
1

AP 04/02

Structural Patterns

• Describe how classes and objects are composed to

form larger structures

• Structural class patterns use inheritance to compose

interfaces or implementations

• Structural object patterns describe ways to compose

objects to realize new functionality

AP 04/02

ADAPTER

(Class, Object Structural)

• Intent:
– Convert the interface of a class into another interface clients expect.

– Adapter lets classes work together that could not otherwise because of
incompatible interfaces.

• Motivation:
– Sometimes a toolkit class that‘s designed for reuse is not reusable

because ist interface does not match the domain-specific interface an
application requires

2

AP 04/02

Linie TextShape

DrawingEditor
Shape

BoundingBox()

CreateManipulator()

BoundingBox()

CreateManipulator()

BoundingBox()

CreateManipulator()

TextView

GetExtent()

return text ->GetExtent()

return new TextManipulator

ADAPTER - Motivation

AP 04/02

Applicability

• Use the Adapter pattern when
– you want to use an existing class, and its interface does not match the

one you need.

– you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don´t necessarily have
compatible interfaces.

• (object adapter only)
– you need to use several existing subclasses, but it´s impractical to

adapt their interface by subclassing every one. An object adapter can
adapt the interface of its parent class.

3

AP 04/02

client
Target

Adapter

SpecificRequest()

Request()

Request()

Adaptee

SpecificRequest()

(implementation)
Class adapter uses multiple inheritance

to adapt one interface to another

client
Target

Adapter

adaptee->SpecificRequest()

Request()

Request()

Adaptee

SpecificRequest()

Object adapter relies on composition

adaptee

ADAPTER - Structure

AP 04/02

Participants and Collaborations

• Participants:

• Target (Shape)
– Defines the domain-specific interface that client uses

• Client (DrawingEditor)
– Collaborates with objects conforming to the Target interface

• Adaptee (TextView)
– Defines existing interface that needs adapting

• Adapter (TextShape)
– Adapts the interface of Adaptee to the Target interface

• Collaborations:
– Clients call operations on an Adapter instance. In turn, the adapter calls

Adapter operations that carry out the request.

4

AP 04/02

BRIDGE

(Object Structural)

• Intent:
– Decouple an abstraction from its implementation so that the two can

vary independently

• Motivation:
– Inheritance helps when an abstraction can have multiple possible

implementations but is sometimes not flexible enough

– The bridge patterns puts an abstraction and its implementation in
separate class hierarchies

– Example: There is one class hierarchy for Window interfaces (Window,
IconWindow, TransientWindow) and a separate hierarchy for platform-
specific windows implementations (with WindowImp as root)

AP 04/02

Window

XWindow PMWindow

Window

XWindow PMWindow IconWindow

XIconWindow PMIconWindow

BRIDGE - Motivation

5

AP 04/02

Window

IconWindow

Windowimp

DrawText()

DrawRect()

bridge

DevDrawText()

DevDrawLine()

Imp ->DevDrawLine()

Imp ->DevDrawLine()

Imp ->DevDrawLine()

Imp ->DevDrawLine()

DrawBorder()

TransientWindow

DrawCloseBox()

DrawText()

DrawRect()
DrawRect()

XWindowimp

DevDrawTest()

DevDrawLine()

PMWindowimp

DevDrawTest()

DevDrawLine()

XDrawLinie() XDrawString()

BRIDGE - Motivation

AP 04/02

Applicability

• Use the Bridge pattern when:
– you want to avoid a permanent binding between an abstraction and its

implementation. (when the implementation must be selected or
switched at run-time)

– both the abstractions and their implementations should be extensible
by subclassing.
Bridge pattern lets you combine the different abstractions and
implementations and extend them independently.

– (C++) you want to hide the implementation of an abstraction
completely from clients. In C++ the representation of a class is visible
in the class interface.

– You want to share an implementation among multiple objects (perhaps
using reference counting), and this fact should bi hidden from the
client.

6

AP 04/02

Abstraction

ConcreteImplementor A

Operation()

OperationImp()

Implementor

OperationImp()

client

RefinedAbstraction

imp ->OperationImp();

ConcreteImplementor B

OperationImp()OperationImp()

imp

BRIDGE - Structure

AP 04/02

Participants and Collaborations

Participants:

• Abstraction (Window)
– Defines the abstraction’s interface

– Maintains a reference to an object of type implementor

• RefinedAbstraction (IconWindow)
– Extends the interface defined by Abstraction

• Implementor (WindowImp)
– Defines interface for implementation class

– Not necessarily identical to Abstraction’s interface

– Typically provides primitive operations, Abstraction defines higher-level ops.

• ConcreteImplementor (XWindowImp, PMWindowImp)
– Implements the Implementor interface, defines concrete implementation

Collaborations:
– Abstraction forwards client requests to its Implementor object.

7

AP 04/02

COMPOSITE

(Object Structural)

• Intent:
– Compose objects into tree structures to represent part-whole

hierarchies.

– Composite lets clients treat individual objects and compositions of
objects uniformly.

• Motivation:
– Apps often allow grouping of objects into more complex structures

– Single implementation could define classes for graphical primitives
(Text, Lines) plus other classes that act as containers for primitives

– But: code that uses these classes must treat primitive objects and
containers differently (even if user treats them identically)

AP 04/02

Linie Picture

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Draw()

graphic

foall g in graphic

g.Draw()

add g to list of graphic

Rectangle

Draw()

Test

Draw() Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

COMPOSITE - Motivation

8

AP 04/02

aPicture

aPicture

aLine
aRectangle

aText aLine aRectangle

A typical composite object structure of recursively composed Graphic objects.

COMPOSITE - Motivation

AP 04/02

Applicability

• Use the Composite pattern when
– You want to represent part-whole hierarchies of objects.

– You wants clients to be able to ignore the difference between
compositions of objects and individual objects.

– Clients will treat all objects in the composite structure uniformly.

9

AP 04/02

Client

Composite

children

foall g in children

g.Operation()

Leaf

Operation()

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Operation()

Add(Component)

Remove(Component)

GetChild(int)

COMPOSITE - Structure

AP 04/02

aComposite

aLeaf aLeaf aComposite aLeaf

aLeaf aLeaf aLeaf

A typical Composite object structure might look like this:

COMPOSITE - Structure

10

AP 04/02

Participants

• Component (Graphic)
– Declares interface for objects in the composition

– Implements default behavior for the interface common to all classes

– Declares interface for accessing and managing child components

– (optional) defines interface for accessing component’s parent

• Leaf (rectangle, Line, Text, etc.)
– Represents leaf objects in the composition - has no children

– Defines behavior for primitive objects in the composition

• Composite (Picture)
– Defines behavior for components having children

– Stores child components

– Implements child-relate operations in the Component interface

• Client
– Manipulates objects through Component interface

AP 04/02

Collaborations

• Clients use the Component class interface to interact

with objects in the composite structure.

• If the recipient is a Leaf, then the request is handled

directly.

• If the recipient is a Composite, then it usually forwards

requests to its child components, possibly performing

additional operations before and/or after forwarding.

11

AP 04/02

DECORATOR

(Object Structural)

• Intent:
– Attach additional responsibilities to an object dynamically.

– Decorators provide a flexible alternative to subclassing for extending
functionality.

• Motivation:
– Sometimes we want to add responsibilities to individual objects, not an

entire class

– Inheritance is an inflexible (static) solution to the problem. Clients
cannot control the way how an object‘s functionality is extended

– Enclosing the object into another object that adds the functionality is
the more flexible approach - the decorator

AP 04/02

aTextView

aScrollDecorator

aBorderDecorator
Some allplications would benefit
from using objects tomodes every
aspect of their functionality, but a
naive design approach would be
prohibitively expensive.

For example, most document edi-
tors modularize their text formatting
and editing facilities to some extent.
However, they invariably stop short
of using objects to represent each

character and graphical element in
the document. Doing so would
promote flexibility at the finest level
in the application. Text and graphics
could be treated uniformly with

aBorderDecorator

aScrollDecorator

aTextView
component

component

Use composition to create a boredered, scrollable text view

DECORATOR - Motivation

12

AP 04/02

TextView Decorator

VisualComponent

Draw()

Draw()Draw()

ScrollDecorator

Draw()

ScrollTo()

compnent -> Draw()

Decorator :: Draw();

DrawBorder();

BorderDecorator

Draw()

DrawBorder()

component

scrollPosition
borderWidth

ScrollDecorator and BorderDecorator
are subclasses of Decorator, an

abstract class for visual components
that decorate other visuals.

DECORATOR - Motivation

AP 04/02

Applicability

• Use Decorator
– To add responsibilities to individual objects dynamically and

transparently, that is, without affecting other objects.

– For responsibilities that can be withdrawn.

– When extension by subclassing is impractical.

Sometimes a large number of independent extensions are possible
and would produce an explosion of subclasses to support every
combination. Or a class definition may be hidden or otherwise
unavailable for subclassing.

13

AP 04/02

ConcreteComponent Decorator

Component

Operation()

Operation()Operation()

ConcreteDecoratorA

Operatio()

component -> Operation()

Decorator :: Operation();

AddedBehavior();

ConcreteDecoratorB

Operation()

AddedBehavior()addedState

component

DECORATOR - Structure

AP 04/02

Participants and Collaborations

Participants:

• Component (VisualComponent)
– Defines interface for objects that can have responsibilities added to them

dynamically

• ConcreteComponent (TextView)
– Defines an object to which additional responsibilities can be attached

• Decorator
– Maintains a reference to a Component object and defines interface that

conforms to Component’s interface

• ConcreteDecorator (BorderDecorator, ScrollDecorator)
– Adds responsibilities to the component

Collaborations:
– Decorator forwards requests to its Component object.

– It may optionally perform additional operations before and after forwarding the
request.

14

AP 04/02

FACADE

(Object Structural)

• Intent:
– Provide a unified interface to a set of interfaces in a subsystem.

– Facade defines a higher-level interface that makes the subsystem
easier to use.

• Motivation:
– Structuring a system into subsystems helps reduce complexity.

– Minimize communication and dependencies between subsystems.

– Facade may provide a single, simplified interface to the more general
facilities of a subsystem.

AP 04/02

client classes

Subsystem classes

Facade

FACADE - Motivation

15

AP 04/02

Compiler

subsystem
classes

Compiler

Compiler

Stream

BytecodeStream

CodeCenerator

StackMachineCodeGenerator RISCCodeGenerator

Scanner Token

Parser Symbol

ProgramNodeBuilder ProgramNode

StatementNode

ExpressionNode

ExpressionNode

FACADE - Motivation

AP 04/02

Applicability

Use the Facade pattern:

• to provide a simple interface to a complex subsystem.
– Subsystems often get more complex as they evolve.

• when there are many dependencies between clients

and the implementation classes of an abstraction.
– Introduce a facade to decouple the subsystems from clients and other

subsystems, thereby promoting subsystem independence and

portability.

• to layer subsystems.
– Use facade to define an entry point to each subsystem level.

– Minimize subsystem inter-dependencies

16

AP 04/02

subsystem classes

Facade

FACADE - Structure

AP 04/02

Participants and Collaborations

Participants:

• Facade (Compiler)
– Knows which subsystem classes may handle a request

– Delegates client requests to appropriate subsystem objects

• Subsystem classes (Scanner, Parser, ProgramNode)
– Implement subsystem functionality

– Have no knowledge of the facade (i.e.; keep no references to it)

Collaborations:
– Clients communicate with the subsystem by sending requests to

Facade, which forwards them to the appropriate subsystem object(s).

– The facade may have to translate its interface to subsystem interfaces.

– Clients do not have to access subsystem objects directly.

17

AP 04/02

FLYWEIGHT

(Object Structural)

• Intent:
– Use sharing to support large numbers of small objects efficiently.

• Motivation:
– Some applications could benefit from using objects throughout their

design, but a naïve implementation would be prohibitevly expensive

AP 04/02

a p p r e n ta

charakter
objects

row

objects

column

objects

OO editors use objects
to represent
embedded elements
like tables and figures

But treating characters
uniquely (as objects) seems
to be too expensive

FLYWEIGHT - Motivation

18

AP 04/02

column

row row row

a p a nr e tpa p a nr e tp

a b c d e f g h i j k l m

n o p q r s t u v w x y z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

a b c d e f g h i j k l m

Logically - one object per character in the document

Physically - one shared flyweight object per character

FLYWEIGHT - Motivation

AP 04/02

Applicability

The Flyweight pattern‘s effectiveness depends heavily on how and
where it‘s used.

Apply the Flyweight pattern when all of the following are true:

• An application uses a large number of objects.

• Storage costs are high because of the sheer quantity of objects.

• Most object state can be made extrinsic.

• Many groups of objects may be replaced by relatively few shared objects once

extrinsic state is removed.

• The application doesn't depend on object identity. Since flyweight objects may be

shared, identity tests will return true for conceptually distinct objects.

19

AP 04/02

If (flyweight[key] exists) {

return existing flyweight;

}else{

create new flyweight;

add to pool of flyweights;

return the new flyweight;

}

UnsharedConcreteFlyweight

FlyweightFactory

Operation(extrinsicState)

Flyweight

Operation(extrinsicState)GetFlyweight(key)

flyweights

client

allState

ConcreteFlyweight

Operation(extrinsicState)

intrinsicState

FLYWEIGHT - Structure

AP 04/02

aClient aClient

aFlyweightFactory

flyweights

aConcreteFlyweight

intrinsicState

aConcreteFlyweight

intrinsicState

Flyweight

pool

FLYWEIGHT - Structure

20

AP 04/02

Participants

• Flyweight (Glyph)
– Declares an interface through which flyweights can receive and act on

extrinsic state

• ConcreteFlyweight (Character)
– Implements Flyweight interface and adds storage for intrinsic state

– Must be sharable

– Any state it stores must be independent of concrete object‘s context

• FlyweightFactory
– Creates and manages flyweight objects

– Ensures that flyweights are shared properly

• Client
– Maintains reference to flyweight(s)

– Computes or stores the extrinsic state of flyweight(s)

AP 04/02

Collaborations

• State that a flyweight needs to function must be

characterized as either intrinsic or extrinsic.
– Intrinsic state is stored in the ConcreteFlyweight object;

– extrinsic state is stored or computed by Client objects.

– Clients pass this state to the flyweight when they invoke its operation.

• Clients should not instantiate ConcreteFlyweights

directly.
– Clients must obtain ConcreteFlyweights objects exclusively from the

FlyweightFactory object to ensure they are shared properly.

21

AP 04/02

PROXY

(Object Structural)

• Intent:
– Provide a surrogate or placeholder to control access another object.

• Motivation:
– One reason for controlling access to an object is defer the full cost of

its creation and initialization until we actually need to use it.

– Consider a document editor that can embed graphical objects into an
document - creation of those objects (raster images) can be expensive
but opening the document should still be fast.

– An image proxy might act as stand-in for the real image.

AP 04/02

aTextDocument

image aImageProxy

fileName anImage

data

in memory on disk

PROXY - Motivation

22

AP 04/02

DocumentEditor Graphic

Draw()

GetExtent()

Store()

Load()

Image

imageImp

extent

Draw()
GetExtent()

Store()

Load()

ImageProxy

fileName

extent

Draw()
GetExtent()

Store()

Load()

If (image ==0){

image = LoadImage(fileName);

}

image ->Draw()

If (image ==0) {

return extent;

} else{

return image -> GetExtent();

}

image

PROXY - Motivation

AP 04/02

Applicability

Proxy is applicable whenever there is a need for a more versatile or
sophisticated reference to an object than a simple pointer.

Common situations in which the Proxy pattern is applicable:

1. A remote proxy provides a local representative for an object in a different address

space. NeXTSTEP uses the class NXProxy for this purpose.

2. A virtual proxy creates expensive objects on demand. The ImageProxy described

in the Motivation is an example of such a proxy.

3. A protection proxy controls access to the original object. Protection proxies are

useful when objects should have different access rights.

(KernelProxies in the Choices OS)

4. A smart reference is a replacement for a bare pointer that performs additional

actions when an object is a accessed.

23

AP 04/02

Client
Subject

Request()

...

RealSubject

Request()

...

Proxy

Request()

...

...

realSubject ->Request()

...

realSubject

PROXY - Structure

aClient

aProxy

aRealSubject
subject

Real-subject

AP 04/02

Participants and Collaborations

Participants:

• Proxy (ImageProxy)
– Maintains reference to the real subject

– Provides interface identical to the real subject

– Controls access to subject; manages creation and deletion

• Subject (Graphic)
– Defines common interface for RealSubject and Proxy

• RealSubject (Image)
– Defines the real object that the proxy represents

Collaborations:
– Proxy forwards requests to RealSubject when appropriate, depending on the

kind of proxy.

