Architecture of the CORBA
Component Model

POA Interfaces

POA Features

Provide unique programming interface for servant development across
implementations and languages

Provide support for transparent activation of objects
Allow a single servant to support multiple object identities simultaneously
Allow multiple distinct instances of the POA to exist in one server

Provide support for transient objects with minimal programming effort and
overhead

Provide support for implicit activation of servants with POA-allocated object ids

Allow object implementations to be maximally responsible for an objects
behaviour.

Provide an extensible mechanism for associating policy information with
objects implemented in a POA.

Allow programmers to construct object implementations that inherit from static

skeleton classes, generated by IDL compilers, or a DSI implementation ,

POA Creation

= Standard policies
— Thread policy: ORB_CTRL_MODEL
— Lifespan policy: TRANSIENT
— Object Id Unigueness Policy: UNIQUE_ID
— Id Assignment Policy: SYSTEM _ID
— Servant Retention Policy: RETAIN
— Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

= Used for RootPOA, and as the default for new POAS

Reference Creation

= Create reference not associated with a servant:

— create_reference, create_reference_with id
= Associate a servant with an object reference

— activate_object, activate_object_with_id

— Useid_to_reference, servant_to_reference to obtain object reference
= Perform implicit activation

— according to language mapping

— Use servant_to_reference

Object Activation

Reference may be associated with a servant (active) or not (inactive)

RETAIN policy: activated objects are added to active object map
— Objects get explicitly activated through activate _object with_id]

— Objects get automatically activated through servant manager added by
set_servant_manager

— USE_DEFAULT_SERVANT policy. Objects get automatically associated with the
default servant

NON_RETAIN

— Obijects active only during the request

— Activation occurs through the servant manager, or with the default servant
If no object can be activated for a request: OBJECT _NOT_EXIST

— If there should be a servant manager but is none: OBJ_ADAPTER

Implicit Activation

IMPLICIT_ACTIVATION policy requires SYSTEM_ID and RETAIN policies

Interface of servant is determined from skeleton, or _primary_interface of
Dynamiclmplementation
Implicit activation happens through servant_to_reference, servant_to id, or
_this (C++, Java)
UNIQUE_ID: only inactive servants are activated

— Otherwise, the active object is returned
MULTIPLE_ID: implicit activation always creates a new reference

— Language-mapping specific: _this returns ,current* object if invoked in the context
of an operation implementation

Multi-Threading

= Explicit main loop: ORB operations
— work_pending, perform_work, run, shutdown

» Threading models:
— Single-threaded: POA is thread-unaware
— ORB-controlled: ORB creates and terminates threads at will

— Main thread: All POAs with that policy have their events processed in the
same (main) thread

All interfaces are defined in = Policy interfaces:

PortableServer — ThreadPolicy
— CORBA 2.6: All interfaces are — LifespanPolicy

local — IdUniquenessPolicy
POA — IdAssignmentPolicy
POAManager — ImplicitActivationPolicy
ServantManager — ServantRetentionPolicy
ServantActivator — RequestProcessingPolicy
ServantLocator = PortableServer:Servant is a native
AdapterActivator type

Current

POAManager

| ocal interface POAManager ({

exception Adapterlnactive{};
enum St at e {HOLDI NG ACTI VE, DI SCARDI NG | NACTI VE};
voi d activate()
rai ses(Adapt erl nactive);
voi d hol d_request s(
i n bool ean wait _for_conpl etion)
rai ses(Adapt erl nactive);
voi d di scard_request s(
I n boolean wait for _conpl etion)
rai ses(Adapt er | nactive);
voi d deacti vat e(
I n bool ean etherealize objects,
I n boolean wait _for conpl etion)
rai ses(Adapt er |l nacti ve);
State get _state();

AdapterActivator

* |mplemented by application
= Used to activate unknown adapters

= Associated with POAS
| ocal interface AdapterActivator {
bool ean unknown_adapt er (
I n POA parent,
Il n string nane),;

10

Servant Managers

= [mplemented by application

= Associated with POAs of appropriate policy

= Activate objects on demand

= Managers can raise For war dRequest exception

= Two kinds

— Activators: activate objects which get put into AOM

+ Used with RETAIN
 Typically dispose etherealized servants

— Locators: activate objects for the period of a single call
* Used with NON_RETAIN
 Typically cache servants across multiple invocations
= Base interface: ServantManager
| ocal interface Servant Manager{ };

11

| ocal

Servant Activators

I nterface Servant Activator : Servant Manager {

Servant incarnate (

in Objectld oid,
I n POA adapt er)
rai ses (ForwardRequest);

voi d etherealize (

in Objectld oid,

I n POA adapter,

I n Servant serv,

I n bool ean cl eanup_i n_progress,

I n bool ean remai ni ng_acti vati ons);

12

Servant Activators (2)

Invocations to incarnate and etherealize are serialized and
mutually exclusive

Incarnations cannot overlap
Etherealization may take time until all requests complete

Invoking new request on an object that is being etherealizeds:
— Requests are blocked or rejected

13

Servant Locators

| ocal interface ServantLocator : Servant Manager ({

nati ve Cooki e;
Servant prei nvoke(
in Cbjectld oid,
I n POA adapter,
I n CORBA: :ldentifier operation,
out Cooki e the cookie)
rai ses (ForwardRequest);
voi d posti nvoke(
In Oobjectld oid,
I n POA adapter,
In CORBA: :ldentifier operation,
I n Cooki e the_cooki e,
I n Servant the servant);

14

Servant Locators (2)

= One pair of preinvoke/postinvoke per request

= No serialization:
— Locator can use Cookie to match preinvoke and postinvoke

15

POA Policies

Policy objects: represent configuration information
Policy type, policy value

— Generic ORB operation to create policy objects

— POA-specific operations to create POA policies

Example: Thread policies
const CORBA:: PolicyType THREAD PCOLICY_ ID = 16;
enum ThreadPol i cyVal ue {
ORB _CTRL_MODEL, SI NGLE THREAD MODEL, MAI N THREAD MODEL
b
| ocal interface ThreadPolicy : CORBA:.:Policy {
readonly attribute ThreadPolicyVal ue val ue;
}s
i nterface POA { //
ThreadPolicy create_thread policy(

I n ThreadPol i cyVal ue val ue);
} 16

Lifespan Policy

= TRANSIENT: Objects cannot outlive the POA

— Requests received after POAManager is deactivated receive
OBJECT _NOT _EXIST

= PERSISTENT: Objects exist independent from POA

— Typically combined with USER_ID policy, and perhaps servant manager
— For SYSTEM_ID POAs, proprietary mechanisms might be used

17

l[dUniguenessPolicy

= UNIQUE ID: active servants support only one object id

= MULTIPLE_ID: a servant may be associated with more than one
object id
— Meaningless in combination with NON_RETAIN

18

|[dAssignmentPolicy

= USER_ID: object Ids created by application
= SYSTEM_ ID: object Ids created by POA

19

ServantRetentionPolicy

= RETAIN: activated servants are put into AOM

= NON_RETAIN: objects are etherealized at the end of the
request.

— Requires either USE_ DEFAULT _SERVANT or
USE_SERVANT MANAGER

20

RequestProcessingPolicy

USE ACTIVE OBJECT MAP_ONLY: objects not found in the
AOM don't exist

USE DEFAULT_SERVANT: Objects not found in the AOM are
associated with the default servant

— Need to invoke set_servant
— Requires MULTIPLE_ID policy

USE_SERVANT MANAGER:
— NON_RETAIN: Need to set servant locator
— RETAIN: Need to set servant activator

21

ImplicitActivationPolicy

= |MPLICIT_ACTIVATION: support implicit activation
— Requires SYSTEM _ID and RETAIN

= NO_IMPLICIT_ACTIVATION: implicit activation is not supported

22

POA Interface: Exceptions

local interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception NoServant {};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

23

POA Interface: POA Creation and
Destruction

POA create POA(
In string adapter_name,
In POAManager a_ POAManager,
In CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);
POA find_POA(
In string adapter_name,
In boolean activate it)
raises (AdapterNonExistent);
void destroy(
In boolean etherealize objects,
In boolean wait_for_completion);

24

POA Interface: Policy Creation

ThreadPolicy create _thread policy(in ThreadPolicyValue value);
LifespanPolicy create_lifespan_policy(in LifespanPolicyValue value);
ldUniguenessPolicy create id_unigueness_policy(

In [dUniguenessPolicyValue value);
IdAssignmentPolicy create id_assignment_policy(

In IdAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(

In ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(

in ServantRetentionPolicyValue value);
RequestProcessingPolicy create request _processing_policy(

In RequestProcessingPolicyValue value);

25

POA Interface: Attributes

readonly attribute string the_name;

readonly attribute POA the_parent;

readonly attribute POALIist the children;

readonly attribute POAManager the POAManager;
attribute AdapterActivator the_activator;

26

POA Interface: Servant Managers

ServantManager get_servant_manager()
raises (WrongPolicy);
void set_servant_manager(
In ServantManager imgr)
raises (WrongPolicy);

27

POA Interface: Default Servants

Servant get_servant()
raises (NoServant, WrongPolicy);
void set_servant(in Servant p_servant)
raises (WrongPolicy);

28

POA Interface: Activation and
Deactivation

Objectld activate_object(
In Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);
void activate _object with_id(
In Objectld id,
In Servant p_servant)
raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);
void deactivate_object(
In Objectld oid)
raises (ObjectNotActive, WrongPolicy);

29

POA Interface: Reference Creation

Object create_reference (
In CORBA::Repositoryld intf)
raises (WrongPolicy);
Object create_reference_with_id (
In Objectld oid,
iIn CORBA::Repositoryld intf

30

POA Interface: ldentity Mapping

Objectld servant_to_id(in Servant p_servant)
raises (ServantNotActive, WrongPolicy);
Object servant_to_reference(in Servant p_servant)
raises (ServantNotActive, WrongPolicy);
Servant reference_to_servant(in Object reference)
raises(ObjectNotActive, WrongAdapter, WrongPolicy);
Objectld reference_to_id(in Object reference)
raises (WrongAdapter, WrongPolicy);
Servant id_to_servant(in Objectld oid)
raises (ObjectNotActive, WrongPolicy);
Object id_to_reference(in Objectld oid)
raises (ObjectNotActive, WrongPolicy);
readonly attribute CORBA::OctetSeq id;

31

POACurrent

= Current objects: Thread-local

= |nitial reference: "POACurrent"

= Determines object reference of current operation

local interface Current : CORBA::Current {
exception NoContext{ };

POA get_POA() raises (NoContext);
Objectld get_object_id() raises (NoContext);
Object get_reference() raises(NoContext);
Servant get_servant() raises(NoContext);

32

