Architecture of the CORBA
Component Model

Overview over the .NET
Common Language Infrastructure

NET

Microsoft Branding Label
NET framework
NET framework SDK
Common Language Infrastructure
NET class library
Development environments
Programming Languages
Why here?
— Component framework

— Standardization
— Distributed computing

NET Framework

Portable execution environment (,a new computing platform®):

— supports multiple programming languages

— supports multiple operating systems

— alternative implementations
Common Language Infrastructure defines common type system, intermediate
language

— safe execution
standard library

— access to local OS features (including GUI — winforms)

— access to various networking technologies (core networking, ..., web services)
Standard package format (assembly) to support deployment

— code signing and versioning to avoid ,DLL hell®

NET Framework SDK

Development environment for developing .NET applications
C# compiler (csc[.exe])

Class library documentation

Support tools

Common Language Infrastructure
(CLI)

= [nternational Standard (ECMA 335, ISO 23271)
= Specifies Common Language Runtime, Class Library

= Multiple implementations:
— .NET Framework
— Shared Source CLI (SSCLI) (code name ROTOR)
— GNU Mono
— DotGNU

Common Language Runtime (CLR)

= Runtime functions:
— memory management (garbage collection)
— thread execution
— code safety verification (various degrees of trust: local or remote code)
— compilation
= Common Type System (CTS):
— self-describing code (allows introspection)
— Programming languages map to the CTS
— Inheritance from System.Object
= Code is stored in Common Intermediate Language
— typically executed through JIT compilation to native code (.NET, Rotor, (Mono))

NET Framework Class Library

= Standard System libraries:

— Collections, Configuration, Diagnostics, Globalization, 10, Net, Reflection,
Resources Security, ServiceProcess, Text, Threading, Runtime,
InteropServices, Remoting, (Serialization)

= Microsoft Extensions:

— System.Data (ADO.NET): ADO, SQL, Design, Adapters

— System.XML: XSLT, XPath, Serialization,

— System.Drawing

— System.Web (ASP.NET)

Development Environments /
Implementations

Visual Studio .NET:

— GUI development

— Managed C++ (C++ for .NET)
« managed and unmanaged code

— Visual Basic.NET

- ¢

— Support tools

Rotor

- C#,

— Windows, Mac OS X, FreeBSD/i386
Mono

DotGNU

Programming Languages

C#

— object-oriented language
— type-safe
— similar to C and C++

Visual Basic .NET
C++

JH
Eiffel, COBOL, Oberon, APL, Fortran
Mondrian, Haskell, Mercury

Remoting

Infrastructure for distributed computing in .NET
Based on the notion of interfaces

Bridges between ,Application Domains*
— Inasingle operating system process
— across process boundaries
— across machine boundaries

Copies vs. References
— Objects inheriting from MarshalByRefObj are remotely accessible
— Parameters are marshalled either by reference or by value

Channels
Object Activation and Lifetime

10

Copies vs. References

= Call by reference: Inheritance from System.MarshalByRefOb
= Copying requires support for serialization

— implementation of the System.Runtime.Serialization.|Serializable
interface

— decoration with the Serializable attribute
= Automatic serialization:

— serialize all members that are not decorated with the NonSerialized
attribute

— raises SerializationException if non-serializable object is encountered

11

Channels

= objects that transport messages

= NET supports two kinds of channels:
— HttpChannel
— TcpChannel

= Formatters determine on-the-wire representation of serialized
objects:
— BinaryFormatter
— SoapFormatter
— automatically chosen depending on the channel

12

Activation

Process of instantiating implementation object
can be initiated from either client or server side

Server-side activation
— client calls Activator.GetObject, activation is delayed until first invocation
— two activation modes
* Singleton: a single instance services all clients
+ SingleCall: a new instance is created for every call
Client-side activation:
— Client explicitly requests new instance through Activator.Createlnstance

13

Life-time

SingleCall: implementation object only lives for the duration of
the call

Singleton, client-activated: distributed garbage collection through
life time manager

Clients register interest in object

Life-time manager checks regularly whether clients are still
Interested

If no client is interested, life-time of the implementation object
ends

Life time is configurable: implementation can define frequency of
check etc.

14

