

Do you already speak Java?

Can you think in Java?

Chapter 0

Evaluating Your Java Skill

Goal

"Test your current Java skills.

Prerequisites

None.

Objectives
At the end of this lesson, you will be able to say:

» [have great Java skills—I’m ready for WebObjects—or—
» [had better read through this guide then try the evaluation again—or—

» [have great Java skills but I’'m going to read through this guide anyway

Xv

xvi

Evaluating your Java skill

The Java code example on the following page defines an interface and a class
that implements it. In the spirit of WebObjects and a typical e-commerce
application, it defines a simple shopping cart class and a related interface. The
design is simple—perhaps not entirely real world—but it incorporates just
about all the important concepts and code constructs you need to program a
WebObjects application in Java.

Although the code is brief, it is powerful. Read it carefully. Be sure you
understand every byte of it. [t compiles and runs fine. Comments are omitted
on purpose.

"The remainder of the guide explains everything necessary to understand it.

The shopping cart specification

A shopping cart is a collection of items associated with a customer. An item is
something you can purchase. As a collection of items, a shopping cart
represents an aggregate purchase. Since they both represent a type of
purchase, both the shopping cart and its items have similar behavior. You can
ask a purchase for its subtotal. You can ask a purchase for its total—the subtotal
plus tax. All purchases are subject to the same tax rate, at least in this simple
model.

A few special details

"The code uses one class specific to WebObjects—NSMutableArray. It is a
collection class much like Java’s Vector class or an array construct featured in
most programming languages. With that it mind, it should be obvious how—
and why—it is used.

"The code features a customer object but does not show the customer class. As
an object-oriented developer, it’s good for you to be comfortable with black
boxes.

Chapter 0: Fvaluating Your Java Skill

The shopping cart example

Purchase.java

public interface Purchase {
public final static double TaxRate = . 08;
publ i ¢ doubl e subtotal ();
publ i c double total ();

}

ShoppingCart.java

i nport java.util.Enumeration;

i nport com appl e. yel | ow. foundati on. *;

public cl ass Shoppi ngCart extends (bj ect inpl enents Purchase {

prot ect ed NSMit abl eArray itens;
prot ect ed Cust oner shopper;

publ i ¢ Shoppi ngCart () {
super();
i tens = new NSMut abl eArray();

}

publ i ¢ Shoppi ngCart (Cust omer custoner) {
this();
set Shopper (cust oner) ;

}

publ i c Custoner get Shopper() { return shopper;}

publ i c voi d set Shopper (Cust oner newShopper) {
shopper = newShopper;

}

public void addltenm(Purchase item {
itens. addCbject(itenm;
}

public int getltemCount() { returnitens.count(); }

publ i c doubl e subtotal () {
doubl e subtotal = 0;
Enunerati on e = itens. obj ect Enunerator();
whi | e(e. hasMor eHl enent s())
subtotal += ((Purchase)e.nextEl enment()).subtotal ();
return subtotal;

}

public double total () {
doubl e subtotal =this.subtotal ();
return subtotal + subtotal * Purchase. TaxRate;

}

public String toString() {
return shopper +““ +items;

}

Xvii

Evaluate your Java skills in your own words

Write a Java statement to create a new shopping cart.

Write the code to associate a shopping cart with a customer.

Write the code to get the shopping cart’s current total.

ShoppingCart is missing a method to remove an item. Write it.

Write the code for the [tem class. It has a name and it implements the
Purchase interface.

Draw a graphical representation of a shopping cart with a customer and two
items.

xviii Chapter 0: Foaluating Your Java Skill

Chapter 1 USing Obieds

Thinking like a Class Consumer

A View from the Outside

Chapter 1 Using Objects

Goal

"To cover the basic concepts and Java code syntax for using objects.

Prerequisites

Basic programming skills.

Objectives
At the end of this lesson, you will be able to:

Create objects

Send messages to objects

Access object attributes

Collect objects in arrays and dictionaries

Use casts and determine the class type of an object

Explain Java naming conventions

vV v v v v vy

List common coding pitfalls

a

Chapter 1: Using Objects

Objects are the building blocks of Java applications

Objects
» Are “things” that provide behavior and attributes
» Work with other objects—they are often connected together

* Have a type—each object is an instance of a class
* Play a useful role in your application logic

(Customer |

firstName | “Jane”

Widget

ShoppingCart
price[$1.25

lastName | “Doe”

shopper
Gadget
NSArra
price{$5.00

)
Thing

price| $3.50

items

Jane Doe
owes
$9.75

* Have a life span—they are created and destroyed at run time

Objects are the building blocks of Java applications

Java is an object-oriented language. This means that Java programmers think
of problems, designs, and code in terms of objects. An object is something that
plays a meaningful role in your application. It can be as simple as a number or
as complex as a shopping mall.

An object provides useful behavior—it can do things. A shopping cart object
can collect items, report which items it currently has, and compute the
outstanding balance.

An object has attributes—it has properties or characteristics. A customer object
has a name, a credit card number, maybe some coupons.

An object has a life span. You have to create a new shopping cart object when
you need it. When you are finished using it, you can throw it away.

Although it is obvious, it is important to see that each object is a specific type
of object. An object is clearly a shopping cart, or a customer, or a number, or
whatever. By naming its type, you are classifying the object—relating it to
other objects that share the same characteristics and behavior. Every object
belongs to a specific class of objects.

Objects are connected together to create systems of objects. A customer has a
shopping cart that contains several items. In many ways, object-oriented
programming is about creating relevant objects and connecting them into
meaningful patterns that model a real-world situation.

To get an object, create a new instance of aclass

Define a variable—a handle—for keeping a reference to the object
Shoppi ngCart cart;

Create a new object and assign it to the variable
cart = new ShoppingCart();

You can combine both parts
Cust oner shopper = new Custoner();

With some classes, you can optionally provide initial values
Cust oner shopper = new Custoner("Jane", "Doe");
Shoppi ngCart cart = new Shoppi ngCart (shopper);

To get an object, create a new instance of a class

Before you make an object do something useful, you have to get a hold of it.
Unless it already exists, you have to create the object. As long as you need to
use it, you need to hang on to it, keeping track of it for future use.

In Java, you first define a variable to reference the object. The variable creates
a symbolic name by which you can refer to an object. It is usually called a
reference. Sometimes this is called a handle or a pointer.

Next, you create a new object and assign it to the reference variable. An object
is a real instance of a specific class of objects. Since an object is often called an
instance, the act of creating a new object is often called instantiation.

The Java assignment operator is the equal sign.

You can combine the reference variable definition, the object creation, and
assignment to the variable in one Java statement. All Java statements end with
a semicolon.

For some classes, you can provide initial data arguments when constructing a
new object.

6

Chapter 1: Using Objects

The reference and the object are two different things

Every variable has atype, the class of object it references
Shoppi ngCart cart;

The class name is pre-defined—the variable name is up to you
The variable is not the object buteference to a potential object
Until you create and assign a new object, the referenudlis

To create the object, use thew keyword and the class name
cart = new ShoppingCart();

The class name is used like a function and is caltzshsir uctor

The reference and the object are two different things

The variable declaration has two parts: the type and the name. The type is the
class of object the variable will reference. Class names are pre-defined. The
variable name is up to you.

How do you know which classes are available? Java defines many standard
classes, and development environments like WebObjects add many more.
Learning about available classes is a large part of your learning curve. Consult
the documentation. You will learn about several useful Java classes in this guide.

Although you have defined a variable, you don’t yet have an object. The
variable is a reference to an object, it is not an object itself. Some languages call
the reference variable a pointer. It is not an object, but something that points
to an object. The variable is the name of the object you use when referring to
the object in your code. But you still need to create the object itself and assign
it to its name.

Until you create and assign an actual object, the reference points to nothing.
There is no object. In Java, you say that the reference is null. null means the
non-object.

"To create the object, use the new keyword followed by the name of class and
a pair of parentheses. The syntax looks much like a function call. In Java, this
is called invoking a constructor because it is a function that constructs a new
object, an instance of the specified class.

Y ou can use comments and space in your code

/*

Create a new shopper

Assi gn the shopper a new shopping cart
*/

Cust oner shopper; /1 define the references
Shoppi ngCart cart;

/1l Create the objects
shopper = new Custoner ("Jane", "Doe");
cart = new Shoppi ngCart (shopper);

You can use comments and space in your code

Java is a free-form language. You can format your code as you wish. You can
include blank lines, indentation, break a statement into multiple lines and so
on. You may quickly notice common formatting conventions that you should

adopt. Conventions allow you to easily understand someone else’s code as well
as ensuring that they will understand yours. One of the best ways to learn Java
is to read and imitate real Java code.

You can include comments in your code. Unlike the strict syntax required for

the Java compiler, comments are free-form and intended for human readers.
Java provides two different comment styles:

» Arbitrary multi-line comments: begin with /* and end with */

» Single line comments: begin with //. The remainder of the line is

considered a comment.

8

Chapter 1: Using Objects

To interact with an object, send it a message

Sending a message means invoking an objectreethod
cart.discardltens();

Some methods take arguments
W dget item = new Wdget ();
cart.addlten(item;
cart.addl tenmAt | ndex(item 0);

Some methods return values
Cust omer shopper = cart.shopper();

Some methods do both
Wdget item = cart.itemAtl ndex(0);

To interact with an object, send it a message

Once you have a reference to an object, you can interact with the object.
Objects serve useful roles and your interest is getting them to act. To make an
object do something, send it a message.

Sending a message is just as simple as it sounds: tell the object what you want
itto do. In Java, you send a message with a statement that combines the object
name—the reference variable—and the name of the message. They are
connected by a period:

obj ect. nessage()

"This looks much like a function or procedure invocation in traditional
languages. In Java, this is called a method invocation. You send a message and
the object has a method for servicing it. Sending a message is often simply
referred to as invoking a method. The difference between message and
method reflects the fundamental difference between you and the object. You
have a request—the message—and the object has a response—the method.

Some methods take arguments, some return a value, some do both. Many
methods neither take arguments nor return values.

What messages can you send to an object? The answer is specific to each class.
Just as important as knowing the classes you can use is knowing what those
classes do. This is the largest part of your Java learning curve. To understand
an object’s capabilities, consult the documentation for its class.

Access object attributes using methods

Most attributes are private—you must useaaressor method
Cust oner shopper = cart.shopper(); /1 get
cart. set Shopper (shopper) ; /'l set

There are different naming conventions for get accessor methods

Cust oner shopper = cart. shopper();
Cust oner shopper = cart. get Shopper();

In some cases attributes are public—you can access them directly
Cust oner shopper = cart. shopper;
cart.shopper = shopper;

Access object attributes using methods

Central to the role an object plays is its szafe—its attributes or properties. A
customer has a name, a product has a part number, a shopping cart is related to
a customer. In Java, these are often called fie/ds. In general object-oriented
terminology, they are called instance variables because each instance of the class
has its own set. Most often, objects provide methods to get at these attributes.
"To get an attribute from an object, send a message.

Methods that access object attributes are common and basic. They have a
special name—accessor methods. Usually, they come in pairs: one method to get
avalue, another to set the value. They are often called the get accessor method
and the set accessor method respectively. Sometimes, the get method is called
the accessor method while the set method is called the mutator method.

Different classes use different naming conventions for the get accessor
method. Some methods start with the word “get”, others simply use the
attribute name itself, without the word “get”. To use an object propeily,
consult the class documentation to determine which naming convention it
adopts.

In some cases, attributes are directly accessible without sending a message.
Java syntax for accessing public attributes is much like accessing fields of a
record or a structure in traditional languages. Notice that you do not use
parentheses as you would when invoking a method.

10

Chapter 1: Using Objects

Y ou can nest code to avoid creating variables

Create a new object for amethod argument
cart.addl tem{new Wdget());
cart.set Shopper (new Custoner("John", "Doe"));

Invoke a method in the return value of another method
String name = cart.shopper ().l astNanme();

Nest method invocations
cartl.addltem(cart2.itemAtl ndex(4));

You can nest code to avoid creating variables

Often, you need to create an object merely for the purpose of giving it to
another object. You don’t need your own reference variable in the meantime.
Java syntax allows you to nest the code for creating an object within the list of
arguments you are sending to another object’s method. Create it, pass it, and
forget about it—all in one statement.

In a similar spirit, you often need to send a message to get an object then
immediately send a message to that object to get what your really after. For
example, assume you need the name of the customer that owns the shopping
cart. You could create a temporary variable to hold the intermediate object:

Cust ormer customer = cart. shopper();
String name = custoner. | ast Nane() ;

But in this case, you are interested in the name, not the customer. Java syntax
allows you to connect multiple messages into a single expression where each
subsequent message is sent to the return value of the previous:

String name = cart. shopper ().l ast Name();

"To generalize, whereever you need to supply an object reference, you can
supply any expression that returns an object reference.

Character strings are objects

Character strings are instances of the class Sring
String nane = shopper.| ast Nanme();

Y ou can use litera strings

String banner = "Al'l widgets on sale";
shopper. set Fi r st Name("John");

You can concatenate strings with the “+” operator
String nane = "John " + "Doe"
Custoner s = cart.shopper();
nane = s.firstNane() + " " + s.lastName();

Strings are immutable—once created, you cannot change their vallie

Character strings are objects

Java represents simple character strings as objects. They are instances of the
class named String. Strings are simple values and are used to represent basic
object attributes. Because they are so common, convenient handling of strings
is built into the Java language itself.

You can use a literal string value in quotes as an alternative to constructing a
string object literally. Notice that the following two lines are equivalent:

message ="hello”;
message =new String(“hello”);

You can combine strings—concatenate them—using the plus operator. This
creates a new string instance that combines the values of operands. The String
class provides additional methods for manipulating strings. Consult the Java
documentation.

Strings are immutable: once they are created, you cannot change their value.
If you wish to modify a string without creating a separate result string, you can
use the StringBuffer class.

The fact that many objects represent attributes as strings reveals something
fundamental about objects: objects are typically composed of other objects. A
customer is an object. A customer has a name—a string—which is itself
another object.

11

12

Chapter 1: Using Objects

All objects have string representations

All objects have a string representation
String debugString = shopper.toString();

Concatenation automatically obtains the string representation
String debugString = "Custoner = " + shopper;

You can print strings to your application’s standard output
System out . println(debugString);
System out. printl n(shopper);
System out. println("Custoner is: " + shopper);
Systemout.println("Last name = " +
shopper. | ast Name());

All objects have string representations

Regardless of its class, any object can generate a string representation of itself.
"This is useful for debugging and often for displaying a value in a user interface
such as a Web page. Every object in Java responds to the message toString().

You can print a string to the standard output unit of your application using the
printin() message. Look at the following code:

System.out.printin(“hello”);

This statement is saying, “send the println() message to the out object which is
available as a public attribute of the System object”. What happens when you
pass an argument that is not a string? Consider the following:

System.out.printin(shoppingCart);

"The printin() method automatically accesses the string representation of the
shopping cart object by sending it the toString() message. The object generates
a string suitable for printing. This also takes place when you use the plus
operator to concatenate strings.

message =“Customer =“+ customer;

"The customer object is not a String object but the statement automatically
obtains a string representation by sending toString() to the customer:

message = “Customer ="+ customer.toString();

Java provides non-object primitive data types

Java is a hybrid language—some data are not objects
For efficiency, Java providgsimitive data types

Many object attributes use primitive types

Many method arguments and return values use primitive types
Manipulate primitive types with built-in operators, not methods

Don’t create usingew—the variable and the value are the same

Java provides non-object primitive data types

Java is a hybrid language—not everything in Java is an object. For efficiency
and convenience, Java provides primitive types for simple things like numbers,
characters, and boolean values.

Even when working with objects, you will need to handle primitive types.
They are used to represent many object attributes—the number of items in a
shopping cart for example. They are also used for many method arguments
and return values.

Primitive types are much like basic data types in traditional non-object-
oriented languages. You handle primitive types differently than objects in two
fundamental ways:

» Manipulate primitive types with operators not methods

» Don’tinstantiate primitive types—there is no difference between a value
and a reference to the value, they are the same

13

Chapter 1: Using Objects

Useful subset of primitive datatypes

Type Contains Examples

byt e 8-hit signed value Any arbitrary bit pattern
char 16-bit unicode character "a',’ 0", \uOOF1

i nt 32-bit signed integer 10, -5

doubl e 64-bit IEEE floating point 10.5, -5.2

bool ean 1-bit true or false value true,fal se

Useful subset of primitive data types

Java defines several primitive types. Here is a useful subset: byte, char, int,
double, and boolean.

char represents 16-bit unicode characters, not the traditional 8-bit ASCII
characters used in languages like C and C++.

int is always 32 bits regardless of the underlying hardware platform. This fixes
a number of portability issues inherent in C and C++ due to different word
sizes on different machines.

Additional types not shown here offer different possibilities for number
values: short, long and float. They differ in size and magnitude, and reflect the
C and C++ origins of Java.

Java does not provide any unsigned types.

boolean values use 1 bit and have only two possible values—true and false.
These are Java keywords. Unlike C and C++, Java does not allow numbers or
references to be used directly as boolean values. For example, 0 is always the
number 0, not the boolean value false.

The table shows that literal values are allowed for all primitive types.
Whereever you need to supply a primitive type, you can supply a variable, a
literal, or an expression that results in a primitive type value.

Useful arithmetic operators for primitive types

Arithmetic operators

+ addition

- subtraction
* multiplication
[division

% remainder

Arithmetic operators produce a numerical result

Use () for grouping and precedence

Useful arithmetic operators for primitive types

When working with primitive number types, you use operators not messages.
Java provides the standard arithmetic operators: +, -, ¥, /, and %. Java provides
several additional operators not shown here such as ++ for increment or += for
a combination of addition and assignment. Java also provides itwise operators.

Arithmetic operators expect primitive number operands and produce
primitive number results—Ilikewise for any arithmetic expression of arbitrary
complexity. Do not confuse primitive number values with either boolean or
object values.

There is one exception: the + operator is also valid for concatenating string
objects. The result of concatenation is a string object. This is the only case in
Java where an operator is overloaded to support object rather than primitive
types. This is built into the language. Java does not support operator
overloading for custom classes.

You can use parentheses for grouping and readability. Because of the
precedence rules in Java, you many need to use parentheses to enforce the
meaning of an expression when the default precedence produces unexpected
results.

15

16

Chapter 1: Using Objects

Useful boolean operators for primitive types

Relational operators Logical operators
== equato && AND
= not equal to | OR
> greater than ! NOT

>= greater than or equal to
< lessthan
<= lessthan or equal to

Relational and logica operators produce a boolean result

Use () for grouping and precedence

Useful boolean operators for primitive types

You can perform a variety of boolean tests using the relational operators: ==, !=,
>, <, >=,and <=. The relational operators are valid only for primitive types with
the exception of == and != which you can also use for comparing object
references (more on this later). The result of an expression using relational

operators is a boolean value—true or false.

You can join multiple boolean expressions using the logical operators: &&, I,
and !. The logical operators work only with boolean operands. The result of
any boolean expression is a boolean type value, either true or false.

Code examples using primitive types

Variable definitions
i nt count;
10. 75, discount = 0.15;
price * count * (1 - discount);

doubl e price
doubl e total
bool ean orderConfirned = fal se;

Statements
count = count + 1;
orderConfirmed = true;
total = cart.total () * (1 - discount);
shopper.setCredi tLinit(500.00);
shopper.setCreditLinit(500.00 * 0.75);
shopper.setCreditLinmt(cart.total ());

Code examples using primitive types

You can define variables of primitive types including an initial value. The
initial value can be the result of an expression using literals, other primitive
variables, and even messages to objects that return primitive values. You can
define multiple variables of the same type in one statement. Use the comma
to separate the names. If you attempt to use a variable that has not been
initialized or assigned, the Java compiler will generate an error.

Java syntax permits great flexibility in building expressions using a mixture of
literals, variables, messages to objects, and nested expressions. The key is to
make sure the resulting type of each component in the expression matches the
overall type, in this case, a primitive non-object type.

17

18

Chapter 1: Using Objects

Y ou can make decisions for conditional logic

Simple conditional statement with if and a boolean expression
i f (order Confirned)
cart.checkQut();

Either-or logic using else
if (cart.getltenCount() >= 10)

di scount = .25;
el se
di scount = . 10;

Complex boolean expression
if (cart.getltenmCount() > 0 && !orderConfirmed)
askFor Confirmati on = true;

You can make decisions for conditional logic

Boolean expressions enable you to make decisions. Often, your code is
conditional—you only want to execute it under certain circumstances. For
example: if the customer is ready, then send the shopping cart through check
out.

Java provides the if and if-else statements for these occasions. if uses a
parenthesized boolean expression to determine whether or not the
subsequent code should be executed. If the expression is true, the code is
executed. If false, it is not. The else keyword is optional and provides the
alternative choice. If the expression is true do one thing, else, do the other.

The simplicity of the if-else statement is deceptive. Its flexibility permits
multi-way decisions of arbitrary complexity:
if (subtotal > 1000)
di scount = . 20;
else if (subtotal > 500)
di scount = .10;

el se

di scount 0;

Java also provides the switch statement and a conditional operator for making
decisions. These are not shown here.

Multiple statements require a block

Multiple statements within an if or else clause require a block
A block isagroup of statements delimited by braces{}

Y ou can create temporary local variablesinside a block
doubl e total = cart.total ();
if (cart.itenCount() > 0) {

doubl e di scount = O; /1l tenporary variable
if (cart.getltemCount () >= 10)
di scount = . 25;
el se
di scount = . 10;
total = total * discount;

Multiple statements require a block

Frequently, you need to do several things based on a certain decision. To

group multiple statements within an if or else clause, you must enclose them
in a block. A block is a group of statements enclosed in braces. Blocks are used
in several different places in the Java language. A block is sometimes called a

scope.

Within a block, you can define new variables. These are local variables, visible
only within the block that defines them. They are temporary variables in that

they come into existence only when you enter the block and they are
destroyed when you leave the block.

19

20

Chapter 1: Using Objects

Y ou can perform basic object tests

Does avariable refer to an object?
if (shoppingCart == null)
/1l there is no object

Do two variables refer to the same object?

if (custonerl != customner?2)
/1 they refer to different customer objects

Aretwo objects equivaent?
if (stringl.equal s(string2))
/1l two strings have the sanme contents

You can perform basic object tests

You often make decisions based on simple object tests. The most fundamental
test is whether or not a variable refers to an object. Remember that the
reference variable is one thing, the object it refers to is another. Java provides
the null keyword which means “no object”. You can use null to determine if a
variable actually refers to an object. It is illegal to send a message to a variable
whose value is null. This makes sense: the variable does not reference a valid
object. Notice that you use an operator to make this test, not a message.

In a similar vein, you may have two variables of the same type and wish to
know if they refer to the same object. This is called an identity test because you
are asking if two objects are identical—the same object under different names.
Use the comparison operators == or !== to test the reference values.

A third test asks not whether two objects are the same, but whether they are
equivalent. They might be different instances of the same class, but have the
same contents. Imagine two physical copies of the same credit card. They
represent the same account and should be treated equally with respect to
making a charge. This is an equivalence test rather than an identity test. It
requires that you ask the objects themselves using a message rather than an
operator. All objects respond to the equals() message though how they test for
equivalence is specific to each class.

It is a common mistake to confuse identity tests with equivalence tests.

Classes often provide attributes and specia objects

Classes often provide attributes, independent of any specific instance

Use aclass method rather than an instance method
i nt count = ShoppingCart.activeCartCount();

Often, class attributes are public—access them directly

String version = Customer. Version;

Store mai nStore = Store. headquarters();

Note—Class methods and attributes are caligtic in Java

To access some objects, use a class method rather than a constru

Ctor

Classes often provide constants and special objects

Imagine that you want to know how many active shopping counts there are.
How many customers are currently shopping? It doesn’t make sense that any
particular shopping cart instance would know this information. You need to ask
the manager of all shopping carts, the factory that creates them. You may not
even have a reference to any particular shopping cart object. But you do know
the name of the shopping cart class.

Many classes provide methods and attributes that you can access directly from
the class itself. You don’t need an object instance. Java calls these szatic—static
methods and static variables. Since they are available directly from the class,
general object-oriented terminology calls them ¢/ass methods and variables.
Because a class is like a factory—it is used to manufacture instances, these are
also called factory methods.

You can send a message to a class. Use the class name where you would
normally use a reference to an object instance. For class attributes, there is one
value for all instances, even if there are no instances at all. In Java, you can also
send class methods to an object instance. You can get class attributes from the
object as well.

A common use of a class method is to access an object instance by a means
other than creating a new one directly with the new keyword. For example,
instead of creating a new store, ask the Store class for a specific instance—
headquarters.

21

22

Chapter 1: Using Objects

An object has a lifetime—eventually it is destroyed

Java features automatic garbage collection
When there are no more references to an object, it is destroyed

When you clear areference variable, you rel ease the object
item= null;

When you release an object, it releases its own references
custoner = null; // custoner releases its nane

All objects are destroyed when your application terminates

An object has a lifetime—eventually it is destroyed

"To use an object, you must first create it. What happens when you are done
with it? How do you destroy it? This is an important design question since you
need to control the amount of resources your application uses. If you create
new objects but never destroy them, you are wasting memory and may
encounter performance problems.

Java features automatic garbage collection. When an object is no longer used, it
is automatically treated as garbage and eventually picked up and thrown out—
destroyed. How does Java know when you are no longer using an object?

As long as you maintain a reference to an object, the object will not be
considered garbage. You can forgetaboutan object—thereby throwing it in the
trash—Dby clearing any and all references you have to that object. The direct
way to do this is by assigning null to your reference variable.

Many objects are composed of other objects—a customer object consists of at
least a string for the first name and another for the last name. When you give
up your reference to the customer, you can assume the same for the objects it
references—the strings for the name attributes. Although the strings are
referenced by the customer, no one has a reference to the customer itself. You
can trust that it will all be considered garbage.

Classes types are hierarchica

Object istheroot class

All classes are subclasses of Object

ShoppingCart isakind of Object

Customer isakind of Object

Customer is also a kind of Person

N

Person is the superclass of Customer ... 4
A Customer object is an Object, a Person and specifically, a Customer

Every object is, most generically, an instance of the Object class

Class types are hierarchical

Class types form a hierarchy. It is often called a classification hierarchy because
it reflects the way we naturally classify objects in the real world: a class is
defined as both similar to yet different from another.

The root class is named Object. It is the most generic class. Other classes are
defined relative to the root class—either directly or indirectly, they are
subclasses of the Object class. A shopping cart is a kind of object but it is more,
it has additional behavior and attributes. ShoppingCart is a subclass of Object;
Object is the superclass of ShoppingCart.

The diagram shows a Person class and a subclass called Customer. Generally
speaking, a customer is a kind of person. A customer can be treated as a person,
and used in any situation where a generic person can be used. But at the same
time, a customer is different than a person. A customer is more specifically a
customer—it is appropriate in some situations where a generic person is not.

As an object consumer, it is important to see that an object is an instance of a
specific class but can be treated more generically as an instance of any of its
superclasses. That you can regard an object from multiple perspectives—
according to how you classify it—suggests that you can use that object in
multiple contexts. How you treat an object—generically or specifically—has
impact on how your write your code.

23

24

Chapter 1: Using Objects

Object references can be generic or specific

This code is correct, though the variable typeis not specific
bj ect customer = new Custoner();
String string = custoner.toString();

This code is not correct—the variable type is not specific enough
bj ect custonmer = new Custoner();
String string = custoner.firstName(); //error!

firstNanme() is a method in the Customer class, not the Object class

Generic references are useful when specific details are unimportant

* A mailing list references all Persons, not just Customers
» A shopping cart references objects of many different classes

Object references can be generic or specific

Sometimes you can treat an object generically. A customer object, like any
object, can produce a string representation of itself. Any subclass of Object
responds to the toString() message. It is not important to know that the
customer is specifically an instance of the Customer class. You can refer to it as
a generic object. You can declare a reference variable using a generic type—
like Object—and use it with any subclass of that type—like Customer. It is
valid to assign an object of a specific class to a reference variable of a more
general class type.

"The class type you declare for a reference variable is a promise you make
regarding how you will use the object. You promise to send only those
messages defined by the generic class even though the specific object may
have additional capabilities defined in its subclass. With a reference of type
Object, you can only send messages defined in the Object class. Even though
you assign a customer to the reference, you promise to treat it like any other
object. You cannot use the reference to ask for a customer’s first name. Your
code will not compile.

There are many cases where it is useful to treat many different specific types
of objects as a single more generic type. A shopping cart can hold many

different types of products. But for the purpose of calculating the balance, the
shopping cart need only treat each object as a generic product with a price. A
company mailing list needs only the name and address of a recipient, without
making finer distinctions about which are customers, employees, friends, etc.

Casting allows you to be more specific

To refer to an object using a more specific class, use a cast
hj ect anObj ect = | ost AndFound. firstlitem();
Cust oner shopper = (Custoner)anCbject;
String nane = shopper.firstNanme();

Y ou can use atemporary cast to avoid creating a new variable

A shopping cart holds many classes of objects

hject item= cart.firstltem); /1 correct

W dget item

(Wdget)cart.firstltem);

String nane = ((Custoner)anCbject).firstNane();

Wdget item= cart.firstlten(); /'l incorrect

/1 1f it is a Wdget, use a cast to treat it so

Casting allows you to be more specific

Sometimes, you need to be more specific about an object that is otherwise
treated generically. This is often the case when you don’t create the object but
you get it from another object.

Imagine a lost-and-found object. It collects objects of various types: car keys,
wallets, even customers themselves. It is not important to know the specific
class of each object, merely that each is simply an object. You can query the
lost-and-found using simple messages like firstltem() or nextltem(). Each

message returns a generic object reference valid for any specific class of object.

Once you get the object from the lost and found, you want to make
distinctions according to the specific class of object you have. Ifitis a customer,
you can ask for its name. If it is a wallet, you need to check it for identification.
"To treat an object as a specific type, you must create a reference of that specific
type. To assign a generic object to a more specific reference, you explicitly
declare your intentions. In Java this is called a casz.

A cast must reflect reality: if the object’s actual class does not match the class
named in the cast, it is a runtime error. The object’s class must be the same as
or any subclass of the class named in the cast.

You can use a cast to send a message without assigning the object in a reference
variable. You can temporarily treat the object more specifically . Because of
precedence rules in Java, a nested cast requires an extra set of parentheses: cast
first, then send the message.

25

26

Chapter 1: Using Objects

You can determine an object’s class

Testing if an object belongsto a class or any of its subclasses

if (anObject instanceof Person)
/1 anObject is a kind of Person
/1 Could be, nore specifically, a Custoner

Using an object with a more specific class type

if (anObject instanceof Customer)(
Custoner customer = (Custoner)anObject;
String custoner Code = custoner. code();

}

Checking for the exact class, excluding potential subclasses
if (anQbject.getC ass() == Custoner.cl ass)

You can determine an object’s class

Since an incorrect cast generates a runtime error, you may need to check the
actual type of an object before applying the cast. Sometimes, you don’t know
whatkind of object you have—you need to ask it. In Java, this is called runtime
type identification or RT1.

Java defines the instanceof keyword to check if an object is an instance of a
specified class. Notice that it is an operator, not a message. Also notice that the
‘o’ is not capitalized. instanceof is true if the object is an instance of the
specified class or any of its subclasses.

Ifyou need to check for the exact class type of an object, you can ask the object
for its class then compare it—using the comparison operator—against a
specific class. Notice the Java construct for getting the class from a class name:

Cust oner. cl ass

It is not a message; there are no parentheses. You cannot simply use the class
name alone. Using the class name, you can obtain the class itself. This reveals
that, in Java, classes are also objects that you can access at runtime.

Y ou can gather objectsin a collection

Y ou need away to group objects together in a collection

Java provides many different collection classes, for example

e Vector
+ Hashtable

With WebObijects, you use analogous Apple foundation classes

* NSArray
* NSDictionary

These are fundamental for connecting objects into larger structures

You can gather objects in a collection

Until now, you have created explicit references for every object. This is only
uscful if you know exactly how many objects you need. Often, you don’t know
the number of objects you will create until runtime. Instead of a single
reference to a specific object, you need a single reference to a set of objects.
For example, a shopping cart can contain an arbitrary number of items from
zero, to ong, to many. At runtime, you need to dynamically add and remove
objects yet refer to the entire collection with one reference—the shopping cart
reference.

For this purpose, Java provides utility classes called collection classes. There are
different classes for different purposes. The Vector class works much like a
traditional array: it collects objects and assigns them numbered positions like
0, 1, or 25. A Hashtable also collects objects but stores them using symbolic
lookup keys like strings such as “name”, “rank”, and “serial number”.
WebObjects also provides collection classes. They are part of the WebObjects
foundation framework. NSArray is much like a Vector, NSDictionary is much
like Hashtable. In WebObjects programs, you most often use the WebObjects
collection classes.

Collection classes are essential for connecting objects into larger structures.
They allow you to group an arbitrary number of objects determined
dynamically at runtime. With collections, you treat many objects as one: you
reference the collection object rather than the objects within the collection.

27

NSArray maintains an ordered collection

NSArray maintains an ordered collection of objects
You access objects by their integer index—starting with 0
NSArray provides runtime bounds checking

NSArray is similar to Java’'s Vector

)
Widget
price| $1.25

Gadget

NSArra
0 price| $5.00

1
2 Thing

price|$3.50

NSArray maintains an ordered collection

NSArray objects maintain an ordered collection of objects. Much like a
traditional array in many different languages, NSArray stores objects using
numbered positions. You access an object in the array using an index of type
int. Index values start at 0. If the array holds 10 objects, they are stored with
index values ranging from 0 to 9.

Array objects do not have a fixed size. They dynamically grow, automatically,
to accommodate new objects. They also provide bounds checking at runtime.
If you try to access an object using an index that is out of bounds—Iess than 0
or greater than the highest valid index, the array generates a runtime error by
throwing an exception.

An NSArray object does not really contain the objects themselves, it contains
references to the objects. The objects are properly “outside” but accessed by
references inside the array.

NSArray is similar to Java’s Vector. Note that Java also defines native arrays
which are different from either an NSArray or a Vector. There are at least two
important differences between native arrays and collection classes:

» Native arrays gather values of the same type; collections can gather a
heterogeneous set of object types.

» Native arrays can reference primitive types; collections reference only
objects

28 Chapter 1: Using Objects

NSArray and NSMutableArray

NSArray is constant—you cannot add or remove objects
NSMutableArray can be modified—you can add and remove object
NSMutableArray has a dynamic size—it grows automatically

NSMutableArray is a subclass of NSArray----------'\-l-S-;\-r-r;{/ --------- .

An NSMutableArray is a kind of NSArray

NSArray and NSMutableArray

The WebObjects foundation defines two different array classes: one that is
constant, one that is mutable. An NSArray is constant: once it has been created
with an initial set of objects, you cannot add or remove objects. This is useful
and efficient for sharing the array with other clients with the confidence that
the array cannot be modified.

NSMutableArray is a subclass of NSArray. It is a kind of NSArray and can be
treated generically like any NSArray. But is more specifically a mutable array:
you can remove elements and add new ones. NSMutableArray is not constant.
NSMutableArray responds to every message that NSArray does. It also
responds to additional messages for adding and removing objects. When
researching NSMutableArray, be sure to consult the NSArray documentation
as well.

29

30

Chapter 1: Using Objects

NSArray—useful methods

Y ou often get an array from another object
NSArray itenms = shoppingCart.allltens();

Getting the current count of objectsin the array
int count = itens.count();

Getting an object at a specific index
hj ect anObj ect = itens.objectAtlndex(i);
W dget wi dget = (Wdget)itens. objectAtlndex(i);

Searching for an object

if (items.contai nsObject(w dget))
i = itens.indexOh Object(w dget);

NSArray—useful methods

You often get a pre-constructed NSArray from other objects. For example, a
shopping cart might define a method to return all items in an NSArray.
NSArrays are constant: you cannot add or remove objects, but you can access
the existing objects.

You can find out how many objects are in the NSArray. You retrieve an object
using an index value—and integer. You can ask an NSArray if it contains a
specific object and if so, retrieve its index value. If you attempt to retrieve an
object using an invalid index, the NSArray will generate an out of bounds
exception.

NSArray access methods are defined to return a generic object reference. If
you need to treat an object from an array more specifically, you must use a cast.
Unlike many arrays in traditional languages, NSArray can store objects of any
type, they do notall have to be the same class of object. NSArray can only store
objects, not primitive types like int or double. You cannot store a null
reference.

The NSArray class defines many additional methods. The methods shown
here comprise a useful subset. Consult the WebObjects foundation
documentation for details.

NSMutableArray—useful methods

Constructing a new mutable array
NSMut abl eArray itens = new NSMut abl eArray();

Adding an object
i tens. addObj ect (w dget) ;

Removing an object
itens. renmovej ect (wi dget);

Creating a new mutable array from an existing immutable array
NSArray itenms = shoppingCart.allltens();

NSMut abl eArray itens2 =
new NSMut abl eArray(itens);

NSMutableArray—useful methods

NSMutableArrays respond to the same messages as NSArrays. You can
determine the count of objects in the array, get an object at a specific index,
and search for an object to determine its index.

NSMutableArray also defines methods for adding and removing objects.
When you add an object, it is placed at the end of the array at the next available
index. When you remove an object, the array adjusts the indices of all objects
that follow, essentially shifting them down to fill in the gap. There are
additional messages for inserting and removing an object at a specific index.

You construct a new mutable array like you construct any Java object. The new
array is initially empty. Its count is 0. There are no valid indices since there are
no objects in the array.

What if you need to add or remove the objects in an immutable NSArray
object? You can construct a new NSMutableArray and initialize it with objects
from the existing NSArray. Now you can add and remove objects using the
mutable array. Although you now have two different arrays you do not have
multiple copies of the objects they reference. Arrays contain references not
objects. You merely have multiple references to the shared, underlying
objects.

31

32

Chapter 1: Using Objects

NSDictionary maintains a set of key-value pairs

NSDictionary maintains a collection for efficient lookup
You access an object using a key—another object
The key can be any type of object but it is usually a String

NSDictionary is similar to Java’s Hashtable
Widget

price[$1.25
/ T

Gadget

NSDictionary

price|$5.00

Thing
price| $3.50

NSDictionary maintains a set of key-value pairs

Like an NSArray, an NSDictionary maintains a collection of objects. But
objects are not stored using numerical indices. There is no implied ordering in
an NSDictionary. Rather, objects are associated with keys. You access an object
using its key—another object. Usually the key is a String object where the
string value is a meaningful symbol like “name”, “rank”, or “serial number”.
Dictionaries in other languages are often called associative arrays or

hashtables.

NSDictionaries are useful for collecting objects that need to be efficiently
accessed using a symbolic lookup key. In this sense, they are like real-world
language dictionaries: you supply the word—a lookup key—and the
dictionary returns the definition—the object value associated with the key.
Dictionaries are implemented for efficient lookup operations. Given a key,
they can quickly locate the corresponding value. To do this, dictionaries use a
hashing mechanism making them similar to Java’s Hashtable class.

NSDictionary and NSMutableDictionary

NSDictionary is constant—you cannot add or remove objects
NSMutableDictionary can be modified—you can add/remove keys
NSMutableDictionary is a subclass of NSDictionary

NSMutableDictionary is a kind of NSDictionarv._____.__________ .
: NSDictionary :

NSDictionary and NSMutableDictionary

Like NSArray, NSDictionaries are implemented in two different classes, one
constant, the other mutable. NSDictionary is constant: once the dictionary is
created, you cannot add or remove objects.

NSMutableDictionary is a subclass of NSDictionary. It is a kind of
NSDictionary and can be treated generically like any NSDictionary. More
specifically, NSMutableDictionary extends the NSDictionary superclass with
additional methods for adding and removing objects. When researching
NSMutableDictionary, be sure to consult the NSDictionary documentation as
well.

NSMutableDictionaries do not have a fixed size. You can add new objects and
the dictionary automatically grows in size to accommodate them.
NSDictionaries do not have a concept of bounds checking either. If you ask for
an object using a key that is not in the dictionary, the dictionary simply returns
null to indicate that there is no such object.

33

NSDictionary—useful methods

Y ou often get a dictionary from another object
NSDi cti onary props = custoner.properties();

Getting the current count of objectsin the dictionary
int count = props.count();

Getting an object value using a key

bj ect nane = props. obj ect For Key(" nanme") ;

String serial Nunber =
(String)props. object ForKey("serial Number");

If there is no object for that key, the dictionary returns null
String rank = (String)props. object ForKey("rank");
if (rank !'= null)
/1 dictionary contains value for "rank"

NSDictionary—useful methods

You often get a pre-constructed dictionary from another object. Imagine thata
shopping cart can report a set of properties about itself—model name, serial
number, the vendor that built it.

You can determine the count of objects in a dictionary. You can get individual
objects—values—from the dictionary if you know the correct key. Most often,
dictionaries use string objects for keys. Values in the dictionary are key-value
pairs: with the right key you can get the associated value.

Like array methods, dictionary methods are declared to return generic object
references. Dictionaries can hold any kind of object. A single dictionary often
collects object values of several different class types: strings, dates, numbers,
and even custom classes like customers and shopping carts. A generic object
reference is valid for any class type. When you get an object from a dictionary,
you typically use a cast to treat it as a more specific class type.

What if the dictionary does not contain a value for the requested key? The
dictionary returns null. When in doubt, check the return value. Because of this
convention, you cannot store a null in a dictionary.

34 Chapter 1: Using Objects

NSMutableDictionary—useful methods

Defining and constructing a new mutable dictionary

NSMut abl eDi ctionary itenms =
new NSMut abl eDi cti onary();

Adding an object for akey
i tens. addObj ect For Key(wi dget, " product");

Removing avalue

itens. renmovej ect For Key(" product");

Creating a new mutable dictionary from an existing dictionary
NSDi cti onary props = shoppi ngCart. properties()
NSMut abl eDi cti onary props2 =

new NSMut abl eDi cti onary(propsl);

NSMutableDictionary—useful methods

You can construct a new NSMutableDictionary. Initially, it contains no key-
value pairs. Its count is 0. Any attempts to retrieve a value will return null.

You can add a new object to the NSMutableDictionary, associating it with the
specified key. If an object is already stored in the dictionary for that key, it will
be replaced by the new object. You can explicitly remove an object associated
with a specific key. Subsequent attempts to get an object for that key return
null.

In some cases, you will want to create a mutable version of an immutable
dictionary. You can construct a new mutable dictionary, providing the existing
dictionary as an argument to the constructor.

Like NSArrays, NSDictionaries do not really contain objects, only references
to objects.

35

36

Chapter 1: Using Objects

To use a Java class, import its package

There are many classesin many different packages

» Packages that are part of the Java runtime
» Custom packages from 3rd parties or your organization

To use any class in your code, you mugiort its package

i nport com appl e. yel | ow. f oundati on. *;
The java.lang package is automatically imported

java.lang includes basic classes like Object and String

Classes are grouped into libraries or packages of related functionality

NSArray and NSDictionary are in the Apple Foundation package

To use a Java class, import its package

"The Java runtime environment defines a large number of standard classes that
you can use to build your applications. Products like WebObjects define even
more. Your own organization may define its own set of reusable classes.

In Java, classes are organized into packages. A package groups related classes
that address a specific set of problems. One package might provide advanced
math operations and extended value classes. Another package provides classes
for performing file I/O. Yet another package deals with networking.
WebObjects adds a package for building web-based applications, a package of
useful foundation classes like arrays and dictionaries, and a third package for
database connectivity—Enterprise Objects Framework.

In general, to use a class in your code, you must explicitly zzport the package
that defines it. The import statement specifies a class name including its
package name. You can use the asterisk to importall classes in a package. If you
use a class name without also providing an appropriate import statement, the
Java compiler generates an error specifying that it does not recognize the class.

There is one package that is automatically imported for you: java.lang. This is
the most basic of all packages since it defines fundamental classes like Object
and String. You do not have to explicitly import a package when using these
basic classes.

Iterating over the itemsin a collection

Use an Enumeration object with awhile loop
import java.util.*; [/ package with Enuneration
i mport com appl e.yell ow. foundation.*; [/ NSArray

doubl e total = O0;
NSArray itenms = shoppingCart.itens();
Enunmeration e = itens. obj ect Enunerat or();
whil e (e. hasMreEl enments()) {
Product item = (Product)e. nextEl ement();
total = total + itemprice();

}

Don’t modify the collection while enumerating

Iterating over the items in a collection

When using a collection, you will often need to process every object it
contains. This is called iterating over the collection or enumerating the
elements of a collection. Consider the balance() method of a shopping cart
object: it must iterate over each of its items, get the price, and add it to the
total. Java provides two tools for getting the job done—an Enumeration object
and a while loop.

You get the enumeration object from the collection. It returns an object
capable of enumerating all objects currently stored in that specific collection.
Objects of type Enumeration respond to the following messages:

» hasMoreElements()—returns true if there are more objects to visit
> nextElement()—returns the next object in the collection

Use the enumeration object with a while loop to process each object in the
collection. The while loop is a code block which is repeatedly executed as long
as the conditional test—a boolean expression—evaluates to true:

whi l e (condition) {
| oop body ...
}

While using an enumeration, you should not add and remove objects from the
collection. Java also provides for and do-until loop statements not shown here.

37

38

Chapter 1: Using Objects

Wrapper classes turn primitives into objects

Collections only store non-null object references

» Can't storenull as a value in a collection
» Can't store primitive types—int, float, boolean, etc.

Java definesvrapper classes for treating primitives like objects

I nt eger Long FI oat Doubl e
Short Character Byte Bool ean

Wrapper classes are automatically imported—pajreet. | ang

Required for some method arguments and return values in other cla

SSES

Wrapper classes turn primitives into objects

Remember that Java is a hybrid language—not all data types are objects. Your
code often makes use of simple values typed as int, double or boolean. In some
cases, you need to treat these primitive values as objects. Collection classes
like NSArray and NSDictionary cannot store primitive types. They can only
store objects. Many other classes define method arguments and return values
as object types and similarly, will not handle primitive types.

Java defines a special set of classes called wrapper classes. Their purpose is to
wrap an object container around a primitive type. Wrapper classes enable you
to turn primitive types into objects suitable for storing in a collection or passing
to any method that requires a true object type. There is a specific wrapper class
for each underlying primitive type—Integer for int, Double for double, and so
on.

From a wrapper object, you can extract the original primitive type value. You
can convert the type in both directions—from primitive to object and object
back to primitive.

The wrapper classes are fundamental classes in the Java language. They are
defined in the java.lang package which is automatically imported for you.

Conversions between primitive and object types

From primitive to object
int i = 10;
I nt eger nunber = new Integer(i);

From object to primitive
i = nunber.intVal ue();

Wrapper objects are immutable—you cannot modify the value

Conversions between primitive and object types

Here is a simple illustration. Assume you have a primitive type value, an int:

int i =10;

You can create an instance of the Integer wrapper class that contains the int,
thereby turning a primitive value into an object:

I nt eger nunber = new I nteger(i);

You can now store this value in a collection such as an array:

array. addChj ect (nunber) ;

Later, you can retrieve the object from the collection and extract the original

primitive value again:

I nt eger nunber = array. obj ect At I ndex(x);
int i =nunber.intValue();

The wrapper classes provide many additional capabilities for converting

between different types, parsing values from strings, and generating values as

formatted strings. Consult the Java documentation for additional details.

39

40

Chapter 1: Using Objects

Additional foundation classes used with WebObjects

i nport java.math.*;

NSGregorianDate—calendar date, time, and time zone
i mport com appl e. yel | ow. f oundati on. *;

NSData—buffer of arbitrary binary data
i mport com appl e. yel | ow. f oundati on. *;

BigDecimal—arbitrary precision fixed point floating point number

Additional foundation classes used with WebObjects

WebObjects applications commonly make use of additional foundation
classes. You should familiarize yourself with each of these classes.

The Java math package defines the BigDecimal class useful for representing
large decimal numbers with specific rules for rounding and formatting.
BigDecimal is ideal for storing monetary values. When you incorporate
database connectivity into your WebObjects applications, you usually fetch
number values as instances of BigDecimal.

The WebObjects foundation package defines the NSGregorianDate class.
NSGregorianDates represent time and date values including a time zone. The
class defines many convenience methods for comparing and calculating dates,
and extracting pieces of the time and date like the month, the year, the
minute, and the second. NSGregorianDate includes rich formatting
capabilities and a simple way to ask for the current time.

The NSData class also comes from the WebObjects foundation package. It is
used to represent an arbitrary buffer of binary data. Dynamically generated
images or the contents of an uploaded file are good examples. Think of an
NSData object as a collection of bytes that can be conveniently handled with
a single object reference.

Behavior versus type—methods versus class

Objects can be of many different types—unrelated classes
Shoppi ngCart cart;
BankAccount account;
I nventory inventory;

doubl e bal ance cart. bal ance();

doubl e bal ance card. bal ance();

i nventory. bal ance();

doubl e bal ance

Often, you need to type by behavior, not class
? thing = (?)itens. obj ect Atl ndex(0);
doubl e bal ance = thing. bal ance();

But they can have analogous behavior—respond to the same mess

sages

Behavior versus type—methods versus class

In real-world Java programs, you use many objects of many diverse class types.
They are often not related to each other in terms of the inheritance hierarchy.
They don’t share common superclasses except that they are all subclasses of
the most generic class, Object. Consider how fundamentally different the
following classes are from each other: ShoppingCart, BankAccount, Inventory.

Though unrelated in the class hierarchy, they have analogous behavior—they
implement the same methods. What ShoppingCart, BankAccount, and
Inventory might have in common is some aspect of their behavior: they each
respond to the balance() method.

In many cases, you need to write code that works with a diverse set of objects
that have common behavior, regardless of their dissimilar class types. You
might write some code that takes any object and displays its balance to a user
interface. You are depending on the fact that the object implements a
balance() method. You specifically want to avoid making any assumptions
about the class type of object. You don’t really care about the class type at all.

"This poses a simple coding problem: what type should the reference variable
be? In this case, you want to type by behavior, not by class. A generic reference
of type Object is not sufficient. The Object class does not define a balance()
method.

41

42

Chapter 1: Using Objects

| nterfaces provide another kind of type

An interface defines a name for a group of related methods

A classis an implementation, an interfaceis only a specification

Often, you use an interface name rather than a class name
/'l objects with balance() behave |ike Assets
Asset thing = (Asset)itens. objectAtlndex(0);
doubl e bal ance = thing. bal ance();

Interfaces can also provide constants
doubl e taxRate = Asset. TaxRat e;

Packages define interfaces and classes implement them

An interface defines atype of behavior, independent from class type

Interfaces provide another kind of type

Java defines an alternate to classes for typing objects called interfaces. An
interface provides a list of methods that define a type of behavior—a role. An
interface has a name. An interface defines a formal type in Java.

Compare an interface with a class. A class defines all the attributes and all the
methods valid for an object of that class. A class is a blueprint that describes
the structure and origin an object. A class is an implementation. An interface
is simply a list of methods. Interfaces typically capture only a subset of what an
object can do. An interface is merely a specification that one or more classes
may adhere to. A particular class may implement multiple interfaces.

Returning to the example, ShoppingCart, BankAccount, and Inventory are all
class names. Each class definition provides details particular and specific to
objects of that class. ShoppingCarts can add and remove products.
BankAccounts have numbers and statements, credits and debits. An
Inventory has a depreciation rate.

Yet ShoppingCart, BankAccount and Inventory objects all have a subset of
behavior in common—they all respond to the balance() message. It is possible
to define an interface called Asset that lists the messages you can send to any
object that behaves like an Asset. In this case, the Asset interface defines one
message—balance().

Use interfaces to type an object according to its behavior, regardless of its class.

Java naming conventions

Javais case-sensitive

Shoppi ngCart isdifferent than shoppi ngcart

Class names are capitalized; inner words are capitalized
Asset
Shoppi ngCart

M ethod and variable names start with lowercase letters

i ndex
checkQut ()

null, if, int, bool ean

Java defines many reserved words—use them only as intended

Java naming conventions

Naming conventions are often just that: they are conventions rather than
strictly enforced rules. But you should take them seriously. Faithfully adopting
these rules will help you in several ways:

You will be to understand another programmer’s code more efficiently
Another programmer will be able to understand your code more efficiently

You can understand documentation more efficiently

vV vV v VY

You are more likely to write correct code

Javais case-sensitive. “ShoppingCart” is different than “shoppingcart”. Many
compiler errors encountered by beginning programmers are merely
misspellings that use the wrong case.

Class names are always capitalized. Multiple word names capitalize the first
letter of each subsequent word. Method and variable names start with
lowercase letters but also capitalize the first letter of subsequent words in
multi-word names. Static constants vary in their naming, but usually begin
with a capital letter. Often, the entire name is in uppercase.

Remember that there are many reserved names in Java—null, while, if, int,
boolean, void, null—to list but a few. You should use them only as intended. Do
not accidentally reuse them for your own variable names.

a3

44

Chapter 1: Using Objects

Common pitfalls

Compile-time errors

* Incorrect class or interface name—misspelled or missing import
* Incorrect method or attribute name—invalid or misspelled

* Missing a cast—method name is not valid for generic type

Runtime errors

» Sending a message to null—forgot to create and assign an obje
* Applying an incorrect cast—the object is not the type you expect
» Exceeding the bounds of an array—index is negative or too high
* Adding a primitive or null to a collection—only non-null objects

Common pitfalls

If you are new Java programmer, you may likely run into a few common coding
pitfalls. They show up as errors during compilation or at runtime. Often, the
problem is simple: you forgot to import a class or you are missing a cast. One of
the most common pitfalls shows up as a null pointer exception at runtime. The
cause is typically that you forgot to create a new object and assign it to a
reference variable. Without an object, you end up sending a message to null.

The Java compiler is quite good about providing meaningful error messages.
Be sure to read the message carefully. The compiler typically lists the exact
line number where the problem occurred. Review your code patiently until
you locate the problem.

In many cases, the problem is not due to a fundamental lack of understanding
but a peccadillo of coding syntax. With practice, you will learn to identify and
remedy these common errors quickly. The list above provides some of the
most common errors as a convenience to help you on your way.

—+

Chapter 2 Creaﬁng Classes

Thinking like a Class Producer

A View from the Inside

Chapter 2 Creating Classes

Goal

"To cover the concepts and code syntax for creating new classes.

Prerequisites

Chapter 1—Using Objects.

Objectives
At the end of this lesson, you will be able to:

Define a new Java class
Implement accessor methods

List the different access modifiers
Overload methods

Override inherited methods
Define and implement an interface

Implcmcnt one or more constructors

vV vV v v v v Vv Y

Define static variables and methods

a8

Chapter 2: Creating Classes

To code in Java, you define new classes

The classis the basic code packaging mechanism in Java
All code must be part of aclass definition

To write Java code, you must define new classes

A classisatype, ablueprint for creating objects of that type

When you create a class, you create a new object type

(Customer)

i Customer firstName “Jan(T’ Customer)
i firstName | lastName | “Smit| firstName | “Tom”
:\ lastName | ; lastName

class instances

To code in Java, you define new classes

The class is the basic code packaging unit in Java. If you write any Java code
at all, you must create at least one new class to contain the code. Initially, it is
useful to think of yourself as merely a class consumer—you use objects. But
you must also become an effective class producer—you must design and
implement new classes.

A class is a type in Java. A new class defines a new type of object that you can
create. Every object is an instance of a specific class. A class essentially
provides a blueprint for creating objects. The blueprint defines the attributes
and the behavior that belongs to each object, each instance of the class.
Sometimes, a class is called a factory to vividly illustrate its function—a class
manufactures objects.

Classes derive from an inheritance hierarchy

Object isthe root class

Every other classis asubclass

Every subclass has one super class

To make a new class, create a subclass

\

Every subclassinherits AN Y

* |nstance variables
* Methods B ’
* |nterfaces

Until you specialize with code, every subclass is just like its superclass

Classes derive from an inheritance hierarchy

A class is defined within a hierarchy of related classes. This reflects our
common tendency to classify something according to how it is similar to as well
as different from something else.

"The top of the hierarchy is called the 700z or base class. This is the most generic
class called Object. It defines the basic attributes and behavior common to all
classes. All other classes are direct or indirect subclasses of Object.

Except for the root class, all classes have one superclass. Java does not support
multiple inheritance. The diagram shows that Person is a subclass of Object.
Object is the superclass of Person. Customer is a subclass of Person; Person is
the superclass of Customer.

A subclass is a specialized version of its superclass. A customer is a person, but
somehow specialized to be, more specifically, a customer. A customer inherits
all the properties and behavior of a person so that a customer can be treated
generically as a person. But a customer has more specific properties and
behaviors. Because a subclass inherits qualities from its superclass, the
classification hierarchy is usually called an inheritance hierarchy.

49

50

Chapter 2: Creating Classes

Classes are grouped into packages

mmmmmnas S—— N { NSDictionary : | NSArray !

| Object | 5 b 5

{ sting com.apple.yellow.foundation

Mo _ShoppingCart

' Integer ;

N ' :’ Person \: { Customer
java.lang § o §

default unnamed package

Classes are grouped into packages

Java defines another mechanism for organizing code: a package. A package is
a collection of one or more related classes. Each package addresses a specific
area of functionality. Classes within a package are typically used together to
solve a particular design problem. Java provides several packages: basic
language features, file [/O, networking, and so on. WebObjects defines
additional packages: basic foundation classes, database connectivity, web
application classes, etc. Every package has a name.

You can create your own custom packages. The diagram shows a package of
classes specific to a shopping cart application: ShoppingCart, Person, and
Customer. These classes are related in that they are used together to create
e-commerce applications.

Every class must be placed in a package. Your Java code files can explicitly
designate which package your class should be added to. When you don’t
specify a package, your class is placed in the unnamed default package. This
is the common case in a WebObjects application unless you are creating
classes that will be reused in multiple applications.

What you can do in anew subclass

Add new methods—extend the superclass’s behavior

Add new instance variables—add new attributes
Implement an interface—add a well-defined set of methods

Implement one or more constructors—control initialization

Override inherited methods—modify the superclass’s behavior

Add static variables and methods—class rather than instance beha

vior

What you can do in a new subclass

When you create a new class, you always create a new subclass of an existing
class. You are creating a more specialized version of the superclass. You
automatically inherit the qualities of the superclass. From there, you can
specialize. Put simply, you can either add new functionality or replace existing
functionality.

"To extend the functionality of the superclass, you can add new methods and
instance variables. You can also add static—class—methods and variables. You
can implement an interface by adding the specific set of methods it defines.
You can add one or more constructors to control the initial state of objects
created from your class.

You can also modify existing functionality inherited from the superclass. You
do this by overriding inherited methods. By re-implementing methods already
defined in the superclass, you can extend or completely replace existing
functionality.

Your first decision is which class to use for the superclass. Look for a class of
which your new class will be a specialized type. For example, a customer is a
kind of person. If you were creating a Customer class, you could base it on an
existing Person class. Often, you will not have a related superclass to start with.
In these cases, use Object as the superclass.

51

52

Chapter 2: Creating Classes

Access modifiers enforce encapsulation

Keyword Who has access outside the class

public Any class
protected Only subclasses
private No class

package Other classes in the same package

Note: there is no keyword for package—it is the default

Access modifiers enforce encapsulation

As a class designer, you must think about what aspects of your class you wish
to encapsulate—hide—and which you want to expose—make public.
Encapsulation hides private internal details behind a carefully controlled
public interface. Class consumers use the class name, a set of public methods,
and sometimes a set of public instance or class variables. The rest of the
internal class details should be hidden, available only to you, the class
producer.

Class consumers are divided into three different groups: unrelated classes,
subclasses of your class, and other classes in the same package.

Java defines keywords that you use with class, method, and variable
definitions to restrict access to consumers of your class. They are called access
or visibility modifiers. There are three keywords and four different settings:

public—available to any other class.
protected—available only to subclasses.

private—available to your class alone.

vV vV v Y

package—available to other classes in the same package. There is no
keyword for package access—it is the default.

Instances of your class—objects—can always access instance variables and
methods regardless of the access modifier used to define them.

A typical classtemplate

Cl assNane. | ava

i nport necessary packages
public d assNane extends Superd assName {
i nstance vari abl es .

nmet hods .

A typical class template

Here is a typical class template. It shows all the parts needed for a complete
class definition.

A class definition is stored in a file with the .java extension. The file name
must match the class name. It is possible to have multiple class definitions in
the same file but only one public class is allowed and it must match the file
name.

For any existing class names you use in your class definition—your superclass,
variable, and method types—you must import the packages that define them.
Remember that the java.lang package is imported automatically. You can use
basic classes like Object and String without an import statement.

The formal class definition starts with a statement naming the new class, the
extends keyword, and the superclass. Most often, your class is public. If you
omit the extends keyword and the superclass, the superclass defaults to Object.

"The rest of the class definition is a code block of statements that define
variables and methods belonging to the class. The body is enclosed with
braces. Everything about the class appears within its body.

53

54

Chapter 2: Creating Classes

A simple complete class example

Per son. j ava

public Person extends Object {
private String nane;

public String name() {
return nane;

}

public void setName(String value) {
name = val ue;

A simple complete class example
Here is a complete example of a simple Person class.
Person is a public class. Person is a subclass of Object.

A Person has one instance variable called name of type String. The name
instance variable is private; it is encapsulated and cannot be accessed directly
by any consumer outside of the Person class. To get a person’s name,
consumers must use an accessor method.

The Person class defines a pair of public accessor methods for the name
instance variable. Consumers can get and sct a person’s name using these
methods.

Familiarize yourself with the format of this simple class definition. The details
of variable and method definitions are explained in the following pages.

Adding new instance variables

Define new instance variables outside of method blocks
protected String nane;
private int count;

Values are automatically initialized to ‘0’

Object references arwill
Primitive number types are 0

You can include initializer expressions
private int count = 1;
NSMut abl eArray itens = new NSMut abl eArray();

Each object—aimstance of the class—has its own setvariables

Adding new instance variables

A class is a template for creating instances of that class—objects. From one
class, a consumer can create many objects. Each object maintains its own state
with a set of variables whose values are unique to that object. A class defines
the set of variables that each object instance gets when it is created. For this
reason, they are called instance variables. In Java, they are also called fields.

Each variable is defined within the class definition block but outside of any
method code blocks. Each definition includes a variable name, a type, and
typically an access modifier. Instance variables are most often private or
protected.

Instance variables are automatically initialized to 0 when the object is
constructed. Object references are null, numbers are 0, and so on. You can
include initializer expressions with the variable definitions for non-0 default
values.

55

Adding new methods

A method has a name and usually an access modifier

A method has atype—the type of value it returns

* Any Java class, interface or primitive type
« void for no return value at all

A method has aargument list—zero or more typed variables
A method has dody—a code block including local variables

Method code uses thieturn keyword.return does two things

» Leaves the method, returning to the caller
» Specifies the return value for non-void methods

Adding new methods

You can add new methods to your class definition. A method definition
includes the following parts usually listed in the following order:

Access modifier
Return type
Name
Argument list

Code block or body

vV vV v v v

Methods are typed: they return a value of a specific type. Methods that return
no value at all use the key word void.

Arguments passed by the caller become local variables with the method body.
The method body is a code block and can define additional local variables that
are temporarily valid only while the method is executing.

Method code usually includes the return keyword. It does two things. The
return keyword stops executing the method code and returns to the caller. It
also takes a value, the value to return to the caller. If the method is void, use
the return keyword without specifying a return value.

56 Chapter 2: Creating Classes

A variety of method declarations

No return value, no arguments
public void start()

Return value

protected int count()

Return value and argument
private String encrypt(String val ue)

Return value and multiple arguments
Doubl e average(l nteger val ue, Integer val ue2)

A variety of method declarations

Here are a variety of different valid method declarations. For clarity, they
exclude the method body so they are incomplete.

By convention, the access modifier appears first. Notice that each of the four
examples uses a different access modifier. The last example that uses no
access keyword at all indicating package-level access.

Every method must declare the type of value it returns. Use void if the method
returns nothing. Return types can be primitive types—Ilike int—or object
types—like String. Methods can also use Interface names for return types.

Method names follow a naming convention: like instance variables, they begin
with lowercase letters but capitalize each subsequent word.

The argument list specifies zero or more typed arguments that must be
provided by the caller. For zero arguments, the list is empty. Each argument
has a type and a name. Multiple arguments are separated by commas.

57

58

Chapter 2: Creating Classes

A simple complete method example

publ i c doubl e bal ance() {
/! local variable for cal cul ati ng bal ance
doubl e bal ance = 0;
/! enunerate objects in instance variable itens
Enunmeration e = itens. obj ect Enunerator();
whi | e(e. hasMor eEl enent s()) {
bal ance = bal ance +
((Asset)e. nextEl enent ()). bal ance();
}

return bal ance; // |eave nmethod returning val ue

A simple complete method example

A complete method example is shown above. It is a public method named
balance(). It returns a double value and takes no arguments. Imagine that this
is the method for calculating the balance of items in a shopping cart. This
method would be defined with the ShoppingCart class.

"To calculate the balance, the method defines a local variable called balance
and initializes it to 0. In Java, you can use the same name for a variable and a
method without conflict. Local variables should generally not use the same
names as instance variables.

The balance is calculated by adding the balance of each individual item in the
collection named items. Notice that items is neither a method argument nor a
local variable. It is most likely that items is an instance variable of this class.
Remember that methods can reference instance variables directly.

Once all items are enumerated, the balance it computed. The method finishes
execution and returns the final balance using the return statement.

Each instance can access its own data and behavior

Instance variables are directly accessible from methods

private int count;
public void increnment() {count++;}

One method can invoke another

public void increnment() {count++;}
public void addOne() {increnent());

Every object has areference to itself named this

public void increment() {
thi s. count ++;

}
public void addOne() {this.increnent());

Each instance can access its own data and behavior

While methods can take arguments and define new local variables for
temporary purposes, methods are chiefly concerned with instance variables.
Instance variables are automatically accessible to methods defined in the same
class. Simply refer to them by name.

A method can call other methods defined in the same class. Remember that
methods are normally invoked by sending a message to an object reference:

anQbj ect . someMet hod() ;

Java provides a shorthand for an object to send a message to itself. If the object
reference is excluded from a message expression, the implied reference is
reflexive—send the message to the object sending the message:

soneMet hod() ;

Java provides a keyword to make this explicit:

t hi s. sonmeMet hod() ;

It is optional. You can use it for clarity.

Unlike functions or procedures in traditional languages, methods can only be
invoked through an object reference. Whether it is explicit or implicit, there is
always an object associated with the currently executing code. The data and
behavior are never separated and can never be mismatched. This is one of the
hallmarks of object-oriented programming,.

59

60

Chapter 2: Creating Classes

Accessor methods encapsul ate instance variables

Encapsulated instance variable is private or protected
protected String nane;

Public accessor methods provide and control access

public String name() {return nane;}
public void setName(String val ue) {
nane = val ue;

}

Alternative naming convention for get method
public String getNanme() {return nane;}

Accessor methods encapsulate instance variables

The essence of encapsulation is barring direct access to instance variables.
Encapsulated instance variables are protected or private. Outsiders must
access values indirectly through methods rather than directly through instance
variables. This provides a hook for arbitrary processing within the object. This
maintains a firewall so that you can modify the implementation without
compromising the public interface and breaking existing code.

Methods used to access instance variables are called accessor methods. They
generally come in pairs—one for getting the value, one for setting the value.
The method for setting the value is sometimes called a mutator method. It is
possible for read-only or computed values to have get methods not set
methods. It is even possible to have accessor methods but no underlying
instance variable. This is the case for values that are derived from other data.

There are two different naming conventions for get methods. One form
simply uses the variable name as the method name. The other prepends the
word “get”. WebObjects most often uses the former convention for its
framework classes. Java packages vary from class to class. As a class designer,
you can choose either or possibly implement both.

Overloading methods—same name, different types

Each is distinct due to unique number and/or type of arguments
doubl e bal ance()
doubl e bal ance(doubl e di scount)
doubl e bal ance(Bi gDeci mal di scount)
doubl e bal ance(doubl e di scount, NSArray coupons)

You cannot change the return value type
doubl e bal ance()
i nt bal ance() /1 will not conpile

Overloading—multiple versions of a method with different argumen

\~ 4

s

Overloading methods—same name, different types

Java supports method overloading. Overloading means defining multiple
versions of a given method, each with a different and distinct argument list.
Notice that the method name and the return type must stay the same.
Conceptually, each method version should produce analogous behavior.

Overloading is useful when the same action can be performed based on
different sets of parameters. Consider the shopping cart example. You can
calculate the balance in different ways. You can calculate the simple balance
of all items in the cart. You can specify a discount rate as an argument.
Sometimes, the discount rate is a primitive type, other times, it is a number
object. Occasionally the customer has an additional set of coupons.

As a class designer, you can implement multiple versions of the balance()
method, each taking a different set of arguments. This is called overloading
the balance() method. It creates a much more flexible class design which is
potentially reusable in multiple scenarios.

Remember, overloaded methods differ by the number and type of arguments.
The name remains the same. You cannot vary the return type.

61

62

Chapter 2: Creating Classes

Overriding inherited methods

You have two choices

» Replace the superclass behavior
» Extend the superclass behavior

Invoke the superclass method using the keyvsopr

Overriding—replacing the implementation of an inherited method

Re-implement the method, using the same name, type and argume

To extend the behavior, include a call to the superclass method

Overriding inherited methods

Overriding is different from overloading. Overriding a method means changing
the behavior of a method inherited from a superclass. When a class inherits a
method, it responds to it as though it had implemented the method itself.
Often, you need to modify the response to an inherited method. While a
subclass cannot make the method away, it can change the implementation.
Besides adding new methods, you can change the implementation of existing
methods.

Overriding means providing a new implementation of an inherited method
without changing the name, the arguments, the return value, or the
accessibility. Conceptually, you have two different choices:

» Completely replace the implementation—forget the superclass’s version
» Extend the implementation—make use of the superclass’s version

"To extend the superclass’s method, reuse it as the core of your new logic.
When your class implements a method for which the superclass also has a
version, you need a way to differentiate the two. You need a reference to
invoke the superclass’s method rather than your own. Java defines the
keyword super for this purpose.

nts

To extend when overriding, use the super keyword

Overriding to extend the superclass method

publ i c doubl e bal ance() {
/1 call the super class inplenentation
doubl e bal ance = super. bal ance();
/1 extend it
bal ance = bal ance + (bal ance * taxRate);
return bal ance;

}

Invoking overridden version of the method

this. bal ance(); orsimply bal ance();

Invoking the superclass’s version of the method

super. bal ance();

To extend when overriding, use the super keyword

Suppose that a shopping cart class implements a balance() method. It simply
calculates the total of all items. You are implementing a subclass that takes tax
into account. You also need to calculate a balance but include the tax as well.
Since your method of calculating the balance is different, you must override
the superclass version. Make use of the balance logic already correctly
implemented in the superclass but merely add some additional processing. In
this case, you are extending the superclass logic rather than replacing it.

A method can invoke the superclass method using the keyword super. Like
this, super is a pre-defined object reference for sending messages. Normally,
when an object sends a message to itself, it wants to find the method
implementation in the same class:

soneMet hod() ;

You can be more explicit with the keyword this:

t hi s. soneMet hod() ;

In both cases, the statement will find the method whether the class
implements it or inherits it from a superclass. When overriding, you need to
bypass the implementation in the subclass and invoke the implementation in
the superclass. To do so, use the keyword super:

super . someMet hod() ;

63

64

Chapter 2: Creating Classes

A closer look at this and super

this e i

(TaxableProduct \ T
Product |

double balance() <:| super

@]
=y
(9]
o
Q

name | “Widget”

price | $10.00

N

\

class\“\\ ‘ TaxabIeProduct;"
‘ double balance() :

this refers to an object instancesuper refers to a class

A closer look at this and super

You use the keywords this and super in similar ways: both are special,
predefined references used to invoke methods. Take a moment to study how
they work and especially how they are different.

this is a reference to the current object, the target of a message that caused the
invocation of the current method. While executing the method, the current
object can send a message to itself using this. Fundamentally, this is a reference
to an object.

When a message is sent to an object—such as balance()—the Java runtime
determines the class of the object and starts looking for a method of the same
name—balance(). The search starts with the most specific class then
continues “upward”, visiting each of the superclasses. As soon as an
implementation is found, the search stops and the method is executed. This
is the essence of a mechanism called dynamic binding, coupled with the
mechanism of inheritance.

Often, the method is implemented in the most specific class, even if
superclasses also have a matching method. In this case, the specific class has
overridden the method version it inherited from its superclass.

When you send a message using super, the scarch does not start with the most
specific class of the object. By design, it ignores overridden methods in the
current class, skipping one level upward in the hierarchy. While this is a
reference to an object, super is conceptually a reference to a class.

Constructors guarantee proper initialization

Class consumers create objects with a constructor
Shoppi ngCart cart = new Shoppi ngCart();

Class producers can implement a constructor to initialize the object

publ i ¢ Shoppi ngCart () {
items = new NSMut abl eArray();

}

The constructor name is the same as the class name
The constructor has no return type, not even void

If you don'’t provide a constructor, Java generates one by default

Constructors guarantee proper initialization

As a class producer, you need to control the initial state of a newly created
object. You need a reliable mechanism for initializing the object before the
consumer gains access to it. Java guarantees the proper initialization of objects
with a special type of method called the constructor. By coding a custom
constructor, you can control an object’s initial state.

A class consumer creates a new object by calling the constructor with the
keyword new. As a class designer, you can implement the constructor to
perform any actions necessary to initialize the state of the object. Typically this
means assigning default values—additional objects—to instance variables.

While a constructor looks much like any method, it has some special
properties. The constructor name is the same as the class name. Most
constructors are public. And a constructor has no return value, not even void.

You don’t have to implement a constructor. If you don’t, Java provides a
default constructor for you. This enables a class consumer to call the default
constructor even when you don’t write one. The default constructor takes no
arguments and leaves the instance variables your class defines in their default
state—0 or null values. Since the default constructor takes no arguments, it is
often called the “no-arg” constructor.

65

66

Chapter 2: Creating Classes

Every superclass plays arole during construction

A Customer is a Person and an Object
« Each superclass contributes functionalify-----=--=----- N

L Object :
» Each superclass gets to initialize ! e 5
: Object() i

Constructing an object... — F
new Cust omer ()

Involves multiple constructors rerson__
Obj ect () : Person() |
Per son() B g
Cust oner ()

Java ensures that all constructors are called— Customer
i Customer()
Constructors are executed from top down “----------------- ’

Every superclass plays a role during construction

Remember that your class is defined within an inheritance hierarchy. Even the
most basic class has at least one superclass—Object. Because of inheritance,
the set of instance variables in an object is a combination of variables defined
by multiple superclasses in the hierarchy. A Person class defines the first and
last name variables. The Customer subclass adds the customer number, a sales
person reference, and so on. Proper construction of a new object requires that
each participating class gets a chance to initialize the variables it defines.

Java ensures that when a constructor is called for a particular class—Customer
for example—the constructor for each of its superclasses is also called—Person
and Object. This is called constructor chaining. The constructors are executed
from top down, from the most general to the most specific class. In this
example, the sequence is Object, then Person, then Customer.

Calling the superclass constructor

A constructor can cal the superclass constructor explicitly
public Customer() {
super () ; /'l must be the first statenent
name = "Jane",

}

Otherwise, it isautomatically called by the Java runtime implicitly

public Customer() {
nane = "Jane";

Calling the superclass constructor

"The practical implication of constructor chaining is that superclass
constructors will be executed before subclass constructors. By the time your
constructor begins any custom initialization logic, the superclass portions of
the object have already been initialized. In the current example, when
initializing the state of a new customer, you can assume the Person part of the
object is ready to use.

You can explicitly call the superclass constructor using the super keyword. Use
it as though it were a method name:

super();

If you call the superclass constructor explicitly, it must be the first statement
of your constructor. If you insert any statements before the superclass
constructor call, your code will not compile.

You can omit the explicit call to the superclass constructor: the Java runtime
will call the constructor for you.

Why would you call the superclass constructor explicitly if Java does it for you
automatically? Classes can define multiple constructors. They differ in the
number or type of arguments they take. When Java automatically calls the
superclass constructor, it calls the default no-argument constructor. If you want
a different constructor, you must call it explicitly, for example:

super(“jane”,"Doe”);

67

Multiple constructors with overloading

Y ou can provide multiple constructors by overloading

One constructor can call the other using this
publ i c ShoppingCart () {
super () ;
itens = new NSMut abl eArray();

}

publ i ¢ Shoppi ngCart (Cust omer newShopper) {
this();
shopper = newShopper

}

Multiple constructors with overloading

Your class can define multiple constructors using overloading. Overloading
means reusing the same method name but changing the number or type of
arguments. A ShoppingCart class might define a default no-argument
constructor and a second constructor that accepts the associated customer
object. This allows class consumers to create a shopping cart in two different
ways. When the customer is not yet known:

Shoppi ngCart cart = new Shoppi ngCart ();
or when the customer is already available:

Shoppi hgCart cart = new Shoppi ngCart (cust oner);

As the class designer, you can have one of your constructors call another using
the keyword this. To call a constructor, use it at though it were a method name:

this();

"This way, you can reuse the logic in one constructor as part of the logic of
another without duplicating code.

The number and type of arguments you provide determines which
constructor is called:

this(); /1 calls ShoppingCart()

t hi s(cust omer); /1 cal | s Shoppi ngCart (Customer custoner)

68 Chapter 2: Creating Classes

When you provide your own constructors

If you implement any constructors, you must implement all of them

If you don’t provide any constructors, Java generates a default

public Customer() { Il “no-arg” default
super();

}

If you implement any constructors, Java does not generate a default

Unless you also provide a default, your class doesn’t have one
person = new Custonmer(); // will not conpile

Constructors are not inherited—you must re-implement them

When you provide your own constructors

If you don’t implement any constructors, Java generates the default “no-arg”
constructor. If you implement any constructors, Java does not generate the
default. If your class consumers expect to use the no-arg constructor in this
case, you must implement it explicitly.

Another special aspect of constructors is that, unlike standard methods, they
are not inherited. If the Person superclass defines a one argument constructor
such as:

public Person(String | ast Nane) ;

this does not imply that the Customer subclass automatically responds to:

new Customer(“Doe");

"To enable this capability, the Customer subclass must define a matching
constructor, even if it does nothing;

public Customer(String lastName){....

69

70

Chapter 2: Creating Classes

Adding new static variables and methods

Y our class can define static variables and methods
public static double TaxRate;
public static Store headQuarters() {

They are available from the class as well as an instance of the class

doubl e rate = Shoppi ngCart. TaxRat e;
Store store = Store.headQuarters();

I nstance method code can reference them directly
doubl e rate = TaxRate;
Store store = headQuarters();

Often called class—as opposed to instance—variables and methods

Adding new static variables and methods

You can also define static—also known as class—methods and variables. Use
the keyword static to do so.

Static methods can be invoked using the class name. A consumer can invoke
the method without first creating an instance of the class. This is a logical
convenience for methods that provide services for the class as a whole, without
reference to a specific instance.

Static methods can also be invoked by code in your instance methods.

Static variables are not stored in each object instance of the class, but in the
class itself. This is ideal for data that applies to the class as a whole without
reference to a specific instance. Even though there might be several shopping
carts, there is only one copy of the tax rate applied to all shopping carts. This
is clearly more efficient that storing a redundant copy in each shopping cart
instance. This allows you to change the value of the static variable in one place
while making it visible to each object instance.

Static methods can only access static variables. Static methods cannot access
instance variables. By definition, static methods are independent of instances
and have no way of accessing them or the instance variables they possess.

Variables have a scope—uvisibility and lifetime

Static (class) variable
» One copy peclass; good for the application’s lifetime
* Visible to class and all objects
» Default value is O

Instance variable

* One copy peobject; good for the object’s lifetime
* Visible to that object
» Default value is 0

Local variable
* Good while executing within the block that defines it
* Visible only to that block
» Default value undefined: be sure to initialize

Variables have a scope—visibility and lifetime

As a class designer, you can define three different types of variables. You
should understand the implications of each choice. They differ in terms of
scope—visibility and lifetime. Visibility means what parts of your class code can
“see” the variable name—where is the variable accessible. Lifetime means
how long does the variable last—when it is created, when it is destroyed, how
long will it maintain a particular value. Lifetime has direct implications on the
memory requirements of your application.

Static variables—also known as class variables—reside in the class itself. They
last as long as the class, which is generally the lifetime of the application.
There is only one copy of the variable—in the class. The default value is 0.
"The variable is visible to the class and to all instances of the class.

Instance variables reside in the object—an instance of the class. Each object
has its own variable. The variable is created and destroyed along with the
object and is visible only to that object. The default value is 0. Instance
variables have the greatest potential impact on your application’s memory
resources.

L.ocal variables are the most transient type—they exist only while executing
the method in which they are defined. They are often called temporary
variables. They are visible only to the code within the method. Local variables
generally have the least impact on your application’s memory resources.

71

72

Chapter 2: Creating Classes

Definitions of different variable scopes

public class ShoppingCart {
/'l static variable
public static cartCount;

/'l instance vari able
prot ect ed NSMut abl eArray itens;

publ i ¢ doubl e bal ance() {
/1 local variable
doubl e bal ance = 0;

Definitions of different variable scopes

"This code example demonstrates the three different variable scope
definitions. Notice that static and instance variables are defined outside of any
method code blocks. A copy of an instance variable is allocated for every object
instance that is created at runtime. The instance variable is deallocated when
the object is garbage collected. There is only one copy of a static variable
application-wide—it belongs to the class itself. While it is accessible to each
object instance, it is shared by all objects.

Local variables are defined with method code blocks. They are valid only
while executing the code block in which they are defined. Method code
blocks can contain additional nested code blocks such as those used for if or
while statements. These can define their own local variables as well.

Local variables differ from static and instance variables in that their default
values are undefined. Be sure to initialize them before using their values. The
Java compiler is smart about warning you when you forget to do so.

Making something final

Final definitions cannot be modified

* Final classes cannot be subclassed
+ Final methods cannot be overridden
* Final variables are constants

Typically used to define static constants

Use the keywordinal

public static final double TaxRate = .08;

Making something final

You can use the final keyword to indicate that something cannot be changed.
"The definition is final. You can apply the keyword to a class, a method, or a
variable. Final classes cannot be subclassed, final methods cannot be
overridden by subclasses and a final variable’s value cannot be modified.

"The final keyword is mostly used to make a static variable constant. Once it is
initialized, it cannot be modified.

You should be careful about making classes or methods final. Inheritance
allows your implementations to be refined by future subclasses. It is difficult
to anticipate the future. You do not want to prematurely preclude a future
subclass designer from leveraging your work without the ability to change it.

73

74

Chapter 2: Creating Classes

Classes are either abstract or concrete

Abstract definitions defer implementation to subclasses

* Abstract classes cannot be instantiated
+ Abstract methods must be overridden

Concrete subclasses provide non-abstract implementations
Abstract classes provide a template for concrete subclasses

Use the keywor@bstract
public abstract class Asset {
private double price;
public abstract double bal ance();

Classes are either abstract or concrete

All classes in the hierarchy fall into to different categories: concrete or abstract.
Concrete classes are ready to use by class consumers—they can be
instantiated. Abstract classes, as their name implies, are not complete nor
directly usable. Abstract classes cannot be instantiated. They provide a
template but require a concrete subclass implementation to make them
usable.

Java defines the abstract keyword for marking a class or a method abstract. An
abstract class cannot be instantiated. An abstract method has no
implementation—it has no method body. If a class has at least one abstract
method, it is automatically considered abstract.

Abstract classes are used to define a prototype for subclass designers. Consider
the concept of an Asset. A reasonable design mandates that all assets should
have a price attribute and a method for calculating the balance. Different
assets may compute their balances differently. The balance() method is
marked abstract and the implementation is deferred to subclass designers.
Although the balance() method is abstract, it is a formal part of the class—it is
required. If subclasses do not provide a complete implementation, they are
also considered abstract.

Y ou can define new interfaces

Interfaces specify a set of methods
* Independent of class
* Independent of implementation

Interfaces can also define constants

Asset .| ava

public interface Asset {
public final static double TaxRate = .08;
publ i ¢ doubl e bal ance();

You can define new interfaces

You may find it useful to define a new interface. An interface defines a set of
methods without providing an implementation. An interface describes how an
object behaves without specifying its class or superclass type. Interfaces are
not classes and cannot be instantiated. Rather, they are implemented by
classes and define a valid way of typing objects from those classes.

An interface has a name and must be defined in a file of the same name
followed by the .java extension. Interfaces must be public. Instead of the class
keyword, use the interface keyword. The body of an interface—enclosed
between braces—contains method declarations without the method code
blocks. By definition, interfaces do not provide implementations. Interfaces
can also define static constants.

Interfaces can extend other interfaces just like subclasses extend superclasses.
"This implies that the interface inherits methods and constants from the
interface it extends. Since there are no implementations to inherit, this is
usually referred to as interface inheritance. Class-based inheritance combines
interface and implementation inheritances.

Since one class can implement more than one interface, one class can
essentially have multiple behaviors or personalities. Java interfaces provide an
alternative to traditional multiple inheritance.

75

Y our class can implement interfaces

Classes implement an interface by implementing its methods

Shoppi ngCart . java

public class Shoppi ngCart
extends bject inplenents Asset {

publ i c doubl e bal ance(){

Your class can implement interfaces

Your class can implement one or more interfaces. Your class declares its
superclass followed by an optional declaration of one or more interfaces that
your class implements:

i npl emrent s Asset

Multiple interface names are separated by acomma. Remember that you must
import the package that defines the interface name unless the interface is part
of the same package as your class.

"To implement an interface, your class must provide an implementation for
every method defined in the interface. You can inherit the implementation
from a superclass as well.

Once you have implemented an interface, a consumer can reference an object
of your class using at least three different types. Which is most appropriate
depends on how the consumer intends to use the object—how they expect
the object to behave:

oj ect cart; /'l generic reference; no particul ar behavi or
Shoppi ngCart cart; // specific class with specific behavior
Asset cart; /'l specific interface regardl ess of class

When possible, typing by interface is the ideal choice.

76 Chapter 2: Creating Classes

Java naming requirements and conventions

Only one public class per file

File name matches the public class name

Only one interface per file

Without a package statement, class goes in the unnamed package
Consult the Java documentation for package naming conventions

Shoppi ngCart . java

public class ShoppingCart {

Java naming requirements and conventions

Java enforces some simple rules for class providers. Your class code must be
stored in a file of the same name, ending with the .java extension. While you
can have multiple class definitions in a single file, only one of the classes can
be public. The public class name must match the file name.

Interfaces must be public and must match the filename. It follows that a file

can only contain one interface. The filename must match the interface name.

You can place your class in an explicitly named package if you choose. Consult
the Java documentation for information about the package statement and
package naming conventions. If you omit the package statement, you class is
added to the default unnamed package. Your class definition likely
incorporates a superclass name, class names used for variable and method
types, and possibly interface names. Be sure to import necessary packages
accordingly. Class and interface names from the same package—the default
unnamed package for example—need not be imported.

77

Common pitfalls

Missing an import statement required for the superclass or an interface
Misspelling a method name when overriding a method

Changing the access, return value, or argument list when overriding
Missing acall to super in an overridden method

Calling super in an overridden method when you don’t need it
Confusing overloading with overriding

Implementing constructors but omitting the default no-arg constructor

Missing the implementation @l methods in an interface

Common pitfalls

Here is a list of common pitfalls encountered by class designers. Most result in
either compile or runtime errors. Some result in unexpected behavior. Use this
list as a review of topics presented in this chapter.

"The more subtle pitfalls invoke overriding inherited methods. First,
remember that overriding is different than overloading. Overriding is
re-implementing a method you inherit from a superclass. Overloading means
implementing multiple versions of the same method with different numbers
or types of arguments.

"To properly override an inherited method, you must use the same access
modifier, return type, name, and argument list. If you change the name, you
are, in effect, implementing a new, unrelated method. While it may compile,
it will not match the superclass method and will not replace it—it will not be
called when you expect. This happens accidentally if you misspell the name.

A properly overridden method can extend the superclass method by including
a call to super. It can replace the method completely, in which case it should
not call super. If you mix this logic, you are sure to get incorrect and
unexpected behavior.

Another common pitfall occurs when you implement one or more constructors
but forget to include the default no-arg constructor. This may be your
intention but the effect is that consumers cannot instantiate your class using
the default no-arg constructor.

78 Chapter 2: Creating Classes

Another Chapter Getting a Bigger Picture

Optional Reading

Useful Even for Java Hackers

Another Chapter

Getting a Bigger Picture

Goal

Consider the larger context of a complete Java application.

Prerequisites

Familiarity with Java programming and the concept of an event-driven
server application.

Objectives
At the end of this lesson, you will be able to:

» Identify key components of a typical Java application such as bytecode,
class files, packages, and the Java virtual machine

> List the general steps a WebObjects application takes between startup
and activating your custom class code

» Describe how frameworks differ from traditional libraries

81

82

Java source code is compiled into bytecode

ShoppingCart.java ShoppingCart.class

javac f E
source code > . bytecode |

\

Java source code is compiled into bytecode

Like most programming languages, Java is compiled. Before you can use your
custom classes, you must compile their source code. Unlike most
programming languages, Java does not compile into binary machine language.
Java uses an intermediate form for compiled code called dytecode. Since it is not
machine code, it cannot run directly on the cpu of a physical machine. To
execute, bytecode requires translation software called the Java virtual machine.
In this sense, Java is more like an interpreted language with a runtime
component. The Java virtual machine reads and executes bytecode much like
any interpreter.

Your Java source is stored in files ending with the ,jzva extension. The
compiler generates bytecode and stores it in a file with the .c/ass extension.
ShoppingCart.java compiles into ShoppingCart.class. Bytecode is not human
readable, editable, nor directly executable. Bytecode is intended only for the
Java virtual machine.

Another Chapter: Getting A Bigger Picture

bytecode is executed by the virtual machine

ShoppingCart.class

. N

‘bytecode

Java Virtual Machine
N

. NS
Operating System and
Physical Machine

Bytecode is executed by the virtual machine

Bytecode is ready to execute butrequires the Java virtual machine. The virtual
machine is an executable program itself. It is like an interpreter: it reads
bytecode and translates it into machine code, which is executed by the
underlying operating system and hardware platform. The virtual machine
allows the bytecode to run on the physical machine.

Because of the virtual machine, bytecode is operating system and hardware
independent. As long as a server machine has a suitable virtual machine, it can
run any Java bytecode. Even in binary form, compiled Java code is highly
portable. This makes Java ideal for serving binary applications over the Web
to a wide range of diverse client machines.

83

Y our application incorporates many packages

| Javalang comapple.yellow.webobjects
{ Object unnamed package i WOApplication '
: | i ShoppingCart : i
/ String ' L / ! WOSession |
Neomomeeee com.apple.yellow.foundation i
. Integer ! NSDictionary | { NSArray

\
) \
' 1
|
H — i
1
' '
H 1
' |
]

. .

RN

Java Virtual Machine

You application incorporates many packages

Your Java application uses many classes in addition to the custom classes you
create. A Java application incorporates a collection of packages, each of which
contains bytecode for many related classes, typically from multiple vendors.

Java defines several basic packages that are available on any Java runtime
implementation. WebObjects applications commonly make use of classes in
the java.lang and java.util packages.

WebObjects applications make use of pre-defined classes from additional
packages specific to the WebObjects runtime environment. WebObjects
supplements the Java foundation with classes like NSArray, NSDictionary,
and NSGregorianDate. Built on the foundation, the WebObjects package
defines several classes that handle the infrastructure of Web-based
applications such as WOApplication, WOSession, and WOComponent.

Your custom classes complete the final application by adding business-specific
logic and controlling its overall look and feel. Your classes may be grouped in
custom packages you define. Most often, your classes are simply collected into
the unnamed default package.

84 Another Chapter: Getting A Bigger Picture

L aunching your application

Java applications are launched in different ways

» A Java applet class is downloaded to a Web browser
* A Java class’snain method is invoked from thava tool

» Launched like any daemon process on a server

» Service incoming requests from Web browsers

* Gain control from the HTTP server through CGI

» Pass control to your Java code during request processing

» An application wrapper—executable program—is launched

WebObijects applications are server-side application wrapper progr

ams

Launching your application

There are different ways to launch a Java application. Each technique leads to
the same basic result: executing bytecode in the Java vircual machine. What
differs between the techniques is where and how the Java machine is started
and which class is used as the initial startup class.

Applets are essentially small Java applications that are downloaded from a Web
browser to a client machine and executed in a Java machine embedded within
the browser application. Although you can use Java applets within a
WebObjects application, WebObjects applications are not client-side
applets—they are server-side applications.

You can launch full-fledged independent Java applications from the Java
command line tool—java. This is essentially the Java machine as an
independent program. With a command-line parameter, you specify the class
that contains the main entry point—a static method named main().

WebObjects applications use a third technique: they are complete command-
line applications in and of themselves. A WebObjects application completely
encapsulates the details of the Java virtual machine. A WebObjects application
is launched like any executable native to your server machine. It is a server

application from which Web clients download an HT'ML-based user interface.

85

86

The WOApplication class provides the first object

[WOApplication |

public void run()

Java Virtual Machine

When a WebObjects application launches, it

 Starts the Java virtual machine

» Creates an instance of a custom WOApplication subclass
» Transfers control to it by invoking thren() method

» Waits for incoming Web client requests

The WOApplication class provides the first object

When a WebObjects application is launched, it automatically starts the Java
virtual machine and passes control to a specific startup class named
WOApplication. To be more precise, the application creates an instance of a
custom WOApplication subclass named Application. You implement the
Application subclass and thereby gain early control in the lifetime of a
WebObjects application.

You inherit many attributes and much useful behavior from the
WOApplication subclass. It is possible that you needn’t customize
WOApplication at all. WOApplication implements the run() method that puts
the WebObjects application in state where it is ready to service incoming
requests from web clients. Once the application is listening for incoming
H'T'TP requests, its flow of control is driven by events generated from Web
clients.

In this sense, your application is much like any CGI program implemented as
a server daemon. The HT'TP server receives an incoming request which it
passes to your WebObjects application for servicing.

Another Chapter: Getting A Bigger Picture

Your code is activated from a client’s request

Client Server
Web Browser
::> Web Server—httpd
@
=
(WOApplication w WebObjects
L Application

@ (Customer |

firstName | “Jane”

ShoppingCart

lastName | “Doe”

)

shopper

items

Your code is activated from a client’s request

Ultimately, your custom code is activated in the context of servicing a web
client’s request. Control passes from the Web server daemon to your
WebObjects applications where the Application object takes control.

Although there is additional infrastructure omitted from the diagram for clarity,
control eventually passes to your custom classes such as the ShoppingCart and
the Customer. Imagine that a Web user logs into the application: a Customer
object is created.While browsing your catalog, the customer chooses to
purchase an item: a ShoppingCart object is created to hold the object and so
on.

It is important to see that your code is typically activated indirectly as a result
of a client request. In this sense, WebObjects applications are said to be event-
driven. T'he core of the application’s logic is a repetitive action: wait for request,
process the request, wait for another request, process the request, and so on.
"This is called an event loop which, in the case of a WebObjects application, is
called the request-response loop.

87

88

Libraries, frameworks, and packages—reusable cq

Library
» Provides low-level interfaces for specific tasks
» Generally affects your design on a small scale

Framework

» Generally affects your design on a large scale

Package

+ Java collection of reusable classes
* Can be a library or a framework

» Provides high-level structures for general design problems

de

Libraries, frameworks, and packages—reusable code

When looking at the bigger picture, it is useful to clarify the terms /ibrary,
[framework, and package. All three refer to software constructs for sharing
reusable code.

Alibrary is a traditional software construct for gathering reusable programming
interfaces. Libraries contain a set of functions or procedures useful as low level
convenience routines for specific tasks. One library might define functions for
file I/O. Another might support a wide range of advanced math functions.
Libraries can be object-oriented, in which case these conveniences are
represented as reusable classes. Libraries typically have a small impact on the
overall design of your application. You use the library functions when you need
them within the larger application structure of your own design.

A framework 1s also a collection of reusable interfaces or classes, but itaddresses
a larger design problem on a broader scale. As its name implies, a framework
provides more comprehensive structures for designing entire applications
within a specific problem domain. There are frameworks for graphics editors,
financial modeling, database, and Web applications. A framework has a major
impact on the overall design of your larger application structure.

A package is simply a Java mechanism for collecting related reusable classes. A
Java package may be as simple as a library or as elaborate as a framework.
Conceptually, the java.util package is a library. The WebObjects package, on
the other hand, is a framework.

Another Chapter: Getting A Bigger Picture

Traditional programming model using libraries

Your Code Library

LY

* You have the initial control—typically throughnaain entry point
* You sequence the main flow of control

* You call the library

* You define the application structure

* You make most of the decisions

Traditional programming model using libraries

From a big and somewhat oversimplified perspective, consider the traditional
programming model using libraries. Your custom code takes initial control
through a well-defined entry point. From there, your application logic
sequences the main flow of control, calling library routines for low-level
conveniences. You open and read a file. You perform some specific and
elaborate math computations. You return to your own code to continue the
main flow of logic.

You call the library within a larger application structure that you design. You
make most of the large-scale design decisions.

89

Event-driven model with frameworks

Framework Your Code

LY

* Framework has the initial control—typically through an event
* Framework sequences the main flow of control

» Framework calls you

» Framework defines the application structure

* You integrate with framework design patterns

» Framework makes most of the decisions

Event-driven model with frameworks

Because frameworks address larger designs problems on the scale of complete
applications rather than low level convenience functions, the framework
programming model is significantly different than the traditional library
model. This is especially true for event-driven applications like Web
applications. Compared to the library model, the framework model is
practically the reverse.

The framework typically takes initial control, both at startup and when
servicing an event. The framework sequences the main flow of control, not
you. Most often, the framework calls you, rather than the other way around.

The framework defines the overall structure of the application and makes
most of the large-scale design decisions. You integrate your code within the
framework using well-defined design patterns.

20 Another Chapter: Getting A Bigger Picture

WebODbjectsis aframework

WebObjects
Framework

Your
Classes

* Web applications are driven by events—client requests

* WebObjects is a framework for servicing them

* Your classes fit within the WebObjects application framework
* You play a specific role within in a bigger picture

» WebObjects handles the big picture

WebObjects is a framework

WebObjects is a framework that supplies much of the structure of your custom
WebObjects application. The model is event-driven so that your code is
usually activated indirectly by callbacks. Framework classes gain initial control
and call you when the time is right. Your classes fit within a larger, general
application structure defined by WebObjects. You play a specific role within a
bigger picture.

"This can be confusing to new WebObjects developers especially when they
are also new to object-oriented and event-driven programming. The flow of
control seems indirect, even magic. Who is calling your code? How and when
do you gain control? What is the larger and seemingly hidden design implied
by the WebObjects framework?

Keeping the event-driven framework model in mind will help. WebObjects
presents a slightly steeper learning curve since you have to understand the
larger picture. To some extent, you have to yield control, accept and trust a
more elaborate infrastructure.

But this is not giving up flexibility or power. Indeed, it is the opposite.
WebObjects provides a coherent and highly generalized framework for an
arbitrary number of sophisticated custom applications. In many ways, the
tedious and general infrastructure problems are solved once and for all. You
don’t have to reinvent the wheel. You are free to focus on the interesting
problems, the meaningful content of a new application, the fun stuff.

91

92

Project Builder manages the details

Project Builder isthe IDE tool in WebObjects

From a single graphical application you can
» Create new application projects
Create and edit new Java classes
Launch additional graphical modeling and layout tools

Compile and install

Launch and debug your WebObjects application

No need to handle the details of Java environment
javac, CLASSPATH, java, etc.

Project Builder manages the details

While the WebObjects framework handles much of the big picture, the
WebObjects developer tools handle many of the small, mechanical details.
WebObjects developer tools include Project Builder, an integrated
development environment for managing WebObjects application projects.

From Project Builder, you can perform all the common tasks for developing,
compiling, testing and debugging your evolving application. Project Builder
manages the details of invoking the Java compiler, collecting the Java class and
package files, linking frameworks, setting the CLASSPATH environment
variable, and launching your application.

While you may wish to use other Java tools, you generally don’t have to. You
can focus mostly on the Java language and worry less about the Java runtime
environment.

Another Chapter: Getting A Bigger Picture

One more chapter Handling Exceptions

When bad things happen to good objects

The essentials of Java error handling

One more chapter

Exception Handling

Goal

"To effectively catch and handle runtime exceptions.

Prerequisites

Basic Java programming skills.

Objectives
At the end of this lesson, you will be able to:

List several common runtime problems
Catch an exception
Distinguish among multiple exceptions types

Define a new exception class

vV vV v v VY

Throw an exception

95

96

A runtime problem is called an exception

Even though your code compiles, it may not always run smoothly

((Wdget)array. object Atl ndex(i)).price();
e array is null

* index i is out of bounds

» the object at index i is not a Widget

* Widgets don’t implement a price method

shoppi ngCart. checkQut () ;
» the shopper’s credit card is declined
 the order can’t be committed to the database

Such problemghrow an exception and change the flow of control

A runtime problem is called an exception

Once your Java code compiles successfully, you can launch your application
and run the code. Depending on what happens during the life your
application, the code may encounter problems. If your code is well
constructed, a runtime problem is not the normal case, but an exceptional one.
The Javalanguage and runtime environment define a formal and practical way
to deal with exceptions and to create robust production-ready code, you will
have to make use of a few important features.

Notice, a runtime problem might be a simple language issue: an object
reference is null, an array index is out of bounds, a cast turns out to be a lie, etc.
These exceptions usually indicate a fundamental logic or code problem in
your implementation.

More realistically, your code is well written, but includes true exceptional cases
beyond your control: a customer’s credit card is rejected or the database
encounters an error when committing a transaction.

In all of these cases, the Java runtime brings the problem to your attention by
throwing an exception. By throwing an exception, Java instantly changes the
normal flow of control of your code. In the end, the exception requires your
attention which you provide through a bit of custom code.

One more chapter: Handling F.xceptions

An exception object identifies the problem

An exception is an object representing the error
» Specific types of exceptions are represented by specific Java classes
* An exception may contain data that further identifies the problem
» All exceptions contain an error message (and a stack trace)

CreditException
[D

(DatabaseException
. message | “Your credit
message | “The zip code card was
column cannot declined”
be null” customer D\

Customer

firstName | “Jane”

lastName | “Doe”

An exception object identifies the problem

"The runtime problem will be represented by an object, an instance of a special
exception class. Different exceptions—a null pointer, a database failure—are
usually represented by instances of different Java classes. The type of
exception object begins to explain exactly what happened.

Since each exception type is implemented by a specific, separate Java class,
different exceptions can provide different data and behavior specific to a
particular runtime problem. A credit exception may include a reference to the
customer or credit card that is the focus of the problem.

All exception objects have two things in common: a message string suitable for
presenting in your application’s user interface, and a Java stack trace, useful for
debugging the problem.

97

What happens when an exception is thrown?

When an exception is thrown

» The code stops executing immediately

* The message sequence “unwinds” until the exception is caught
* An exception object provides the details to the catcher

By default
* The Java/WebObijects infrastructure catches the exception
* Your code that caused the exception loses control

You can explicitly
» Catch the exception to retain control
* Supply custom logic to deal with the problem

What happens when an exception is thrown?

What really happens when an exception is thrown during the life your of
application? First, your code stops executing, dead in its tracks. The
exceptional condition means that the normal flow of control is somehow
impossible. The code that throws the exception manufactures an exception
object to record the details of the problem. Finally, the Java runtime “throws”
the exception object so that it is “up for grabs” by a special part of your code
that “catches” the exception in order to deal with it. In essense, the Java
runtime now unwinds backwards through your code until it reaches the first
available exception handler.

By default, the Java or WebObjects infrastructure provides the exception
handling code. The default behavior typically displays a detailed stack trace
showing you where exactly the code was when the exception occurred, and
more importantly, how the code got there in the first place. The key fact
however is that you lose control of the situation. Your code stops and someone
else’s code takes over. Control never returns to you, at least, in the same place
that you were when the problem occurred.

You can write your code to explicitly catch the exception yourself. This way,
you retain control of the situation, continuing to execute where you have the
most information about the context in which the problem has occurred. But
now you take on an important burden: you must effectively deal with the
problem.

98 One more chapter: Handling F.xceptions

Catching an exception in your own code

To catch an exception, use the try/catch keywords

try {
/'l the code that may throw an exception

shoppi ngCart. checkQut () ;

}
catch (Exception e) {

System.err.printin(“*Could not check out”);
System.err.printin(e.getMessage());
return; // abort processing

}

// no exception, continue processing

/'l your code to process the actual exception

Catching an exception in your own code

"To catch an exception, use the Java keywords #7y and cazch. First, identify the
line or lines of code that may throw an exception. Nest the code inside a try
block indicating that you wish to try to do something that may go awry.

Next, supply a block of special code that will be activated only if the code you
are trying actually throws an exception. The catch keyword defines the block
and takes a single local argument: an exception object. Notice that the
exception argument is typed to the specific class of exception you are prepared
to handle. To catch just about any exception, you can use the more generic
type, java.lang.Exception. The exception argument is in scope only for the
duration of the catch block that defines it. In this sense, the catch block is
much like a local “in line” method.

What you do inside the catch block depends on the logic of your application.
You know the class of exception object from the catch argument. The
exception object at minimum contains a message string (and a stack trace). No
matter what, your catch code usually takes an alternate path such as returning
from the method or avoiding additional processing that is carried out in the
normal case.

If the code in the try block executes successfully without an exception, the
catch block is ignored and the flow of control resumes with the next Java
statement flowing the exception handler.

29

There are multiple exception classes

1
'
'
r
'
'
'
'
'
\

WebObjects |
Exceptions |

There are multiple exception classes

Each exceptional case in the Java runtime or your custom code can be
represented by a specific exception class. Java defines several basic exception
types in an inheritance hierarchy rooted at the abstract class

java.lang. Throwable. Serious errors are subclasses of java.lang.Error and often
cannot be caught at all. Catchable exceptions are subclasses of Exception.
Exceptions defined by the WebObjects frameworks are usually subclasses of
java.lang. RuntimeException. These have a special property as you will see.

Most other exception classes—defined by 3rd-party packages or new custom
classes that you might define—are subclasses of Exception. Our fictional
DatabaseException is a good example.

"The key point is that specific exception classes can be defined to represent
specific runtime problems. You can implement different code for different
classes of exceptions. Multiple exception types can be classified into sub-
groups that inherit common behavior from a superclass. This enables you to
be specific—here is a Database Exception—or more general—here is some
kind of generic runtime problem.

100 One more chapter: Handling Fxceptions

Y ou can handle different exceptions differently

try {
shoppi ngCart . checkQut () ;

}

catch (CreditException e) {
System.err.printin(*Your credit is bad”);
return;

}

catch (DatabaseException e) {
System.err.printin(“Database problem”);
return;

}
System.out.printin(*Thanks for shopping!”);

You can handle different exceptions differently

"To handle different classes of exceptions differently, you can supply multiple
catch blocks in your exception handler. Each catch block declares the specific
class of exception it is prepared to deal with. When the try block throws an
exception, Java will select the most specific catch block it can find. It will
execute at most only one try block. If the exception is not covered by any of
your try blocks—the actual exception class is not within any of the sub-groups
your declared—it will be handled by the default exception handler from Java
or WebObjects.

"This makes sense: provide the code for those specific exception cases you can
handle, and ignore the others.

101

102

Exception or not, some code is always necessary

Often, some code is necessary regardless of what happens

Use thefinally clause for code that aways executes

try {
shoppi ngCart . checkQut ();

}

catch (CreditException e) {
System.err.printin(*Your credit is bad”);
return;

}

finally {
shoppingCart.setProcessingComplete(true);

Exception or not, some code is always necessary

The code within the try block might well succeed without throwing an
exception. On the other hand, only one of many different catch blocks will be
activated if there is an exception. Often, your logic requires some final
processing in all cases—regardless of whether or not there was an exception or
regardless of the actual exception type that was thrown.

To implement this requirement, you can provide a finally block. The finally
block takes no arguments (it is independent of any exception) and will be
activated no matter what happens in the try or catch blocks. It is always the last
bit of code to execute before the flow of control resumes.

One more chapter: Handling F.xceptions

Exception classes are often inner classes

Exceptions are often specific to aclass or interface

CreditException could be defined within the ShoppingCart class
Y ou refer to inner classes using a dot separated path name, like
Shoppi ngCart. Credi t Exception e = new

Shoppi ngCart. Credi t Exception();

or

catch (ShoppingCart.CreditException(“Bad”)) {

For example, credit exceptions might only occur with shopping carts

Exception classes are often inner classes

Java includes a feature for defining inner classes, that is, a class definition
inside of another class or interface. This provides a useful encapsulation
feature. Consider that a credit exception might only be thrown when
interacting with a shopping cart object. In this case, it may make sense to
define the CreditException class within the ShoppingCart class. [tis up to the
class implementor.

"To use an inner class, you must include the outer class (or interface) at part of
the formal type name. Much like a package name, the inner class name is
specified by a dot-separated path that moves from outer to inner class.

103

104

Y ou can define your own new exception classes

Custom exceptions typically subclass java.lang.Exception

Y ou can add new instance data and behavior
class CreditException extends Exception {
private Customer customner;
public Customer getCustoner() {
return custoner;

}

publ i c set Custoner (Custoner custoner) {
t hi s. custoner = custoner;

You can define your own new exception classes

What if your own custom code detects a runtime problem, an exception to the
normal, successful flow? You may wish to define your own custom exception
classes that you can throw.

Most custom exception classes are subclasses of java.lang.Exception. You can
define a new subclass and, like any Java subclass, you can add optional data
and behavior. Notice, however, that often just the new class type alone may be
sufficient for a catch block to be specific about your particular exception.

A simple example of custom behavior might be the ability of a credit exception
to reference the customer to which it applies. In the CreditException, you
might add an instance variable and a pair of accessor methods.

Note that java.lang.Exception defines a one-argument constructor for creating
a new exception object along with the message string. To provide the same
one-argument constructor in your CreditException subclass, you must include
a one-argument constructor such as:

public CreditException(String nmessage) {

super (nessage) ;

One more chapter: Handling F.xceptions

Y ou can explicitly throw an exception

Y ou can signal aruntime error by throwing your own exception

Create an exception instance, then throw it with the thr ow keyword

if (badCredit) {
Credi t Exception e =
new CreditException(“credit denied”);
e.setCustomer(currentCustomer);
throw e;

You can explicitly throw an exception

When your custom code detects that a specific runtime problem has occurred,
it can throw an exception thereby aborting the flow of control and making an
exception object available to whichever catch block the Java runtime finds to
handle it.

"To throw an exception, create a new instance of the specific exception class
that is most appropriate, typically a custom exception class you have defined.
Initialize the exception object in any additional way the situation requires—in
our example, setting the customer reference in the exception. Finally, throw
the exception using the Java keyword #row.

105

106

If you throw an exception, you have to declare it

If your method throws an exception, you must declare it

public void checkQut() throws CreditException {

If you throw an exception but don’t declare it, the code won’t compi

Subclasses of java.lang.RuntimeException need not be declared

le

If you throw an exception, you have to declare it

Java features dhecked exceptions. That is, if a Java method may possibly throw an
exception, it must formally declare it in the method signature. This way, the
Java complier can warn you if you call a method but do not make provisions for
catching the exceptions that might result.

Use the keyword throws in your method declaration. If you don’t but the body
of the method contains a throw statement, your code will not compile. If you
throw multiple types of exceptions, specify each one in a comma-separated
list.

Subclasses of java.lang.RuntimeException need not be declared. You can
throw them without advertising it your method declaration. This is usually not
a good idea because it withholds important information from the client of your
code. You are discouraged from using RuntimeException classes for this
reason.

One more chapter: Handling F.xceptions

Appendix Additional Resources

A lot of people have done a lot of work

Useful stuff that you cun reuse

Appendix

Additional Resources

Is that all? Isn’t there more? Now what?

Once you have finished reading this guide, go back to the beginning and
re-evaluate your Java skill. If you can easily understand the shopping cart
example, you likely have enough knowledge to start building WebObjects
applications.

There is more you will eventually need to learn. To deal with errors, you must
learn about Java exception handling. Even with the basics, you may desire
more clarity, a different approach, more examples. Once you have mastered
the basics, you will need a source for advanced topics and a good reference.
You can find additional resources listed here.

Reusing this guide

Remember that your main objective is to read and write basic, valid Java code.
It might serve you to spend more time with just the simple examples
presented in this guide. The format supports multiple readings, each from a
slightly different example: read just the slides, focusing primarily on the Java
code statements. Read just the titles of each slide. Read just the explanatory
text. Read the guide backwards—Chapter 2 followed by Chapter 1. The main
point is iterate—try again and see what new facts or concepts come to light.

Using your computer—Getting Started with WebObjects

Ultimately, the best learning experience is doing. Fire up the computer and
write some of your own Java code from scratch. Readers have asked for
exercises. The best exercise is to build your first WebObjects application.
WebObjects includes a basic tutorial called Gerting Started with WebObjects. 1f
you plan on attending WebObjects training, you should definitely invest some
time and work through the tutorial. Once you create a basic application, you’ll
have a test environment to create and exercise some custom classes .
WebObjects includes a number of examples. While you may not be able to
follow the particulars of WebObjects yet, you can increase your familiarity with
Java by studying the code.

You can start learning WebObjects development using the online resources in
the WebObjects Info Center. You will find the following useful books:

> Gerting Started With WebObjects
» WebObjects Tools and Techniques
» WebObjects Developer Guide

109

110

Appendix: Additional Resources

Using the Web

If you don’t have WebObjects, you can generally find a Java development and
runtime environment online and download it to your computer. Check
www.javasoft.con.

You can find a wealth of Java information online. If you visit to www.ya/koo.com
and enter the following query:

+Java +Tutori al

you will find over 65 references.

Recommended books

The number of available Java books is staggering. They represent a wide
range of styles, target audiences, and content. Most of them explore parts of
Java that are not required or even commonly used with WebObjects e.g.
applets and Java-based graphical user interfaces. Many of them begin with
general discussions of object-oriented programming and the basic Java
language features.

The number of titles on object-oriented design, analysis and programming is
similarly vast. Books devoted to object-orientation in general—rather than
programming in Java in particular—tend to be abstract and scholarly rather
than immediately practical.

Any particular title is likely to have enthusiastic supporters and vehement
detractors. No book is right for everyone. In the end, you simply have to pick
more or more books that appeal to you, personally. What follows is a small list
of titles in both object-orientation and Java programming that seem to have a
good track record with teachers, students and active WebObjects developers.
You needn’t read all of them, but you will likely need more than one. The list
includes brief annotations and complete information for locating each book.

Books—the minimum and essential reference set

If you successfully gained an orientation from this guide, you might consider
the following the minimum and essential set of books for practical Java
programming,.

» Object-Oriented Technology: A Manager’s Guide, by David Taylor.

» Java in a Nutshell, by David Flannagan.

See the detailed information in following sections.

Recommended books—object-orientation

Obyject-Oriented Technology: A Manager’s Guide, 2nd edition, David A. Taylor,
Ph.D., Addision-Wesley, 1997. 0201309947.

Don’t be troubled by the word “Manager” in the title: this is still one of
the best introductions to object-oriented technology available.

Object-Oriented Programming and the Objective C Language (online)

While most of this document is specific to Objective-C, the first chapter,
Object-Oriented Programming, is a superb overview. The book is distributed
online as part of the WebObjects installation. You can find it in the
WebObjects Info Center with the query “Object-Oriented
Programming”.

An Introduction to Object-Oriented Programmiing, 2nd edition, Timothy Budd,
Addison-Wesley, 1997. ISBN 0201824191.

"This is an excellent book on object-oriented programming using multiple
languages—including Java—to explore concepts, language features and
programming techniques and design. Very interesting for polyglot
programmers to compare languages or for a programmer familiar with one
of the languages to learn Java by comparison.

Object-Oriented Programming: An Evolutionary Approach, 2nd edition, Brad].
Cox and Andrew]. Novobilski, Addison-Wesley, 1991. ISBN 0201548348.

While most of this small book focuses on Objective-C—Brad Cox
invented the language—the first few chapters offer some of the most vivid
and passionate essays on object-orientation in general.

Recommended books—object-orientation—advanced

Design Patterns, Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Addison-Wesley, 1994. ISBN 0201633612.

"This brilliant and highly influential book launched the design pattern
movement within the software community. It is a catalog of several
language-independent reusable designs. The book also includes
extensive general and insightful commentary on good object-oriented
design principles. Because of its multiple authors, it is often called “The
Gang of Four Book”.

Object-Oriented Analysis and Design with Applications, 2nd Edition, Grady Booch,
Benjamin/Cummings Publishing Company, Inc., 1994. ISBN 0805353402.

Grady Booch is probably the most famous and active scholar in the OO
community. This book is the most often cited tome on object-oriented
analysis and design. It is heavy—the writing style is dense—but the
concepts are profound. Approach this one after you have some experience
under your belt.

112

Appendix: Additional Resources

Recommended books—Java programming

The Java Programming Language, 2nd Edition, Ken Arnold and James Gosling,
Addison-Wesley, 1997. ISBN 0201310066.

"This is the original Java book written by of its chief creators. Written in a
style much like the classic C programing Book from Kernighan and
Ritchie (“K & R”), this is likely to appeal to a similar audience. It starts
with a quick guided tour of the language and then explores each area with
a crisp, methodical thoroughness.

Java in a Nutshell: A Desktop Quick Reference, Znd Edition, David Flanagan,
O’Reilly & Associates, Inc., 1997. ISBN 156592262X.

"T'his is probably the most popular conveniently sized Java reference. Itis
well-organized, efficient, detailed and reasonably thorough. While it is a
great reference, it is probably not suitable as an introduction.

On to Java, 2nd Edition, Patrick Henry Winston, Sundar Narasimhan,
Addiston-Wesley, Inc. ISBN 0201385958.

In the same series as On o C and On fo C++, this book is clear, concise and
presented in a novel style. Some readers find it a bit dry. Others find it
refreshing.

The Java Tutorial, 2nd Edition, Mary Campione, Kathy Walrath, Addison-
Wesley, 1998. ISBN 0201310074.

Many students have found this book to be useful. Others have found it
difficult to navigate. It probably has more information than you need, but
it is organized as a tutorial rather than a guide or a reference. It has a free
online companion at 4#p.//java.sun.conifdocs/books/tutoriallindex.hitm!.

CoreJava 1.1: Volume 1—Fundamentals, Cay S. Horstmann, Gary Cowell,
Prentice Hall, 1997. ISBN 0137669577.

Highly recommended, but probably not good for beginning programmers,
this is one of numerous books from Sun’s vast library of Java titles. There
is a newer edition for Java 1.2 but, for now, this is more appropriate for
WebObjects programming.

Mr. Bunny’s Big Cup ‘O Java. Carlton Egremont 111, Addison Wesley Logman,
Inc., 1999. ISBN 0201615630.

"This book will not teach you Java. It could possibly make you laugh for
hours. It offers a refreshing change of pace and a useful alternative to
taking everything too seriously. [t is astoundingly creative and may deliver
a helpful “whack on the side of the head” that stimulates your creativity.
T'he more you know about Java—and the software industry in general—
the more you will laugh. Imagine Lewis Carroll meets Dave Barry.

	JAVA FOR WEBOBJECTS DEVELOPERS
	Version 2.0
	Introduction v
	Chapter 0 Evaluting Your Java Skill xiii
	Chapter 1 Using Objects 1
	Chapter 2 Creating Classes 45
	Another Chapter Getting A Bigger Picture 79

	Chapter 3 Exception Handling 93
	Appendix Additional Resources 107

	Introduction
	Java for WebObjects developers—Java in 21 minutes
	The basic goal—getting you to think and speak Java
	Prerequisites and assumptions—where are you coming from?
	You’re a Java hacker—do you even need this guide?
	Java in 2 1 hour chapters
	What’s not covered and why
	A bit about WebObjects
	Apple Enterprise Training
	Introduction

	Chapter 0 Evaluating Your Java Skill
	Goal
	Prerequisites
	Objectives
	Evaluating your Java skill
	The shopping cart specification
	A few special details
	The shopping cart example
	Purchase.java
	ShoppingCart.java

	Evaluate your Java skills in your own words
	Evaluating Your Java Skill

	Chapter 1 Using Objects
	Using Objects

	Chapter 2 Creating Classes
	Creating Classes

	Another Chapter Getting a Bigger Picture
	Getting a Bigger Picture

	One more chapter Exception Handling
	Handling Exceptions
	Additional Resources

	Appendix Additional Resources

