One more chapter Handling Exceptions

When bad things happen to good objects

The essentials of Java error handling

One more chapter

Exception Handling

Goal

"To effectively catch and handle runtime exceptions.

Prerequisites

Basic Java programming skills.

Objectives

At the end of this lesson, you will be able to:
List several common runtime problems
Catch an exception

Distinguish among multiple exceptions types

Define a new exception class

vV vV v v v

Throw an exception

95

96

A runtime problem is called an exception

Even though your code compiles, it may not always run smoothly

((Widget)array.objectAtIndex(i)).price();
* array is null

* index i is out of bounds

* the object at index i is not a Widget

* Widgets don’t implement a price method

shoppingCart.checkOut ();
* the shopper’s credit card is declined

¢ the order can’t be committed to the database

Such problems throw an exception and change the flow of control

A runtime problem is called an exception

Once your Java code compiles successfully, you can launch your application
and run the code. Depending on what happens during the life your
application, the code may encounter problems. If your code is well
constructed, a runtime problem is not the normal case, but an exceptional one.
The Java language and runtime environment define a formal and practical way
to deal with exceptions and to create robust production-ready code, you will
have to make use of a few important features.

Notice, a runtime problem might be a simple language issue: an object
reference is null, an array index is out of bounds, a cast turns out to be a lie, etc.
These exceptions usually indicate a fundamental logic or code problem in
your implementation.

More realistically, your code is well written, but includes true exceptional cases
beyond your control: a customer’s credit card is rejected or the database
encounters an error when committing a transaction.

In all of these cases, the Java runtime brings the problem to your attention by
throwing an exception. By throwing an exception, Java instantly changes the
normal flow of control of your code. In the end, the exception requires your
attention which you provide through a bit of custom code.

One more chapter: Handling Exceptions

An exception object identifies the problem

An exception is an object representing the error

* All exceptions contain an error message (and a stack trace)

\ (CreditException w

(DatabaseException
_ message | “Your credit
message | “The zip code card was
column cannot declined”
be null” customer

Customer

firstName

lastName

* Specific types of exceptions are represented by specific Java classes

* An exception may contain data that further identifies the problem

An exception object identifies the problem

"The runtime problem will be represented by an object, an instance of a special
exception class. Different exceptions—a null pointer, a database failure—are
usually represented by instances of different Java classes. The type of
exception object begins to explain exactly what happened.

Since each exception type is implemented by a specific, separate Java class,
different exceptions can provide different data and behavior specific to a
particular runtime problem. A credit exception may include a reference to the
customer or credit card that is the focus of the problem.

All exception objects have two things in common: a message string suitable for
presenting in your application’s user interface, and a Java stack trace, useful for
debugging the problem.

97

98

What happens when an exception is thrown?

When an exception is thrown
* The code stops executing immediately
* The message sequence “unwinds” until the exception is caught

* An exception object provides the details to the catcher

By default
* The Java/WebObjects infrastructure catches the exception
* Your code that caused the exception loses control

You can explicitly
* Catch the exception to retain control
* Supply custom logic to deal with the problem

What happens when an exception is thrown?

What really happens when an exception is thrown during the life your of
application? First, your code stops executing, dead in its tracks. The
exceptional condition means that the normal flow of control is somehow
impossible. The code that throws the exception manufactures an exception
object to record the details of the problem. Finally, the Java runtime “throws”
the exception object so that it is “up for grabs” by a special part of your code
that “catches” the exception in order to deal with it. In essense, the Java
runtime now unwinds backwards through your code until it reaches the first
available exception handler.

By default, the Java or WebObjects infrastructure provides the exception
handling code. The default behavior typically displays a detailed stack trace
showing you where exactly the code was when the exception occurred, and
more importantly, how the code got there in the first place. The key fact
however is that you lose control of the situation. Your code stops and someone
else’s code takes over. Control never returns to you, at least, in the same place
that you were when the problem occurred.

You can write your code to explicitly catch the exception yourself. This way,
you retain control of the situation, continuing to execute where you have the
most information about the context in which the problem has occurred. But
now you take on an important burden: you must effectively deal with the
problem.

One more chapter: Handling Exceptions

Catching an exception in your own code

To catch an exception, use the try/catch keywords

try {
// the code that may throw an exception

shoppingCart.checkOut();
}

catch (Exception e) {

System.err.println(“Could not check out”);
System.err.println(e.getMessage());
return; // abort processing

}

// no exception, continue processing

// your code to process the actual exception

Catching an exception in your own code

"To catch an exception, use the Java keywords #y and cazch. First, identify the
line or lines of code that may throw an exception. Nest the code inside a try
block indicating that you wish to try to do something that may go awry.

Next, supply a block of special code that will be activated only if the code you
are trying actually throws an exception. The catch keyword defines the block
and takes a single local argument: an exception object. Notice that the
exception argument is typed to the specific class of exception you are prepared
to handle. To catch just about any exception, you can use the more generic
type, java.lang. Exception. The exception argument is in scope only for the
duration of the catch block that defines it. In this sense, the catch block is
much like a local “in line” method.

What you do inside the catch block depends on the logic of your application.
You know the class of exception object from the catch argument. The
exception object at minimum contains a message string (and a stack trace). No
matter what, your catch code usually takes an alternate path such as returning
from the method or avoiding additional processing that is carried out in the
normal case.

If the code in the try block executes successfully without an exception, the
catch block is ignored and the flow of control resumes with the next Java
statement flowing the exception handler.

99

There are multiple exception classes

i RuntimeException ! ! DatabaseException '

' WebObjects
! Exceptions

There are multiple exception classes

Each exceptional case in the Java runtime or your custom code can be
represented by a specific exception class. Java defines several basic exception
types in an inheritance hierarchy rooted at the abstract class

java.lang. Throwable. Serious errors are subclasses of java.lang.Error and often
cannot be caught at all. Catchable exceptions are subclasses of Exception.
Exceptions defined by the WebObjects frameworks are usually subclasses of
java.lang.RuntimeException. These have a special property as you will see.

Most other exception classes—defined by 3rd-party packages or new custom
classes that you might define—are subclasses of Exception. Our fictional
DatabaseException is a good example.

The key point is that specific exception classes can be defined to represent
specific runtime problems. You can implement different code for different
classes of exceptions. Multiple exception types can be classified into sub-
groups that inherit common behavior from a superclass. This enables you to
be specific—here is a DatabaseException—or more general—here is some
kind of generic runtime problem.

100 One more chapter: Handling Exceptions

You can handle different exceptions differently

try {
shoppingCart.checkOut();

}

catch (CreditException e) {
System.err.println(“Your credit is bad”);
return;

}

catch (DatabaseException e) {
System.err.println(“Database problem”);
return;

}
System.out.println(“Thanks for shopping!”);

You can handle different exceptions differently

"To handle different classes of exceptions differently, you can supply multiple
catch blocks in your exception handler. Each catch block declares the specific
class of exception it is prepared to deal with. When the try block throws an
exception, Java will select the most specific catch block it can find. Tt will
execute at most only one try block. If the exception is not covered by any of
your try blocks—the actual exception class is not within any of the sub-groups
your declared—it will be handled by the default exception handler from Java
or WebObjects.

"This makes sense: provide the code for those specific exception cases you can
handle, and ignore the others.

101

102

Exception or not, some code is always necessary

Often, some code is necessary regardless of what happens

Use the finally clause for code that always executes

try {
shoppingCart.checkOut();

}

catch (CreditException e) {
System.err.println(“Your credit is bad”);
return;

}

finally {
shoppingCart.setProcessingComplete(true);

Exception or not, some code is always necessary

"The code within the try block might well succeed without throwing an
exception. On the other hand, only one of many different catch blocks will be
activated if there is an exception. Often, your logic requires some final
processing in all cases—regardless of whether or not there was an exception or
regardless of the actual exception type that was thrown.

"To implement this requirement, you can provide a finally block. The finally
block takes no arguments (it is independent of any exception) and will be
activated no matter what happens in the try or catch blocks. Itis always the last
bit of code to execute before the flow of control resumes.

One more chapter: Handling Exceptions

Exception classes are often inner classes

Exceptions are often specific to a class or interface

For example, credit exceptions might only occur with shopping carts

CreditException could be defined within the ShoppingCart class

You refer to inner classes using a dot separated path name, like

ShoppingCart.CreditException e = new
ShoppingCart.CreditException();

or

catch (ShoppingCart.CreditException(“Bad”)) {

Exception classes are often inner classes

Java includes a feature for defining inner classes, that is, a class definition
inside of another class or interface. This provides a useful encapsulation
feature. Consider that a credit exception might only be thrown when
interacting with a shopping cart object. In this case, it may make sense to
define the CreditException class within the ShoppingCartclass. Itis up to the
class implementor.

"To use an inner class, you must include the outer class (or interface) at part of
the formal type name. Much like a package name, the inner class name is
specified by a dot-separated path that moves from outer to inner class.

103

104

You can define your own new exception classes

Custom exceptions typically subclass java.lang.Exception

You can add new instance data and behavior
class CreditException extends Exception {
private Customer customer;
public Customer getCustomer() {
return customer;

}

public setCustomer(Customer customer) {
this.customer = customer;

You can define your own new exception classes

What if your own custom code detects a runtime problem, an exception to the
normal, successful flow? You may wish to define your own custom exception
classes that you can throw.

Most custom exception classes are subclasses of java.lang. Exception. You can
define a new subclass and, like any Java subclass, you can add optional data
and behavior. Notice, however, that often just the new class type alone may be
sufficient for a catch block to be specific about your particular exception.

A simple example of custom behavior might be the ability of a credit exception
to reference the customer to which it applies. In the CreditException, you
might add an instance variable and a pair of accessor methods.

Note that java.lang. Exception defines a one-argument constructor for creating
a new exception object along with the message string. To provide the same
one-argument constructor in your CreditException subclass, you mustinclude
a one-argument constructor such as:

public CreditException(String message) {

super (message) ;

One more chapter: Handling Exceptions

You can explicitly throw an exception

You can signal a runtime error by throwing your own exception
Create an exception instance, then throw it with the throw keyword

if (badCredit) {
CreditException e =
new CreditException(“credit denied”);
e.setCustomer (currentCustomer);
throw e;

You can explicitly throw an exception

When your custom code detects that a specific runtime problem has occurred,
it can throw an exception thereby aborting the flow of control and making an
exception object available to whichever catch block the Java runtime finds to
handle it.

"To throw an exception, create a new instance of the specific exception class
that is most appropriate, typically a custom exception class you have defined.
Initialize the exception object in any additional way the situation requires—in
our example, setting the customer reference in the exception. Finally, throw
the exception using the Java keyword #row.

105

106

If you throw an exception, you have to declare it

If your method throws an exception, you must declare it

Subclasses of java.lang.RuntimeException need not be declared

public void checkOut() throws CreditException {

If you throw an exception but don’t declare it, the code won’t compile

If you throw an exception, you have to declare it

Java features dhecked exceptions. That s, if a Java method may possibly throw an
exception, it must formally declare it in the method signature. This way, the
Java complier can warn you if you call a method but do not make provisions for
catching the exceptions that might result.

Use the keyword throws in your method declaration. If you don’t but the body
of the method contains a throw statement, your code will not compile. If you
throw multiple types of exceptions, specify each one in a comma-separated
list.

Subclasses of java.lang. RuntimeException need not be declared. You can
throw them without advertising it your method declaration. This is usually not
a good idea because it withholds important information from the client of your
code. You are discouraged from using RuntimeException classes for this
reason.

One more chapter: Handling Exceptions

