
Architecture of the CORBA
Component Model

Overview over the .NET
Common Language Infrastructure

2

.NET

§ Microsoft Branding Label
§ .NET framework
§ .NET framework SDK
§ Common Language Infrastructure
§ .NET class library
§ Development environments
§ Programming Languages
§ Why here?

– Component framework
– Standardization
– Distributed computing

3

.NET Framework

§ Portable execution environment („a new computing platform“):
– supports multiple programming languages
– supports multiple operating systems
– alternative implementations

§ Common Language Infrastructure defines common type system, intermediate
language

– safe execution

§ standard library
– access to local OS features (including GUI – winforms)
– access to various networking technologies (core networking, ..., web services)

§ Standard package format (assembly) to support deployment
– code signing and versioning to avoid „DLL hell“

4

.NET Framework SDK

§ Development environment for developing .NET applications
§ C# compiler (csc[.exe])
§ Class library documentation
§ Support tools

5

Common Language Infrastructure
(CLI)

§ International Standard (ECMA 335, ISO 23271)
§ Specifies Common Language Runtime, Class Library
§ Multiple implementations:

– .NET Framework
– Shared Source CLI (SSCLI) (code name ROTOR)
– GNU Mono
– DotGNU

6

Common Language Runtime (CLR)

§ Runtime functions:
– memory management (garbage collection)
– thread execution
– code safety verification (various degrees of trust: local or remote code)
– compilation
– ...

§ Common Type System (CTS):
– self-describing code (allows introspection)
– Programming languages map to the CTS
– Inheritance from System.Object

§ Code is stored in Common Intermediate Language
– typically executed through JIT compilation to native code (.NET, Rotor, (Mono))

7

.NET Framework Class Library

§ Standard System libraries:
– Collections, Configuration, Diagnostics, Globalization, IO, Net, Reflection,

Resources Security, ServiceProcess, Text, Threading, Runtime,
InteropServices, Remoting, (Serialization)

§ Microsoft Extensions:
– System.Data (ADO.NET): ADO, SQL, Design, Adapters
– System.XML: XSLT, XPath, Serialization,
– System.Drawing
– System.Web (ASP.NET)

8

Development Environments /
Implementations

§ Visual Studio .NET:
– GUI development
– Managed C++ (C++ for .NET)

• managed and unmanaged code

– Visual Basic.NET
– J#
– Support tools

§ Rotor
– C#, J#
– Windows, Mac OS X, FreeBSD/i386

§ Mono
§ DotGNU

9

Programming Languages

§ C#
– object-oriented language
– type-safe
– similar to C and C++

§ Visual Basic .NET
§ C++
§ J#
§ Eiffel, COBOL, Oberon, APL, Fortran
§ Mondrian, Haskell, Mercury

10

Remoting

§ Infrastructure for distributed computing in .NET
§ Based on the notion of interfaces
§ Bridges between „Application Domains“

– in a single operating system process
– across process boundaries
– across machine boundaries

§ Copies vs. References
– Objects inheriting from MarshalByRefObj are remotely accessible
– Parameters are marshalled either by reference or by value

§ Channels
§ Object Activation and Lifetime

11

Copies vs. References

§ Call by reference: Inheritance from System.MarshalByRefObj
§ Copying requires support for serialization

– implementation of the System.Runtime.Serialization.ISerializable
interface

– decoration with the Serializable attribute

§ Automatic serialization:
– serialize all members that are not decorated with the NonSerialized

attribute
– raises SerializationException if non-serializable object is encountered

12

Channels

§ objects that transport messages
§ .NET supports two kinds of channels:

– HttpChannel
– TcpChannel

§ Formatters determine on-the-wire representation of serialized
objects:
– BinaryFormatter
– SoapFormatter
– automatically chosen depending on the channel

13

Activation

§ Process of instantiating implementation object
§ can be initiated from either client or server side
§ Server-side activation

– client calls Activator.GetObject, activation is delayed until first invocation
– two activation modes

• Singleton: a single instance services all clients
• SingleCall: a new instance is created for every call

§ Client-side activation:
– Client explicitly requests new instance through Activator.CreateInstance

14

Life-time

§ SingleCall: implementation object only lives for the duration of
the call

§ Singleton, client-activated: distributed garbage collection through
life time manager

§ Clients register interest in object
§ Life-time manager checks regularly whether clients are still

interested
§ If no client is interested, life-time of the implementation object

ends
§ Life time is configurable: implementation can define frequency of

check etc.

