
AP 11/03

Component Programming with
J2EE and .NET

Prof. Dr. Andreas Polze
Operating Systems and Middleware Chair

Hasso-Plattner-Institute
at University Potsdam

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

andreas@polze.de
andreas.polze.de, www.dcl.hpi.uni-potsdam.de

AP 11/03

Overview

• The Notion of Component-Oriented Programming
– Objects vs. Components

– Concepts of reuse, deployment, (graphical) builder tools

• Component Systems
– NeXTSTEP Interface Builder, Java Beans, Component Object Model (COM)

• Areas of Comparison
– Client-side: JavaBeans vs. C# constructs

– Server-side: EJB architecture vs. MTS/COM+ Enterprise services

– Summary of technologies

• Aspects: Problems with Component Frameworks
– Non-functional component properties - Aspect-oriented programming

– How C# and .NET change the scene

• Conclusions

AP 11/03

Mainframes PC‘s The Grid

Hardware Software Middleware

IBM Microsoft ???

closed closed open standards,
proprietary proprietary WebServices

PC1

PC3PC2

The Shifting Paradigm

Cluster

SuperDome

AP 11/03

Why Components?

Components:
• are units of independent deployment;
• are units of third-party composition;
• have no persistent state.
Objects:
• are units of instantiation (each object has a unique identity);
• have state that can be persistent;
• encapsulate their state and behavior.

„Software components are binary units of
independent production, acquisition, and
deployment that interact to form a functioning
system“ (Szyperski 1997)

AP 11/03

Components and Objects illustrated

Components are rather on the level of classes than of objects

Component
(unit of deployment)

Class
Factory A

Class
Factory B

Entry point
(CoGetClassObject())

B object

A object

A object

Interface
(IUnknown)

AP 11/03

Interfaces

• A component’s interfaces define its access points.
– These points let clients access the component’s services.

– Components may have multiple interfaces.

– Each access point may provide a different service.

• Interface specifications have contractual nature.
– Component and clients are developed in mutual ignorance.

– The standardized contract forms ground for successful interaction.

AP 11/03

Explicit Context Dependencies

• Besides specifying provided interfaces, components are
also required to specify their needs.
– What does the deployment environment need to provide, so that the

components can function (so-called context dependencies).

– For example, a mail-merge component would specify that it needs a
file system interface.

• Problems with today’s components:
– The list of required interfaces is not normally available.

– Emphasis is usually just on provided interfaces.

• Non-functional component properties are not addressed
– CPU/memory usage, timing behavior, fault-tolerance properties.

AP 11/03

The Ultimate Difference

• Components capture the static nature of
a software fragment.

• Objects capture its dynamic nature.
– Simply treating everything as dynamic can eliminate this distinction.

• Good software engineering practices strengthen the
static description of systems as much as possible.
– Dynamics can always be superimposed where needed.

– Meta-programming and just-in-time compilation simplify
this soft treatment of the boundary between static and dynamic.

AP 11/03

The Component Landscape

Component models

Client-side Server-side
Distributed

Model-View-Controller

WebObjects
ASP.NET

JSP

Naming
patterns

Language
constructs

Smalltalk
Objective-C
JavaBeans

C#
(Eiffel)

Component Pascal

Transactions
Persistency
Security

COM+ / .NET
Enterprise Services

J2EE N
on

-f
un

ct
io

na
l p

ro
pe

rt
ie

s?
 V

er
si

on
in

g?
(D

is
tr

ib
ut

ed
)

D
ep

lo
ym

en
t?

Smalltalk
Objective-C
JavaBeans

C#
(Eiffel)

Component Pascal

COM+ / .NET
Enterprise Services

J2EE

AP 11/03

I
Setting the stage:
NeXTSTEP and its tools

Components at Work

AP 11/03

AP 11/03

Déjà vu

AP 11/03

NeXTSTEP InterfaceBuilder

• Component model
based on Objective-C
– Class == object

– Runtime type info

• Graphical management of
events
– Revolutionary tool (1991)

– Interconnects event sources
and sinks graphically

AP 11/03

WebObjectsBuilder on Windows 2000

Targeted towards

web-based apps.

– Server-side logic
generates
html-forms

– Distributed MVC

AP 11/03

II
The JavaBeans
component model

Components at Work

AP 11/03

JavaBeans - based on
Naming Patterns

• Any object that conforms to certain rules can be a bean.
– No Bean-superclass

• Many beans are AWT components
– AWT = Abstract Windowing Toolkit

– Invisible beans may be useful

• A bean is characterized by properties, events, and
methods it exports.

• A bean communicates by generating events.
– Event model is based on java.util.EventObject and

java.util.EventListener interfaces

AP 11/03

Creating JavaBeans Components

Two rules implied by the JavaBeans architecture include:

• the Bean class must provide zero-argument
constructors so it can be created using
Beans.instantiate(), and

• the Bean must support persistence, by implementing
either Serializable or Externalizable.

• Considerations need to be taken for persistence:
– use of the transient keyword when using the default read and write

methods.

AP 11/03

AP 11/03

Properties

• Getter:
– public T getP()

• Boolean getter:
– public boolean isP()

• Setter:
– public void setP(T)

• Public methods describe the Bean’s behavior.
– Excluding methods that get/set property values
– Excluding methods that register/remove event listeners

A bean defines a property p of type T if it has an accessor
method adhering to the following naming pattern:

Special cases:
• Indexed properties
• Bound properties
• Constrained properties
• Property editors
• Customizers

AP 11/03

Packaging

• JavaBeans are delivered by means of a JAR file.

• A JAR that contains a Bean must include
– a Manifest declaring the Beans it contains,

– be it a class or a persistent representation of a prototype of the Bean.

• Inter-Bean dependencies:
– Design-Time-Only and Depends-On tags. (JavaBeans 1.01)

• In the absence of additional information,
– a Bean packaged in a given JAR file may require all the files in that

JAR for its successful operation;

AP 11/03

Components
in C#

III

AP 11/03

What defines a component?

• What defines a component?
– Properties, methods, events

– Design-time and runtime information

– Integrated help and documentation

• C# has first class component support
– Not naming patterns, adapters, etc.

– Not external files

– Versionable (side-by-side execution, global assembly cache)

• Easy to build and consume
Extensible component
metadata
• attributes

Language constructs for
• Indexers
• Properties
• events

AP 11/03

Design/Runtime Information

• Add information to types + methods?
– Transaction required for a method?

– Mark members for persistence?

– Default event hookup?

• Traditional solutions
– Lots of custom user code

– Naming conventions between classes

– External files (e.g. .IDL, .DEF)

• The C# solution - Attributes
 [[WebMethodWebMethod]]
 void void GetCustomers GetCustomers() { () { …… } }

AP 11/03

COM Support

• .NET Framework provides COM support
– TLBIMP imports existing COM classes

– TLBEXP exports .NET types

• C# exposes features of the framework most naturally
– Easy to consume COM+ services

– MTS plays the role of an application server

• .NET components can be hosted server-side
– IIS is .NET’s application server

– Limited set of features - but easily interoperable with COM+

AP 11/03

Enterprise Java Beans

IV

AP 11/03

Enterprise JavaBeans Technology

• Enterprise JavaBeans (EJB)
– defines a model for the development and deployment of reusable Java

server components.

• Components
– pre-developed pieces of application code that can be assembled into

working application systems.

• JavaBeans
– support reusable development components.

• EJB architecture
– logically extends the JavaBeans component model to support server

components.

AP 11/03

E
JB

 O
bj

ec
t M

od
el

cmp. Win DNA

AP 11/03

Enterprise JavaBeans
Component Model

• Server components
– are reusable, prepackaged pieces of application functionality that are

designed to run in an application server.

– They can be combined with other components to create customized
application systems.

• Enterprise JavaBeans components (enterprise beans)
– cannot be manipulated by a visual Java IDE in the same way that

JavaBeans components can.

– Instead, they can be assembled and customized at deployment time
using tools provided by an EJB-compliant Java application server.

AP 11/03

EJB - Implicit Services

EJB container performs services on behalf of the enterprise beans

• Lifecycle
– Process allocation, thread management, object activation, object destruction.

• State Management
– Save or restore conversational object state between method calls.

• Security
– Authenticate users and check authorization levels.

• Transactions
– The EJB container can automatically manage the start, enrollment,

commitment, and rollback of transactions on behalf of the enterprise bean.

• Persistence
– The EJB container can automatically manage persistent data on behalf of the

enterprise bean.

AP 11/03

EJB Container

AP 11/03

Session Beans

• A session bean is created by a client
– exists only for the duration of a single client/server session.

• Performs operations on behalf of the client
– such as accessing a database or performing calculations.

• Can be transactional
– but (normally) they are not recoverable following a system crash.

• Can be stateless
– or they can maintain conversational state across methods and

transactions.
– The container manages the conversational state of a session bean if it

needs to be evicted from memory.

• A session bean must manage its own persistent data.

AP 11/03

Entity Beans

• Object representation of persistent data
– maintained in a permanent data store, such as a database.

– A primary key identifies each instance of an entity bean.

• Entity beans can be created
– either by inserting data directly into the database or by

– creating an object (using an object factory Create method).

– Entity beans are transactional, and they are recoverable following a
system crash.

• Support for session beans is required,
– but support for entity beans and container-managed persistence is

optional.

AP 11/03

Packaging

• EJB components can be packaged
– as individual enterprise beans,

– as a collection of enterprise beans, or

– as a complete application system.

• EJB components are distributed in a Java Archive File
– called an ejb-jar file.

– The ejb-jar file contains a manifest file outlining the contents of the file,

– plus the enterprise bean class files,

– the Deployment Descriptor objects, and, optionally,

– the Environment Properties objects.

AP 11/03

Deployment

• Deployment Descriptor object
– used to establish the runtime service settings for an enterprise bean.

– tells the EJB container how to manage and control the enterprise bean.

– The settings can be set at application assembly or application
deployment time.

• Deployment Descriptor defines
– the enterprise bean class name,

– the JNDI namespace that represents the container,

– the Home interface name,

– the Remote interface name, and

– the Environment Properties object name.

AP 11/03

V
The Component
Object Model (COM+)

also known as

.NET Enterprise Services

AP 11/03

Microsoft Transaction Server (MTS)

• MTS provides container system for COM server comp.
– providing transactional and security services similar to those provided

in Enterprise JavaBeans servers.

• First Component Transaction Monitor in the market
– Server-side component model (COM)

– Distributed component service based on DCOM

• COM+ / .NET Enterprise Services
– the next generation of MTS

– provides additional capabilities, such as dynamic load-balancing and
queued request-processing.

AP 11/03

M
ic

ro
so

ft
W

in
do

w
s

D
N

A
O

bj
ec

t M
od

el

cmp. J2EE

AP 11/03

.NET Enterprise Servers

• Actually released before .NET; based on Windows DNA
• BizTalk Server 2000:

– XML Messaging Engine, Orchestration Engine

• Application Center 2000:
– Manages complexity of Windows DNA application deployment

• Host Integration Server (HIS) 2000:
– COM Transaction Integrator - interface to IBM TM
– OLE for DB2 provider
– MSMQ-MQSeries bridge

• SQL Server 2000:
– XML support, primary DBMS product

• Exchange Server 2000, Mobile Information Server 2001,
Internet Security and Acceleration Server (ISA) 2000

AP 11/03

COM – The idea

Three fundamental ideas:

• Clients program in terms of interfaces,
not classes (classic COM)

• Implementation code is not statically linked, but rather
loaded on-demand at runtime (classic COM)

• Object implementers declare their runtime
requirements and the system ensures that these
requirements are met (MTS & COM+)

AP 11/03

Definitions

• A COM Interface is a collection of abstract operations
one can perform on an object
– Must extend IUnknown directly or indirectly

– Identified by a UUID (IID)

– Platform-specific vptr/vtable layout

• A COM Object is a collection of vptrs in memory that
follow the COM identity laws
– Must implement at least one COM interface

– QueryInterface ties vptrs together into
cohesive object

AP 11/03

The COM Runtime
Environment

OLE32.DLLOLE32.DLL

SVCHOSTSVCHOST.EXE.EXE

Foo.dllFoo.dll

OLE32.DLLOLE32.DLL

Bar.exeBar.exe

SVCHOSTSVCHOST.EXE.EXE

OLE32.DLLOLE32.DLL

Bar.exeBar.exe

AP 11/03

COM Class Loading

• Clients issue activation calls against the Service
Control Manager (SCM)

– SCM responsible for locating component and loading it into memory

– MTS may intercept SCM’s operation

• SCM queries component for class object and
(optionally) uses it to instantiate new instance

– Once SCM returns a reference to class instance/class object, SCM
out of the picture

• Based on configuration, COM may need to load
component in separate process

– (potentially on different machine)

– DllGetClassObject() is entry point into a COM component

AP 11/03

Comparison
J2EE versus .NET

VI

AP 11/03

Areas for Comparison: Application
Platforms

• .NET
– The .NET Framework,

– IIS - the application server, MTS - the component transaction monitor

• Java
– Java application servers

– Products include:
• IBM WebSphere Application Server

• BEA WebLogic Application Server

• Sun ONE Application Server

• Oracle Application Server

• Many others

AP 11/03

Standard Library

Application Platforms Today

GUI
Services

Transaction
Services

Web
Scripting

Data
Access

More

Operating System

Runtime Environment

Browser
Apps

Web Services
Apps

Other
Apps

Local
Apps

AP 11/03

.NET Framework Class Library

Illustrating The .NET Framework

Windows
Forms

Enterprise
Services

ASP.NET ADO.NET More

Windows

Common Language Runtime

Browser
Apps

Web Services
Apps

Other
Apps

Local
Apps

AP 11/03

Standard Java Packages

Illustrating The Java Environment

Swing Enterprise
JavaBeans

JavaServer
Pages

JDBC More

Windows, Solaris, Linux, others

Java Virtual Machine (VM)

Browser
Apps

Web Services
Apps

Other
Apps

Local
Apps

AP 11/03

Application Platforms: Some History
1996 1998 2002

Windows DNA
- MTS (now COM+)
- ASP
- ADO

Microsoft

Java Java
- Java language
- Java VM
- J2SE

J2EE
- EJB
- JSP
- JDBC

.NET Framework
- CLR
- C#, VB.NET
- Enterprise services,
 ASP.NET, ADO.NET
- Web services support

AP 11/03

Runtime Environments Today

JIT
Compiler

Native
Code

Native Code Execution

Interpreter

Interpretation

Source
Code

Language
Compiler

Intermediate
Language

Compilation

AP 11/03

Areas for Comparison: Runtime
Environments

• .NET Framework
– Intermediate language is Microsoft Intermediate Language (MSIL)

– Provides JIT compilation
• There is no interpreter in the CLR (Compact Framework is different)

• Java
– Intermediate language is bytecode

– Original implementation targeted interpretation
• Java VMs with JIT compilation are standard today

AP 11/03

Performance Comparison

from Vogels, W., „HPC.NET - are CLI-based Virtual Machines Suitable for High-
Performance Computing?“, in Proc. of SuperComputing 2003, Phoenix, AZ, Nov. 2003.

AP 11/03

Summarizing the Technologies (1)
.NET Java

Application
Server

.NET Framework
IIS, MTS (COM+)

IBM WebSphere, BEA
WebLogic, others

Runtime
Environment

Common Language
Runtime (CLR)

Java Virtual Machine (VM)

Standard
Libraries

.NET Framework
class library

J2SE, J2EE

GUIs Windows Forms Swing

Transactions Enterprise
Services

EJB

AP 11/03

Summarizing the Technologies (2)
.NET Java

Web Scripting ASP.NET JSPs

Data
Access

ADO.NET JDBC

Development
Tools

Visual Studio.NET IBM WebSphere Studio,
Borland JBuilder, others

Web Services
Support

ASP.NET, .NET My
Services, others

Some support from IBM, et al.,
Liberty Alliance

Small Device
Platform

.NET Compact
Framework

J2ME

AP 11/03

Areas for Comparison: Non-Technical
Issues

• Vendor issues
– Lock-in

– Trust

• Maturity

• Existing developer skills
– Developer productivity

• Operating system support

• Cost

AP 11/03

Non-functional properties:

Aspect-Oriented
Programming

with C# and .NET

VII Predictability

AP 11/03

Replication based on Attributes

• Specification of a component‘s
non-functional properties at
design time

• A tool may generate code to
automatically create replicated
objects

• Component behavior described
by user-defined attributes

namespace CalculatorClass {

 using System; using proxy;

 [TolerateCrashFaults(4)]
 public class Calculator {

...

public double add
 (double x, double y) {

return x + y;

}

 }

}

AP 11/03

class Book {
 private BookID id;
 private PostScript ps;
 private UserID borrower;

 public Book(String t, String a,
 String i, PostScript p) {
 id = new BookID(t,a,i);
 ps = p;
 }

 public UserID get_borrower() {return borrower;}
 public void set_borrower(UserID u) {borrower = u;}
 public PostScript get_ps() { return ps; }
 public BookID get_bid() { return id; }
}

class BookID {
 private String title;
 private String author;
 private String isbn;

 public BookID(String t, String a, String i) {
 title = t;
 author = a;
 isbn = i;
 }
 public String get_title() {return title;}
}

class User {
 private UserID id;
 Library theLibrary;
 Printer thePrinter;

 public User(String n) { id = new UserID(n); }

 public boolean getBook (String title) {
 BookID aBook=null;
 try{
 aBook = theLibrary.getBook(id, title);
 } catch (RemoteException e) {}
 try {
 thePrinter.print(id, aBook);
 } catch (RemoteException e) {}
 return true;
 }
 public UserID get_uid() { return id; }
}

class UserID {
 private String name;

 public UserID(String n) { name = n; }
 public String get_name() { return name; }
}

interface LibraryInterface extends Remote {
 public BookID getBook(UserID u, String title) throws RemoteException;

 public PostScript getBookPS(BookID bid) throws RemoteException;
}

class Library extends UnicastRemoteObject implements LibraryInterface {
 Hashtable books;
 Library() throws RemoteException {
 books = new Hashtable(100);
 }
 public BookID getBook(UserID u, String title)
 throws RemoteException {
 System.out.println("REQUEST TO GET BOOK " + title);
 if(books.containsKey(title)) {
 Book b = (Book)books.get(title);
 System.out.println("getBook: Found it:" + b);
 if (b != null) {
 if (b.get_borrower() == null)
 b.set_borrower(u);
 return b.get_bid();
 }
 }
 return null;
 }
 public PostScript getBookPS(BookID bid)
 throws RemoteException {
 if (books.containsKey(bid.get_title())) {
 Book b = (Book)books.get(bid.get_title());
 if (b != null)
 return b.get_ps();
 }
 return null;
 }

}

interface PrinterInterface extends Remote {
 public boolean print (UserID u, BookID b)
 throws RemoteException;
}

public class Printer extends UnicastRemoteObject
 implements PrinterInterface {
 private Vector jobs = new Vector(10, 10);
 private Library theLibrary;

 public Printer() throws RemoteException{}
 public boolean print (UserID u, BookID b)
 throws RemoteException{
 PostScript ps=null;
 try{
 ps = theLibrary.getBookPS(b);
 } catch (RemoteException e) {}
 Job newJob = new Job (ps, u);
 return queue(newJob);
 }
 boolean queue(Job j) {
 //...
 return true;
 }
}

printerlibrary

user

book

library

AOP - Cross Cutting Concerns

• a “language processor” that
– accepts two kinds of code as input;

– produces “woven” output code, or

– directly implements the computation

“weaver”

public class PrinterImpl {
 String status = “Idle”
 Vector jobs;

 public PrinterImpl() {}
 pubilc get_status() { return status }
 public add_job(int j) {
 jobs.add(j);
 }
}

class Library {
 Hashtable books;
 Library(){
 books = new Hashtable(100);
 }
 public Book getBook(User u, String title) {
 System.out.println("REQUEST TO GET BOOK " + title);
 if(books.containsKey(title)) {
 Book b = (Book)books.get(title);
 System.out.println("getBook: Found it:" + b);
 if (b != null) {
 if (b.get_borrower() == null)
 b.set_borrower(u);
 return b;
 }
 }
 return null;
 }
}

class User {
 private String name;
 Library theLibrary;
 Printer the; Printer

 public User(String n) { name = n; }

 public boolean getBook (String title) {
 Book aBook = theLibrary.getBook(this, title);
 thePrinter.print(this,aBook);
 return true;
 }
}

class Book {
 private String title;
 private String author;
 private String isbn;
 private PostScript ps;
 private User borrower;

 public Book(String t, String a, String i, PostScript p) {
 title = t;
 author = a;
 isbn = i;
 ps = p;
 }

 public User get_borrower() {return borrower;}
 public void set_borrower(User u) {borrower = u;}
 public PostScript get_ps() { return ps; }
}

portal Printer {
 void print(Book book) {
 book: Book: {direct pages;}

}

portal Library {
 Book find (String title){
 return:
 Book: {copy title, author, isbn;}
 }
}

4 classes

2 aspects

(more at www.parc.xerox.com/csl/projects/aop/)

AP 11/03

LOOM.NET - AOP Framework for .NET

• An aspect is defined as
a set of templates for
classes, methods, ...

• Weaver generates new
code and builds the
application

• Weaving can be
restricted to chosen
entities (e.g. methods)

• Aspects can be
parameterized

AP 11/03

Call to Action

www.dcl.hpi.uni-potsdam.de

AP 11/03

Conclusions

VIII

AP 11/03

Conclusions

• Development world has bifurcated
– Microsoft .NET

– The Java environment

• Both have similar architectures
– Both will (eventually) be interoperable

• Both will survive
– Which is a good thing

• .NET will dominate in the Windows environment

AP 11/03

Conclusions (contd.)

Evolution, not revolution:
• Microsoft .NET

– C# supports client-side component programming extremely well
(packaging, versioning, distributed deployment - in conjunction with
group policies)

– C# can easily consume COM+/MTS Enterprise Services
– Watch out for next generation of MS AppServers (i.e.; BizTalk 2004)

• The Java environment
– Client-side JavaBeans have some weaknesses compared to .NET

(versioning, based on naming patterns)
– J2EE is a mature technology

• Can you see the CORBA Component Model?

AP 11/03

References

• Simon Guest, “Microsoft .NET and J2EE Interoperability
Toolkit”, MS Press, ISBN 0-7356-1922-0, 2004.

• Richard Monson-Haefel, “Enterprise JavaBeans (2nd.
Ed.)”, O’Reilly & Associates, ISBN 1-56592-869-5,
2000.

• David Chappell, “Understanding .NET”, Addison-
Wesley, ISBN 0201741628, 2002.

AP 11/03

