
Architecture of the CORBA
Component Model

POA Interfaces

2

POA Features

§ Provide unique programming interface for servant development across
implementations and languages

§ Provide support for transparent activation of objects
§ Allow a single servant to support multiple object identities simultaneously
§ Allow multiple distinct instances of the POA to exist in one server
§ Provide support for transient objects with minimal programming effort and

overhead
§ Provide support for implicit activation of servants with POA-allocated object ids
§ Allow object implementations to be maximally responsible for an objects

behaviour.
§ Provide an extensible mechanism for associating policy information with

objects implemented in a POA.
§ Allow programmers to construct object implementations that inherit from static

skeleton classes, generated by IDL compilers, or a DSI implementation

3

POA Creation

§ Standard policies
– Thread policy: ORB_CTRL_MODEL
– Lifespan policy: TRANSIENT
– Object Id Uniqueness Policy: UNIQUE_ID
– Id Assignment Policy: SYSTEM_ID
– Servant Retention Policy: RETAIN
– Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

§ Used for RootPOA, and as the default for new POAs

4

Reference Creation

§ Create reference not associated with a servant:
– create_reference, create_reference_with_id

§ Associate a servant with an object reference
– activate_object, activate_object_with_id
– Use id_to_reference, servant_to_reference to obtain object reference

§ Perform implicit activation
– according to language mapping
– Use servant_to_reference

5

Object Activation

§ Reference may be associated with a servant (active) or not (inactive)
§ RETAIN policy: activated objects are added to active object map

– Objects get explicitly activated through activate_object[_with_id]
– Objects get automatically activated through servant manager added by

set_servant_manager
– USE_DEFAULT_SERVANT policy: Objects get automatically associated with the

default servant

§ NON_RETAIN
– Objects active only during the request
– Activation occurs through the servant manager, or with the default servant

§ If no object can be activated for a request: OBJECT_NOT_EXIST
– If there should be a servant manager but is none: OBJ_ADAPTER

6

Implicit Activation

§ IMPLICIT_ACTIVATION policy requires SYSTEM_ID and RETAIN policies
§ Interface of servant is determined from skeleton, or _primary_interface of

DynamicImplementation
§ Implicit activation happens through servant_to_reference, servant_to_id, or

_this (C++, Java)
§ UNIQUE_ID: only inactive servants are activated

– Otherwise, the active object is returned

§ MULTIPLE_ID: implicit activation always creates a new reference
– Language-mapping specific: _this returns „current“ object if invoked in the context

of an operation implementation

7

Multi-Threading

§ Explicit main loop: ORB operations
– work_pending, perform_work, run, shutdown

§ Threading models:
– Single-threaded: POA is thread-unaware
– ORB-controlled: ORB creates and terminates threads at will
– Main thread: All POAs with that policy have their events processed in the

same (main) thread

8

§ All interfaces are defined in
PortableServer

– CORBA 2.6: All interfaces are
local

§ POA
§ POAManager
§ ServantManager
§ ServantActivator
§ ServantLocator
§ AdapterActivator
§ Current

§ Policy interfaces:
– ThreadPolicy
– LifespanPolicy
– IdUniquenessPolicy
– IdAssignmentPolicy
– ImplicitActivationPolicy
– ServantRetentionPolicy
– RequestProcessingPolicy

§ PortableServer::Servant is a native
type

9

POAManager

local interface POAManager {
exception AdapterInactive{};
enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
void activate()

raises(AdapterInactive);
void hold_requests(

in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(
in boolean wait_for_completion)

raises(AdapterInactive);
void deactivate(

in boolean etherealize_objects,
in boolean wait_for_completion)

raises(AdapterInactive);
State get_state();

};

10

AdapterActivator

§ Implemented by application
§ Used to activate unknown adapters
§ Associated with POAs
local interface AdapterActivator {

boolean unknown_adapter(
in POA parent,
in string name);

};

11

Servant Managers

§ Implemented by application
§ Associated with POAs of appropriate policy
§ Activate objects on demand
§ Managers can raise ForwardRequest exception
§ Two kinds

– Activators: activate objects which get put into AOM
• Used with RETAIN
• Typically dispose etherealized servants

– Locators: activate objects for the period of a single call
• Used with NON_RETAIN
• Typically cache servants across multiple invocations

§ Base interface: ServantManager
local interface ServantManager{ };

12

Servant Activators

local interface ServantActivator : ServantManager {
Servant incarnate (

in ObjectId oid,
in POA adapter)

raises (ForwardRequest);
void etherealize (

in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

13

Servant Activators (2)

§ Invocations to incarnate and etherealize are serialized and
mutually exclusive

§ Incarnations cannot overlap
§ Etherealization may take time until all requests complete
§ Invoking new request on an object that is being etherealizeds:

– Requests are blocked or rejected

14

Servant Locators

local interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);
void postinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

};

15

Servant Locators (2)

§ One pair of preinvoke/postinvoke per request
§ No serialization:

– Locator can use Cookie to match preinvoke and postinvoke

16

POA Policies

§ Policy objects: represent configuration information
§ Policy type, policy value

– Generic ORB operation to create policy objects
– POA-specific operations to create POA policies

§ Example: Thread policies
const CORBA::PolicyType THREAD_POLICY_ID = 16;
enum ThreadPolicyValue {

ORB_CTRL_MODEL, SINGLE_THREAD_MODEL, MAIN_THREAD_MODEL
};
local interface ThreadPolicy : CORBA::Policy {

readonly attribute ThreadPolicyValue value;
};
interface POA { // ...

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

}

17

Lifespan Policy

§ TRANSIENT: Objects cannot outlive the POA
– Requests received after POAManager is deactivated receive

OBJECT_NOT_EXIST

§ PERSISTENT: Objects exist independent from POA
– Typically combined with USER_ID policy, and perhaps servant manager
– For SYSTEM_ID POAs, proprietary mechanisms might be used

18

IdUniquenessPolicy

§ UNIQUE_ID: active servants support only one object id
§ MULTIPLE_ID: a servant may be associated with more than one

object id
– Meaningless in combination with NON_RETAIN

19

IdAssignmentPolicy

§ USER_ID: object Ids created by application
§ SYSTEM_ID: object Ids created by POA

20

ServantRetentionPolicy

§ RETAIN: activated servants are put into AOM
§ NON_RETAIN: objects are etherealized at the end of the

request.
– Requires either USE_DEFAULT_SERVANT or

USE_SERVANT_MANAGER

21

RequestProcessingPolicy

§ USE_ACTIVE_OBJECT_MAP_ONLY: objects not found in the
AOM don‘t exist

§ USE_DEFAULT_SERVANT: Objects not found in the AOM are
associated with the default servant
– Need to invoke set_servant
– Requires MULTIPLE_ID policy

§ USE_SERVANT_MANAGER:
– NON_RETAIN: Need to set servant locator
– RETAIN: Need to set servant activator

22

ImplicitActivationPolicy

§ IMPLICIT_ACTIVATION: support implicit activation
– Requires SYSTEM_ID and RETAIN

§ NO_IMPLICIT_ACTIVATION: implicit activation is not supported

23

POA Interface: Exceptions

local interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception NoServant {};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

24

POA Interface: POA Creation and
Destruction

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);
POA find_POA(

in string adapter_name,
in boolean activate_it)

raises (AdapterNonExistent);
void destroy(

in boolean etherealize_objects,
in boolean wait_for_completion);

25

POA Interface: Policy Creation

ThreadPolicy create_thread_policy(in ThreadPolicyValue value);
LifespanPolicy create_lifespan_policy(in LifespanPolicyValue value);
IdUniquenessPolicy create_id_uniqueness_policy(

in IdUniquenessPolicyValue value);
IdAssignmentPolicy create_id_assignment_policy(

in IdAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(

in ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(

in ServantRetentionPolicyValue value);
RequestProcessingPolicy create_request_processing_policy(

in RequestProcessingPolicyValue value);

26

POA Interface: Attributes

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAList the_children;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

27

POA Interface: Servant Managers

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(
in ServantManager imgr)

raises (WrongPolicy);

28

POA Interface: Default Servants

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

29

POA Interface: Activation and
Deactivation

ObjectId activate_object(
in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);
void activate_object_with_id(

in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

30

POA Interface: Reference Creation

Object create_reference (
in CORBA::RepositoryId intf)

raises (WrongPolicy);
Object create_reference_with_id (

in ObjectId oid,
in CORBA::RepositoryId intf

);

31

POA Interface: Identity Mapping

ObjectId servant_to_id(in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(in Object reference)
raises(ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id(in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

readonly attribute CORBA::OctetSeq id;

32

POACurrent

§ Current objects: Thread-local
§ Initial reference: "POACurrent"
§ Determines object reference of current operation
local interface Current : CORBA::Current {

exception NoContext { };
POA get_POA() raises (NoContext);
ObjectId get_object_id() raises (NoContext);
Object get_reference() raises(NoContext);
Servant get_servant() raises(NoContext);

};

