
Architecture of the CORBA Component Model

Event Service

Overview

Event-oriented communication: an alternative for call-based client-server
architecture
Event Service: simple decoupled communication
Notification Service: Extension of the Event Service

– Offers greater flexibility

Events & Notifications

Event: „something that happens“, „occurrence of some sort“, atomic
Notification: Information about an event (message)
Each message has a single distinct source, but potentially many recipients
(1:n communications)
Medium may support n:n communications
Source of messages does not know consumers

– Recipients are not explicitly addressed

Emitting a message is typically non-blocking

Objectives and Applications

Objectives are decoupling and autonomy
– In space
– In time
– Syntactically
– Semantically

Distribution of messages (news ticker)
Management of Telco networks
Conferencing systems

Example Applications

Example Scenario
– Stock exchange

• Stocks are traded at different exchanges
• Decoupled scenario: notations are independent of individual trading

decisions
• Notations are distributed to all registered customers

– Customers can subscribe to all/certain stocks
• Provision of

– Frequency of notification
– Validity of data (e.g. do not communicate rates older than x minutes)
– ...

First Approach

struct Time
{

string current_date;
string current_time;

};
interface StockExchange;
struct StockQuote
{

string stock_id;
StockExchange market_place;
double current_quote;
Time current_time;

};

First Approach

interface Subscriber
{

void receive (in ::StockQuote current_quote);
};

interface StockExchange
{

void subscribe (in ::Subscriber customer);
};

First Approach

StockExchange Implementation:
– Manages list of Subscriber objects
– On each rate change, all Subscriber objects are notified

Use communication patterns
– subscribe/publish

• Interested parties subscribe to news agency
• News agency emits news messages

– Push model
• News messages are emitted actively by the agency

Approach using CORBA Event Service Interfaces

CORBA Event Service
– Interfaces standardized by OMG for event services

• ftp.omg.org/pub/docs/formal/00-06-15.pdf
• ftp.omg.org/pub/docs/formal/98-10-05.idl
• ftp.omg.org/pub/docs/formal/98-10-06.idl

Event consumers and supplier
– Communication patterns push and pull

• Push model: Producer is active
• Pull model: Consumer is active

Typed and untyped communication
– Untyped: messages are communicated using the any type

Consumer and Supplier – Push Model

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

interface PushSupplier {
void disconnect_push_supplier();

};

Consumer and Supplier – Pull Model

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};

First Approach using
CORBA Event Service (Push Model)

interface StockExchange2;
struct StockQuote2 {

// ...
StockExchange2 market_place;
// ...

};

interface Subscriber2 : ::CosEventComm::PushConsumer
{};

interface StockExchange2 : ::CosEventComm::PushSupplier {
void subscribe (in ::Subscriber2 customer);

};

First Approach using
CORBA Event Service (Push Model)

Usage of standard interface for StockExchange service
– Push model proves appropriate
– Explicit usage of inheritance from PushConsumer and PushSupplier

Problems?
– StockExchange objects are client-aware: all consumers must be known to supplier
– Solution: Use a middleman between consumer and producer
– Call the middleman „channel“ and consider the push model

Event Channels

Consumer Supplier

push

pull

Event Channels

Consumer Supplier

push

pull

Event Channel

push

pull

A Channel Definition

interface Channel
: ::CosEventComm::PushSupplier,

::CosEventComm::PushConsumer {
void register_supplier (

in ::CosEventComm::PushSupplier supplier);
void register_consumer (

in ::CosEventComm::PushConsumer consumer);
};

interface MyConsumer : ::CosEventComm::PushConsumer
{};

interface MySupplier : ::CosEventComm::PushSupplier
{};

A Channel Definition

Advantages:
– Decoupling of communications between StockExchange objects and Subscriber

objects
– Subscriber objects only know the channels they use
– A single channel can transmit events of multiple suppliers, distributing them

transparently to multiple consumers

CORBA Event Channel Interfaces

Event channel interfaces standardized by OMG
– Built on top of PushConsumer, PushSupplier, PullConsumer, PullSupplier
– Usage interfaces (event channel)
– Management interfaces

Event Channel – Usage Interfaces

module CosEventChannelAdmin
{

exception AlreadyConnected {};
interface ProxyPushConsumer

: ::CosEventComm::PushConsumer
{

void connect_push_supplier (
in ::CosEventComm::PushSupplier push_supplier) raises (

::CosEventChannelAdmin::AlreadyConnected);
};

};

Event Channel – Usage Interfaces

module CosEventChannelAdmin
{

exception TypeError{};

interface ProxyPushSupplier
: ::CosEventComm::PushSupplier

{
void connect_push_consumer (

in ::CosEventComm::PushConsumer push_consumer) raises
(::CosEventChannelAdmin::AlreadyConnected,
::CosEventChannelAdmin::TypeError);

};
};

Event Channel – Management Interfaces

module CosEventChannelAdmin
{

interface ConsumerAdmin;
interface SupplierAdmin;
interface EventChannel
{

::CosEventChannelAdmin::ConsumerAdmin
for_consumers ();

::CosEventChannelAdmin::SupplierAdmin for_suppliers ();
void destroy ();

};
};

Event Channel – Management Interfaces

module CosEventChannelAdmin
{

interface ConsumerAdmin
{

::CosEventChannelAdmin::ProxyPushSupplier obtain_push_supplier ();
::CosEventChannelAdmin::ProxyPullSupplier obtain_pull_supplier ();

};

interface SupplierAdmin
{

::CosEventChannelAdmin::ProxyPushConsumer obtain_push_consumer (
);

::CosEventChannelAdmin::ProxyPullConsumer obtain_pull_consumer ();
};

};

StockExchange Event Service, Using EventChannels

Specification of Subscriber2 and StockExchange2 can be reused
Procedure

– StockExchange2 object receive (magically yet) an object reference of a
EventChannelAdmin object

– Instantiate via
EventChannelAdmin->for_suppliers()->
obtain_push_consumer()

ProxyPushConsumer object, which they use to supply events
– Registration via connect_push_supplier()

StockExchange Event Service, Using EventChannels

Procedure
– Subscriber2 object receive (magically yet) an object reference of an

EventChannelAdmin object
– Instantiate via

EventChannelAdmin->for_consumers()
->obtain_push_supplier()

a ProxyPushSupplier object, from which they will receive events
– Register there using connect_push_consumer(...)

Results so far

Usage of standardized interfaces for middleman objects of the StockExchange
service

– Simple administration and usage
– Decoupled communication between supplier and consumer

Open issues:
– How to obtain object reference for an EventChannel?
– Answer:
CORBA::Object_var obj = orb->resolve_initial_references("EventService");
CosEventChannelAdmin::EventChannel::_narrow(obj);
– Problem: this only allows for a single channel shared by all producers and

consumers

Further Concepts

EventChannel factories
– Objects able to create EventChannel object:

• For EventChannels NOT standardized
• Proprietary solutions (e.g. ORBacus)
interface EventChannelFactory {

CosEventChannelAdmin::EventChannel
create_channel(in ChannelId id);

CosEventChannelAdmin::EventChannel
get_channel_by_id(in ChannelId id);

ChannelIdSeq get_channels();
void shutdown();

};

Further Concepts

Event filters
– Usable in stock exchange service

• Subscriber may only be be interested in specific stocks
• Stop-loss: subscriber may be interested only if the rate is below a certain value
• Stop-bye: subscriber is interested only in rates above a certain value

Can be implemented as middleman between channels with additional
interfaces to install filters

Further Concepts

Consumer Supplier

push

pull

Event Channel

pull

Event ChannelFilter

pullpull

pushpushpush

Interface
for filter expressions

Further Concepts

Quality of service for event transmission
– Event validity/timeout
– Delay of events
– Guarantee of delivery

Canonical extension of the Event Service with these concepts is the
Notification Service

– OMG standard
– Compatible with Event Service through inheritance

