
Learning C#

What is C#

A new object oriented language
Syntax based on C

Similar to C++ and Java
Used to write .NET software

Software that targets the .NET Framework is called managed
code

C# gains much from the .NET Framework
Internet oriented platform
JIT compilation
Automatic memory management
Security, type-safety
Framework Class Library

C#: Rich Software Development
Provides access to the .NET Framework

Great language for targeting .NET
Access the features of the framework

For example, the FCL
Create Web-based apps, GUI, apps, etc.

Offers access to the underlying OS
Full access to Windows (or host OS)
Enables creation of rich applications

Object oriented
Create component based applications
Gain the benefits of OO design, with no compromises

Defining the .NET Framework

The .NET Framework is
A software development environment
A runtime engine for Managed Code
A platform designed for Internet-Distributed
software

The .NET Framework is an exciting new
computing platform

Hello World a-la C#
HelloGUIHelloGUI..cs
using System.Windows.Forms;
using System.Drawing;

class MyForm:Form{
public static void Main(){

Application.Run(new MyForm());
}

protected override void OnPaint(PaintEventArgs e){
e.Graphics.DrawString("Hello World!",
new Font("Arial", 35), Brushes.Blue, 10, 100);

}
}

cs

c:\> csc /target:winexe HelloGui.cs

Types of Applications
Managed code is packaged as Assemblies
The three kinds of assemblies that you can create with
C# are the following.

Console applications
GUI applications
Libraries of Types

Libraries of Types are especially important because
Applications are going to consist of more and more reusable
component code
Web Forms and Web Service applications are published as
libraries

Creating a Console Application
Rabbits.Rabbits.cs
using System;
class App{

public static void Main(String[] args){
try{

Int32 iterations = Convert.ToInt32(args[0]);
if(iterations > 138){

throw new Exception();
}
Decimal lastNum = 1;
Decimal secondToLastNum = 0;
while(iterations-- > 0){

Decimal newNum = lastNum+secondToLastNum;
Console.WriteLine(newNum);
secondToLastNum = lastNum;
lastNum = newNum;

}
}catch{

Console.WriteLine(
"Usage: Rabbits [Fib Index]\n"+
"\t[Fib Index] < 139");

}
}

}

cs

c:\> csc Rabbits.cs

Creating a GUI Application
TribblesTribbles..cs
using System;
using System.Drawing;
using System.Windows.Forms;

class App{
public static void Main(){

Application.Run(new TribbleForm());
}

}

class TribbleForm:Form{
TextBox generationsTextBox;
ListBox fibList;

// ...

cs

c:\> csc /target:winexe Tribbles.cs

Creating a Code Library
FibObjFibObj..cs
using System;
public class Fib{

Decimal current;
Decimal last;
public Fib(){

current = 1;
last = 0;

}
private Fib(Decimal last, Decimal secondToLast){

current = last+secondToLast;
this.last = last;

}
public Fib GetNext(){

return new Fib(current, last);
}
public Decimal Value{

get{return current;}
}

}

cs

c:\> csc /target:library FibObj.cs

Code that Uses a Code Library
FibTestFibTest..cs
using System;
class App{

public static void Main(){
Int32 index = 50;
Fib obj = new Fib();
do{

Console.WriteLine(obj.Value);
obj = obj.GetNext();

}while(index-- != 0);
}

}

cs

c:\> csc /r:FibOjb.dll FibTest.cs

Language Concepts
Syntax based on C/C++

Case-sensitive
White space means nothing
Semicolons (;) to terminate statements
Code blocks use curly braces ({})

Some features
Can create methods with a variable number of arguments
Parameters are passed by value (by default)

Can create methods that take parameters by reference
Can create methods with out-only parameters

Operator overloading and type converters
Type-safety and code verification

Object oriented, code is structured using the class keyword

Primitive Types

Signed Numeric Primitive Types
Int32, Int16, Int64, SByte, Double, Single,
Decimal

Unsigned Numeric Primitive Types
UInt32, UInt16, UInt64, Byte

Other Primitives
Boolean, String, Char, Object

Primitive Types are FCL Types
C# Aliases the primitives
Example: Int32 == int

C# uses if

C# uses switch

if(y == x){
Console.WriteLine("y equals x");

}else{
Console.WriteLine("y does not equal x");

}

switch(x){
case 2:

Console.WriteLine("x equals 2");
break;

default:
Console.WriteLine("x does not equal 2");
break;

}

Conditional Statements

C# uses for

C# uses while

for(index = 0;index<100;index++){
Console.Write(index);
Console.Write("\t");

}

index = 10;
while(index != 0){

Console.WriteLine(index);
index--;

}

C# Loops…

C# uses do-while

C# uses foreach

index = 0;
do{

Console.WriteLine("Happens at least once");
}while(index < 0);

Int32[] myArray = new Int32[]{10, 20, 30, 40};
foreach(Int32 i in myArray){

Console.WriteLine(i);
}

C# Loops (continued)

C# Error Handling
C# uses try-catch
try{

Int32 index = 10;
while(index-- != 0){

Console.WriteLine(100/index);
}

}catch(DivideByZeroException){
Console.WriteLine(

“Caught division by zero exception");
}
Console.WriteLine(

“Caught; code keeps running");

C# Assured Cleanup

C# uses try-finally
try{

// Perhaps an exception is thrown or
// return statement is hit
return;

}finally{
Console.WriteLine(

"Code in finally always runs");
}

Using Types
You will often use types from

The Framework Class Library (FCL)
Third party libraries

TypeFileTypeFile..cscs
using System;
using System.IO;
class App{

public static void Main(String[] args){
StreamReader reader =

new StreamReader(args[0]);
Console.WriteLine(reader.ReadToEnd());

}
}

Demo C#Pad.cs

Learning C#

Demo
MDLView

Demo Visual Studio.Net

Demo TerraViewer

	Learning C#
	What is C#
	C#: Rich Software Development
	Defining the .NET Framework
	Hello World a-la C#
	Types of Applications
	Creating a Console Application
	Creating a GUI Application
	Creating a Code Library
	Code that Uses a Code Library
	Language Concepts
	Primitive Types
	Conditional Statements
	C# Loops…
	C# Loops (continued)
	C# Error Handling
	C# Assured Cleanup
	Using Types
	Demo C#Pad.cs
	Learning C#
	Demo MDLView
	Demo Visual Studio.Net
	Demo TerraViewer

