s T
-
':;'}:.'I';]n

L

ﬁ{&:‘. | rs.f;b. ."
. s H
@ﬁ@
o I >

Component Programming with
J2EE and .NET

Prof. Dr. Andreas Polze

Operating Systems and Middleware Chair
Hasso-Plattner-Institute
at University Potsdam

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

andreas@polze.de

andreas.polze.de, www.dcl.hpi.uni-potsdam.de
AP 11/03

Overview

The Notion of Component-Oriented Programming
— Objects vs. Components
— Concepts of reuse, deployment, (graphical) builder tools

Component Systems
— NeXTSTEP Interface Builder, Java Beans, Component Object Model (COM)

Areas of Comparison
— Client-side: JavaBeans vs. C# constructs
— Server-side: EJB architecture vs. MTS/COM+ Enterprise services
— Summary of technologies

Aspects: Problems with Component Frameworks
— Non-functional component properties - Aspect-oriented programming
— How C# and .NET change the scene

Conclusions

AP 11/03

The Shifting Paradigm

Mainframes — PC's —_— The Grid

¥ sefignome

[

T, -

SuperDome
Hardware —p Software — Middleware
closed closed open standards,
proprietary proprietary WebServices

AP 11/03

Why Components?

,Software components are binary units of
independent production, acquisition, and
deployment that interact to form a functioning
system" (Szyperski 1997)

Components:
are units of independent deployment;
are units of third-party composition;
have no persistent state.
Objects:
are units of instantiation (each object has a unique identity);
have state that can be persistent;
encapsulate their state and behavior.

AP 11/03

Components and Objects illustrated

Entry point
(CoGetClassObiject())
o /”7’” Component
" :kiojvfg ? (unit of deployment)
CIaSS } //,,/’ : (A Object } ?
Factory A . L O—(A object }
, O—

Class : ?
Q—[FactoryB } ~ B object }

Components are rather on the level of classes than of objects

AP 11/03

Interfaces

« A component’s interfaces define its access points.

— These points let clients access the component’s services.
— Components may have multiple interfaces.
— Each access point may provide a different service.

* Interface specifications have contractual nature.
— Component and clients are developed in mutual ignorance.
— The standardized contract forms ground for successful interaction.

AP 11/03

Explicit Context Dependencies

Besides specifying provided interfaces, components are
also required to specify their needs.

— What does the deployment environment need to provide, so that the
components can function (so-called context dependencies).

— For example, a mail-merge component would specify that it needs a
file system interface.

Problems with today’s components:
— The list of required interfaces is not normally available.
— Emphasis is usually just on provided interfaces.

Non-functional component properties are not addressed
— CPU/memory usage, timing behavior, fault-tolerance properties.

AP 11/03

The Ultimate Difference

Components capture the static nature of
a software fragment.

Obijects capture its dynamic nature.
— Simply treating everything as dynamic can eliminate this distinction.

Good software engineering practices strengthen the

static description of systems as much as possible.

— Dynamics can always be superimposed where needed.
— Meta-programming and just-in-time compilation simplify
this soft treatment of the boundary between static and dynamic.

AP 11/03

Client-side

N\

Naming
patterns

Smalltalk

Objective-C (Eiffel)

The Component Landscape

Component models

Distributed

Model-View-Controller Server-side

Language WebObijects ,
constructs ASP.NET Persistency
Security

\ JSP /\

COM+ / .NET J2EE

Component Pascal Enterprise Services

Transactions

Non-functional properties? Versioning?
(Distributed) Deployment?

AP 11/03

Components at Work

Setting the stage:
NeXTSTEP and its tools

AP 11/03

1B Frontend to Calculator Component

Caclculator g ‘

Ienter value ..

Ientewalue... .
Text Title ltem 1 =
I Box — _
UNTITLED [|Edit X Button | ’7 Fleld1:|

Infio Cut
I—

Info

Dacurment
Edit
Format

Tools

Windows
Print...
Services
Hide

[uit

SI=|1FIl=lI7IFIFIFI717

Diocurnert Copy 8 Switch J

Edlit Faste W r“ Radio
Select & a r‘ Radio

Caonnectiong -ll

UNTITLELX

m

alignselCenter:
alighzelLeft:
alighselRight:

Instances \JCIaSsEsN

Files Crwrer First Responder hainhAen

kA W indd o

First Responder

Disconnect <

Active. mbod

: .i

é Interface Builder File Edit Classes Format Tools
e SN Untitled - MainMenu

MewApplication Ablage BEEETGIEIEGE Fenster Hilfe

= —<ii]

mactech_ darwin.pdfi - F——
%z b Button O Sept

Ausschneiden X :
rere 1 Switch @ {1.95
Einsetzen '

Loschen 4 i @ Radio | | Label Font Text
Alles auswahlen L EL A HE) Radio ﬁ Small System Font Text

) System Font Text

Layout Window Help == 4 Mit, 10:20:41

(&) &) Cocoa-Views =
= D == = Te¥ JHA

= [Text| w0 Tex | H-H

Widerrufen
Wiederholen

h.

FF

Suchen »
Rechtschreibung g
Sprachausgabe »

e

(&) 8 M5Menultem Info .|-:p.u

SystemOverview.pdf ! Connections H
[() () Frontend to Calculator Component

Outlets

Calculator target B [T
alignLeft:
alignRight: EXT
arrangelnFront:
changeFont: @
checkspelling: ial.sea 3.hgx
clear:

clearRecentDocume | &

copy: ey ﬁ 1

Source Destination
target FirstResponder.cop

Untitled

Images ‘ Sounds E.

F S
L =

File's Owner First Responder MainMenu

Instances] Classes

i 3
isconnect /

Macintosh HD

NeXTSTEP InterfaceBuilder

Edit 3
* Component mOdel Cut ® Connections -lI

based on Objective-C |ccxs m

Fazte W alignSelCenter:

— Class == object Select &l a alighselLeft
— Runtime type info Z'J%ZEE‘EE!L&
« Graphical management of

|changeFont:
checkSpelling:
|clear:
events
— Revolutionary tool (1991)
deleta:
— Interconnects event sources ¥ deminiaturize:
i

|copy: -
and sinks graphically

|copyFont:
Copy: First Responder

|copyRuler:
|| cut:

Revert Disconnect €

AP 11/03

File’s Crnyner First Responder

WebOQObjectsBuilder on Windows 2000

:. * Calculator.wo -- D) Andreas' Java', W0 wo-calculator

File Edit Format Elements ‘WebObjecks Forms Window Services Help

&la| @] Bl 1|u|T| 3| none | q|=]i=
| | .| || B | | | M @ B =] (]2 @

=

WehObjects Calculator Frontend

Enter values. . . Fﬂ-'.dd

Enter values. . . LéLtl _

F — Dynamic Ihspectar =|

ArddButton

Make Static | 1| @

<BODY= <WOForms <TABLE= <TR= =TDw |=WOSubmitButtc

Targeted towards

web-based apps.

— Server-side logic
generates
html-forms

— Distributed MVC

Attribute | Binding

action

actionClass

directactionManme

narme “AdButton”
other Tag String

value Wt (v

|

AP 11/03

Components at Work

The JavaBeans
component model

AP 11/03

JavaBeans - based on
Naming Patterns

Any object that conforms to certain rules can be a bean.
— No Bean-superclass

Many beans are AWT components

— AWT = Abstract Windowing Toolkit

— Invisible beans may be useful
A bean is characterized by properties, events, and
methods it exports.

A bean communicates by generating events.

— Event model is based on java.util.EventObject and
java.util.EventListener interfaces

AP 11/03

Creating JavaBeans Components

Two rules implied by the JavaBeans architecture include:

* the Bean class must provide zero-argument
constructors so it can be created using
Beans.instantiate(), and

* the Bean must support persistence, by implementing
either Serializable or Externalizable.

« Considerations need to be taken for persistence:

— use of the transient keyword when using the default read and write
methods.

AP 11/03

¢ sun.beanbox.BeanBoxFrame FiIeMView Services Hilfe == O O Mg
00 ToolBox | OO 6 Cut

BlueButton Copy
@ ExplicitButton

OurButton Report...
BuentManitor Bind property... bound property change b
a}ellyﬂean
'ﬁ‘-.juggler
TickTock
Voter
ChangeReporter Properties - BlueButte
Molecule
QuoteMonitor font Abcde...
JDBC SELECT
SorterBean FventTargetDialog label hide
Please chose a target method: background _
eguals L[grou hread.
addMotify . 0 .
disable " Eption
dolayout .internal.awt.graphics. OrawingF lusher. s¢
enable T
- MELLOG L TALE!
invalidate . " "Method tracing service started.
layout ' ‘?
: . i
a
Cancel OK i
‘]
i€)

at java.awt.Component.dispatchEvent Impl{Component. java::

Properties

A bean defines a property p of type T if it has an accessor
method adhering to the following naming pattern:

« Getter:
— public T getP()

« Boolean getter:
— public boolean isP()

« Setter:
— public void setP(T)

Special cases:

* |Indexed properties

« Bound properties

« Constrained properties
* Property editors

« Customizers

« Public methods describe the Bean’s behavior.
— Excluding methods that get/set property values
— Excluding methods that register/remove event listeners

AP 11/03

Packaging

JavaBeans are delivered by means of a JAR file.

A JAR that contains a Bean must include
— a Manifest declaring the Beans it contains,
— be it a class or a persistent representation of a prototype of the Bean.

Inter-Bean dependencies:
— Design-Time-Only and Depends-On tags. (JavaBeans 1.01)

In the absence of additional information,

— a Bean packaged in a given JAR file may require all the files in that
JAR for its successful operation;

AP 11/03

111

Components
in C#

AP 11/03

What defines a component?

- What defines a component? Language constructs for
— Properties, methods, events . Indexer_s.
— Design-time and runtime information * Properties

, * events
— Integrated help and documentation

* C# has first class component support
— Not naming patterns, adapters, etc.
— Not external files
— Versionable (side-by-side execution, global assembly cache)

_ Extensible component
« Easy to build and consume metadata

 attributes

AP 11/03

Design/Runtime Information

* Add information to types + methods?
— Transaction required for a method?
— Mark members for persistence?
— Default event hookup?

 Traditional solutions
— Lots of custom user code

— Naming conventions between classes
— External files (e.g. .IDL, .DEF)

| _ WebMethod
 The C# solution - Attributes [V;d Geettcc))uitomers(){ ..}

AP 11/03

COM Support

 NET Framework provides COM support

— TLBIMP imports existing COM classes
— TLBEXP exports .NET types

« C# exposes features of the framework most naturally

— Easy to consume COM+ services
— MTS plays the role of an application server

« .NET components can be hosted server-side
— IS is .NET’s application server
— Limited set of features - but easily interoperable with COM+

AP 11/03

1Y%

Enterprise Java Beans

AP 11/03

Enterprise JavaBeans Technology

Enterprise JavaBeans (EJB)

— defines a model for the development and deployment of reusable Java
server components.

working application systems.
EJB architecture

Components
— pre-developed pieces of application code that can be assembled into
JavaBeans
— support reusable development components.
— logically extends the JavaBeans component model to support server
components.

AP 11/03

Presentation
Tier
COREA Jawa Applet in
Client Web Browsar Java Application

N\

R EATTH Fmdl- 1

’a > i i Application Sareer

REl-Ioe

HTML Client HTRML Client
HIj HIrP
—Fi all ———
Web Server
Serylot JEp

HTRIL 7 DHTRAL 7 XKL

I
E RS

h. Librarsss wrvitan in

other languages
[C++
COBOL, Java, oo

. EJB Secsegay Baan COREBA defagation
Business
Tier T
BRI
L i
EJB Entity Bean arinect
IDRC by Connechor
S0
“.
JOEC
N ! 1 | 115
Proprietany
Protoce
D.E“'a Existing Systom
Tier Legacy Sysbeim
ERF Sy=stem

Databasea

cmp. Win DNA

EJB Object Model

AP 11/03

Enterprise JavaBeans
Component Model

« Server components

— are reusable, prepackaged pieces of application functionality that are
designed to run in an application server.

— They can be combined with other components to create customized
application systems.

« Enterprise JavaBeans components (enterprise beans)

— cannot be manipulated by a visual Java IDE in the same way that
JavaBeans components can.

— Instead, they can be assembled and customized at deployment time
using tools provided by an EJB-compliant Java application server.

AP 11/03

EJB - Implicit Services

EJB container performs services on behalf of the enterprise beans

« Lifecycle
— Process allocation, thread management, object activation, object destruction.

« State Management
— Save or restore conversational object state between method calls.

« Security
— Authenticate users and check authorization levels.

* Transactions

— The EJB container can automatically manage the start, enrollment,
commitment, and rollback of transactions on behalf of the enterprise bean.

* Persistence

— The EJB container can automatically manage persistent data on behalf of the
enterprise bean.

AP 11/03

methods

ahr =" b

L=

EJB Container

The ETE Object interface intercapts all method calls
and implemnents fransactons, state IATAZETOATE,
persistenice and security services for the hean
based on deploymmnent descriptor settings,

Deployrment
Descniptors
EJB Object |
L (clieTt view)
‘ Enterprizse Bean ‘
[EJE Horne

‘ Envimmn&nt]
The ETE Horoe interface 1= accassihle !

through JHNDI and iraplerents all
lifecycle sarvices for the bean.

Session Beans

A session bean is created by a client
— exists only for the duration of a single client/server session.

Performs operations on behalf of the client
— such as accessing a database or performing calculations.

Can be transactional
— but (normally) they are not recoverable following a system crash.

Can be stateless

— or they can maintain conversational state across methods and
transactions.

— The container manages the conversational state of a session bean if it
needs to be evicted from memory.

A session bean must manage its own persistent data.

AP 11/03

Entity Beans

* Object representation of persistent data

— maintained in a permanent data store, such as a database.
— A primary key identifies each instance of an entity bean.

* Entity beans can be created
— either by inserting data directly into the database or by
— creating an object (using an object factory Create method).

— Entity beans are transactional, and they are recoverable following a
system crash.

« Support for session beans is required,

— but support for entity beans and container-managed persistence is
optional.

AP 11/03

Packaging

EJB components can be packaged
— as individual enterprise beans,

— as a collection of enterprise beans, or

— as a complete application system.

EJB components are distributed in a Java Archive File
— called an ejb-jar file.

— The ejb-jar file contains a manifest file outlining the contents of the file,
— plus the enterprise bean class files,

— the Deployment Descriptor objects, and, optionally,

— the Environment Properties objects.

AP 11/03

Deployment

* Deployment Descriptor object
— used to establish the runtime service settings for an enterprise bean.
— tells the EJB container how to manage and control the enterprise bean.

— The settings can be set at application assembly or application
deployment time.

* Deployment Descriptor defines
— the enterprise bean class name,
— the JNDI namespace that represents the container,
— the Home interface name,

— the Remote interface name, and
— the Environment Properties object name.

AP 11/03

The Component
Object Model (COM+)

also known as

NET Enterprise Services

AP 11/03

Microsoft Transaction Server (MTS)

 MTS provides container system for COM server comp.

— providing transactional and security services similar to those provided
in Enterprise JavaBeans servers.

* First Component Transaction Monitor in the market
— Server-side component model (COM)
— Distributed component service based on DCOM

« COM+ /.NET Enterprise Services

— the next generation of MTS

— provides additional capabilities, such as dynamic load-balancing and
queued request-processing.

AP 11/03

HTRIL Clisenit

HTRIL Cleeiik

) HITF e
Presentation .
Ti —Firgmall——
ver Wels Sarver
CORBA fctiveX Control Standalome IS AR ASP
Cleant in Wab Browser Application
H__". HTKIL f DHTKIL § XML
CIi- I
CIREA DCOM DEOM DICOM
Giriclye
XK‘ i l i dpplication Scrvcr
COM+ Companents » Sharad Proparty
Business Existing MTS Components Manager
Tier
“Babylon”
Inbagration
Saorver
Propristary
Profocol
Data *
Tier Existing System
Legacy Sysbam
ERF System
Database cmp. J2EE

Microsoft Windows DNA
Object Model

AP 11/03

NET Enterprise Servers

Actually released before .NET; based on Windows DNA

BizTalk Server 2000:
— XML Messaging Engine, Orchestration Engine

Application Center 2000:

— Manages complexity of Windows DNA application deployment

Host Integration Server (HIS) 2000:
— COM Transaction Integrator - interface to IBM TM
— OLE for DB2 provider
— MSMQ-MQSeries bridge

SQL Server 2000:
— XML support, primary DBMS product

Exchange Server 2000, Mobile Information Server 2001,
Internet Security and Acceleration Server (ISA) 2000

AP 11/03

COM — The idea

Three fundamental ideas:

Clients program in terms of interfaces,
not classes (classic COM)

Implementation code is not statically linked, but rather
loaded on-demand at runtime (classic COM)

Object implementers declare their runtime
requirements and the system ensures that these
requirements are met (MTS & COM+)

AP 11/03

Definitions

A COM Interface is a collection of abstract operations
one can perform on an object

— Must extend IlUnknown directly or indirectly
— ldentified by a UUID (1ID)
— Platform-specific vptr/vtable layout

A COM Object is a collection of vptrs in memory that
follow the COM identity laws

— Must implement at least one COM interface

— Querylnterface ties vptrs together into
cohesive object

AP 11/03

Foo.dll |

The COM Runtime

Environment
Bar.exe i

-
s

Bar.exe
OLE32.DLL

OLE32.DLL

i

A
OLE32.DLL

i v

SVCHOST.EXE < .| SVCHOST.EXE

AP 11/03

COM Class Loading

Clients issue activation calls against the Service
Control Manager (SCM)

— SCM responsible for locating component and loading it into memory
— MTS may intercept SCM’s operation

SCM queries component for class object and
(optionally) uses it to instantiate new instance

— Once SCM returns a reference to class instance/class object, SCM
out of the picture

Based on configuration, COM may need to load
component in separate process
— (potentially on different machine)
— DIIGetClassObject() is entry point into a COM component
AP 11/03

Comparison

J2EE versus .NET

AP 11/03

Areas for Comparison: Application
Platforms

« .NET

— The .NET Framework,
— IS - the application server, MTS - the component transaction monitor

« Java
— Java application servers

— Products include:
» IBM WebSphere Application Server
« BEA WebLogic Application Server
« Sun ONE Application Server
» Oracle Application Server
* Many others

AP 11/03

Application Platforms Today

Operating System

lllustrating The .NET Framework

Enterprise

Services

lllustrating The Java Environment

- ~~o
=<

~
~
~
~

eb Services ™

~
~—_ -

Swing Enterprise JavaServer JDBC More
JavaBeans Pages

Standard Java Packages

Application Platforms: Some History

Microsoft

Java

1996 1998 2002

Windows DNA NET Framework

- MTS (now COM+) - CLR

- ASP - C#, VB.NET

- ADO - Enterprise services,

ASP.NET, ADO.NET

- Web services support

Java J2EE

- Java language - EJB

- Java VM - JSP

- J2SE - JDBC

AP 11/03

Runtime Environments Today

Compilation

Intermediate
Language

AP 11/03

Areas for Comparison: Runtime
Environments

« .NET Framework
— Intermediate language is Microsoft Intermediate Language (MSIL)
— Provides JIT compilation

» There is no interpreter in the CLR (Compact Framework is different)
« Java

— Intermediate language is bytecode

— Original implementation targeted interpretation
« Java VMs with JIT compilation are standard today

AP 11/03

Performance Comparison

SciMark MFlop Results

500
400 mMS -C
m Java IBM 1.3.1
O CH MNet 1.1
O Java BEA Rockit 8.1
300
mJ# MNET 1.1
O Java Sun 1.4
200 m Mono-0.23
o Rotor 1.0
100
8]

small memaory model large memory model

from Vogels, W., ,HPC.NET - are CLI-based Virtual Machines Suitable for High-
Performance Computing?“, in Proc. of SuperComputing 2003, Phoenix, AZ, Nov. 2003.

AP 11/03

Summarizing the Technologies (1)

.NET Java
Application NET Framework IBM WebSphere, BEA
Server IS, MTS (COM+) WebLogic, others
Runtime Common Language Java Virtual Machine (VM)
Environment Runtime (CLR)
Standard NET Framework J2SE, J2EE
Libraries class library
GUIs Windows Forms Swing
Transactions Enterprise EJB
Services

AP 11/03

Summarizing the Technologies (2)

.NET Java
Web Scripting ASP.NET JSPs
Data ADO.NET JDBC
Access
Small Device NET Compact J2ME
Platform Framework
Development Visual Studio.NET IBM WebSphere Studio,
Tools Borland JBuilder, others

Web Services
Support

ASP.NET, .NET My
Services, others

Some support from IBM, et al.,
Liberty Alliance

AP 11/03

Areas for Comparison: Non-Technical
Issues

Vendor issues
— Lock-in
— Trust

Maturity

Existing developer skills
— Developer productivity

Operating system support
Cost

AP 11/03

‘ r II Predictability

Non-functional properties:

Aspect-Oriented
Programming
with C# and .NET

AP 11/03

Replication based on Attributes

« Specification of a component's

non-functional properties at namespace CalculatorClass {

design time using System; using proxy;

* A tool may generate code to
automatically create replicated [TolerateCrashFaults(4)]
objects

public class Calculator {
« Component behavior described

by user-defined attributes sublic double add

(double x, double y) {
return X +y;

AP 11/03

AOP - Cross Cutting Concerns

=
nsic veer e T

"” 4:135395 L —

2 aspects

* a “language processor” that
— accepts two kinds of code as input;
— produces “woven” output code, or
— directly implements the computation

(more at www.parc.xerox.com/csl/projects/aop/)

“weaver’ | ——

AP 11/03

LOOM.NET - AOP Framework for .NET

* An aspect is defined as m== -I01
e o0l
a set of templates for 5
Claszes: 3 x g Awailable azpects
CI a S S e S y m eth O d S y === Olg outsideD ataM amespace outsideD ataClass < Migration. Comman F Testbzpects Security
- Migranth amespace.insids2D ataClass < CoMa CoMaConfiguable & Testhspects TRACE

0'3 Migrarth amespace.inzidel ataClass F fapectweaver Aspect < Migratiom Fileersion
b We ave r g e n e rate S n eW - MigrantNamespass MigrantClass F Testhspects Remating F Testhspects Tolerate
F Testhspects Dynamicv/rapper

code and builds the ’ |)
appl ication Assigned aspect; l

» Weaving can be et
restricted to chosen
entities (e.g. methods)

° AS p e CtS C a n b e (@ C:_melDiplomarbeitMigrantsbinsDebughaa cs successiully generated.
parameterized

Tag

d| | 2|

AP 11/03

& OmniWeb Ablage Bearbeiten Browser Lesezeichen Werkzeuge Fenster Hilfe == " 00:08:33 «) Sa., 10:53
8006 7y Operating Systems and Middleware Group at HPI - LOOM.NET =

=1
Pl

Operating Systems and Middleware Group at HPI

- Home - Profile -

Research Overview

Distributed Control
Lab

DISCOURSE

LOOM.NET (AOP)

Rotor

T ———

operating systems
+?niddleara¥e S

Teaching - Research - Publications - People = Services -

-

LOOM .NET Download Page

Welcome to our LOOM .NET download page!

The concept of aspect-oriented programming (AOP) offers an interesting alternative for specification of
non-functional component properties (such as fault-tolerance properties or timing behavior). You can
implement non-functional properties as so called aspects. An aspect weaver like LOOM .NET gives you the
ability to interweave your component code with such a previously defined aspect.

Please enter your contact information to download LOOM.NET:

First Name™: Last Name™:

Affiliation: Phone:

Address:

City:

Country*: Select Country B

Email
Address®:

!l accept the license agreement which can be found here

“Go to download

* Indicates required fields

www.dcl.hpi.uni-potsdam.de

W/

V1l

Conclusions

AP 11/03

Conclusions

Development world has bifurcated

— Microsoft .NET
— The Java environment

Both have similar architectures
— Both will (eventually) be interoperable

Both will survive
— Which is a good thing

.NET will dominate in the Windows environment

AP 11/03

Conclusions (contd.)

Evolution, not revolution:
 Microsoft .NET

— C# supports client-side component programming extremely well
(packaging, versioning, distributed deployment - in conjunction with
group policies)

— C# can easily consume COM+/MTS Enterprise Services

— Watch out for next generation of MS AppServers (i.e.; BizTalk 2004)

* The Java environment

— Client-side JavaBeans have some weaknesses compared to .NET
(versioning, based on naming patterns)

— J2EE is a mature technology

« Can you see the CORBA Component Model?

AP 11/03

References

« Simon Guest, “Microsoft .NET and J2EE Interoperability
Toolkit”, MS Press, ISBN 0-7356-1922-0, 2004.

* Richard Monson-Haefel, “Enterprise JavaBeans (2nd.

Ed.)”, O'Reilly & Associates, ISBN 1-56592-869-5,
2000.

« David Chappell, “Understanding .NET”, Addison-
Wesley, ISBN 0201741628, 2002.

AP 11/03

