From Object-Oriented Programming
to Component Software

* OO Languages:

— Ada, Smalltalk, Java, C++
» Class versus Object:

— Express existence of objects directly in code

— Code is more expressive, easier to develop, less costly to maintain
* Main Concepts:

— Encapsulation — hiding of implementation details

— Inheritance — reuse existing objects in creation of new objects

— Polymorphism — exhibit multiple behavior depending on object used
* Reuse:

— Code must be written in a general enough manner

— Language-independent

AP 12/00

Component Software

» Object-Oriented Analysis and Design:
— Breakdown of a project in its logical components

» Components:
— Reusable pieces of software in binary form
— Interoperability

* Interfaces;
— Semantically related set of methods
— Strongly typed contract between software component and ist clients
— Articulation of expected behavior
— Reusable in a variety of contexts

AP 12/00

Evolution of COM+

Distributed
Clipboard Computing COM =
1987 1980s Component
¥ v .
OLE OSF DCE RPC Object Model
1992 on Windows
¥ 1992 Microsoft Distributed
COM Transaction Coordinator
1995 1996
v
~ Microsoft Microsoft Message
Distributed COM Transaction Server Queue Server
1996 1997 1997
COM+
1999

AP 12/00

Problems of Complex Software

Apps are large and complex:

— Time consuming to develop, difficult and costly to maintain,
— Risky to extend with additional funtionality

Monolythic style:

— Prepackaged with a range of static features
— Add/remove/upgrade/replace features is difficult (impossible)

Apps do not lend themselves to integration:

— Neither data nor functionality is available to another program

— No location-transparency
COM Software can better meet these challenges.

Programming models reflect provider‘s upbringing:

AP 12/00

COM and COM+

* COM: Fundamental programming architecture for
building software components
— Unconfigured components
* Plus (+) an integrated suite of component services with
an associated runtime environment
— Configured components
» Support for robust server-size systems
— Threading, concurrency, security
— Administration, robustness
— Example: Microsoft SQL server

AP 12/00

Windows DNA:
a COM+-based three-tier architecture

AP 12/00

Evolution of Component Services

» Standard implementation of services that are frequently
needed by component developers

COM+
load balancing, in-memory database
object pooling, queued components
event model, administration

Distributed COM
remoting architecture

Vieeset Trensasion Serer distributed component services

transaction services, resource pooling
role-based security, administration
just-in-time activation

COM
interface-based programming
basic component facilities

AP 12/00

Just-in-time activation

» Scalability of middle-tier components
— Clients obtain references to context objects
— COM+ instantiates actual business objects |ObjectContext
(transparently) Transaction ID
— COM+ may de-activate objects ICustom Object-Creator ID
(resource sharing)

Client /
—

Client

Transaction ID
Obiject-Creator ID
The Object

(deactivated)

Transaction ID
Obiject-Creator ID

The Object

Client \

System-created context object
shadows each user object
| AP 12/00 |

ICustom

Scalability Enhancements

Object Pooling

» COM+ may recycle objects for later reuse
— Automatic instantiation of new objects when pools is empty
— Useful technique when object creation is very expensive (time)

Load Balancing

» Client workload can be distributed among multiple
servers in a network
— Load balancing at component level
— Clients contact load balancing router first
— COM+ uses response-time analysis algorithm to determine server

— Windows 2000 clustering service can be used to eliminate balancing
router as single-point-of-failure

AP 12/00 |

Queued Components

» Execute method calls against unavailable components
— Based on Microsoft Message Queue Server (MSMQ — Windows 2000)

Client MSMQ Server
Proxy Send Stub
O (Recorder) queue (Player)
Receive
queue

AP 12/00

Transactions

+ COM+ components may automatically participate in
distributed transactions

* Implemented by Distributed Transaction Coordinator:

— Object-oriented two-phase commit protocol based on COM
(OLE Transaction specification: ITransaction, ITransactionDispenser,
ITransactionOptions, ITransactionOutcomeEvents interfaces)

— Support of the XIOPEN DTP XA standard (two-phase commit)
— Originally bundled with SQL Server

» ACID properties of transactions:
— Atomic, Consistent, Isolated, Durable

* Four levels of transaction support for components:
— Requires/requires new/supports/does not support transactions

| AP 12/00

Security & Events

* Role-based Security:
— Leverage Windows 2000 security model
— Declarative and programmatic security
— Security settings on component and interfacce basis

* Events:
— Publisher/subscriber style of communication

— External event model: publisher/subscriber do not need to execute
simultaneously

— Subscriptions are maintained outside of publisher/subscriber:
persistent subscriptions

— Subscriber is any component that implements a given class interface

| AP 12/00 |

