

Overview

4 Event-oriented communication: an alternative for call-based client-server
architecture

& Event Service: simple decoupled communication

4 Notification Service:; Extension of the Event Service
— Offers greater flexibility

Events & Notifications

Event: ,something that happens®, ,occurrence of some sort*, atomic
Notification: Information about an event (message)

Each message has a single distinct source, but potentially many recipients
(1:n communications)

Medium may support n:n communications

Source of messages does not know consumers
— Recipients are not explicitly addressed

Emitting a message is typically non-blocking

o

&

i

i

Objectives and Applications

Objectives are decoupling and autonomy
— In space
— Intime
— Syntactically
— Semantically
Distribution of messages (news ticker)
Management of Telco networks

Conferencing systems

Example Applications

£ Example Scenario

— Stock exchange
» Stocks are traded at different exchanges

 Decoupled scenario: notations are independent of individual trading
decisions

» Notations are distributed to all registered customers

— Customers can subscribe to all/certain stocks

* Provision of
— Frequency of notification
— Validity of data (e.g. do not communicate rates older than x minutes)

First Approach

struct Time

{
string current_date;
string current_time;

3

interface StockExchange;

struct StockQuote

{
string stock id;
StockExchange market_place;
double current_quote;
Time current_time;

First Approach

Interface Subscriber

{

void receive (in ::StockQuote current_quote);

s

Interface StockExchange

{

void subscribe (in ::Subscriber customer);

J

First Approach

& StockExchange Implementation:

— Manages list of Subscriber objects
— On each rate change, all Subscriber objects are notified

4 Use communication patterns

— subscribe/publish
* Interested parties subscribe to news agency
« News agency emits news messages
— Push model
* News messages are emitted actively by the agency

& <

Approach using CORBA Event Service Interfaces

% CORBA Event Service

— Interfaces standardized by OMG for event services
« ftp.omg.org/pub/docs/formal/00-06-15.pdf
» ftp.omg.org/pub/docs/formal/98-10-05.idl
« ftp.omg.org/pub/docs/formal/98-10-06.idl

& Event consumers and supplier

— Communication patterns push and pull
+ Push model; Producer is active
* Pull model: Consumer is active

4 Typed and untyped communication
— Untyped: messages are communicated using the any type

& <

Consumer and Supplier — Push Model

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

3

interface PushSupplier {
void disconnect_push_supplier();

3

& <

Consumer and Supplier — Pull Model

Interface PullSupplier {
any pull () raises(Disconnected);
any try pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier();

interface PullConsumer {
void disconnect_pull_consumer();

it

/Q/ /
............ First Approach using

CORBA Event Service (Push Model)

interface StockExchange2;

struct StockQuote?2 {
Tk
StockExchange2 market_place;
I ...

J

interface Subscriber? : ::CosEventComm::PushConsumer

{1

interface StockExchange?2 : ::CosEventComm::PushSupplier {
void subscribe (in ::Subscriber2 customer);

3

/ /
........... First Approach using

CORBA Event Service (Push Model)

Usage of standard interface for StockExchange service
— Push model proves appropriate
— Explicit usage of inheritance from PushConsumer and PushSupplier
4 Problems?
— StockExchange objects are client-aware: all consumers must be known to supplier
— Solution: Use a middleman between consumer and producer
— Call the middleman ,channel“ and consider the push model

Event Channels

push

pull

Event Channels

push push

Consumer Event Channel Supplier

oull pull

A Channel Definition

interface Channel
: .:CosEventComm::PushSupplier,
.:CosEventComm::PushConsumer {
void register_supplier (
in ::CosEventComm::PushSupplier supplier);
void register_consumer (
in ::CosEventComm::PushConsumer consumer);

5

interface MyConsumer : ::CosEventComm::PushConsumer

{

interface MySupplier : ::CosEventComm::PushSupplier

%

A Channel Definition

4 Advantages:
— Decoupling of communications between StockExchange objects and Subscriber
objects

— Subscriber objects only know the channels they use

— Asingle channel can transmit events of multiple suppliers, distributing them
transparently to multiple consumers

CORBA Event Channel Interfaces

4 Event channel interfaces standardized by OMG
— Built on top of PushConsumer, PushSupplier, PullConsumer, PullSupplier
— Usage interfaces (event channel)
— Management interfaces

Event Channel — Usage Interfaces

module CosEventChannelAdmin
{
exception AlreadyConnected {};
interface ProxyPushConsumer
. .:CosEventComm::PushConsumer

{
void connect_push_supplier (
in ::CosEventComm::PushSupplier push_supplier) raises (
.:CosEventChannelAdmin::AlreadyConnected);
I

Event Channel — Usage Interfaces

module CosEventChannelAdmin

{
exception TypeError{};

interface ProxyPushSupplier
. .:CosEventComm::PushSupplier

{
void connect_push_consumer (
in ::CosEventComm::PushConsumer push_consumer) raises
(::CosEventChannelAdmin::AlreadyConnected,
.:CosEventChannelAdmin:: TypeError);
%

& <

Event Channel — Management Interfaces

module CosEventChannelAdmin
{
Interface ConsumerAdmin;
iInterface SupplierAdmin;
Interface EventChannel

{
:CosEventChannelAdmin::ConsumerAdmin
for_consumers ();

.:CosEventChannelAdmin::SupplierAdmin for_suppliers ();
void destroy ();

& <

Event Channel — Management Interfaces

module CosEventChannelAdmin

{

interface ConsumerAdmin

{
.:CosEventChannelAdmin::ProxyPushSupplier obtain_push_supplier ();
::CosEventChannelAdmin::ProxyPullSupplier obtain_pull_supplier ();
¢
interface SupplierAdmin
{
::CosEventChannelAdmin::ProxyPushConsumer obtain_push_consumer (
IE
::CosEventChannelAdmin::ProxyPullConsumer obtain_pull_consumer ();
}:

& <

StockExchange Event Service, Using EventChannels

& Specification of Subscriber2 and StockExchange2 can be reused

4 Procedure
— StockExchange?2 object receive (magically yet) an object reference of a
EventChannelAdmin object

— Instantiate via

Event Channel Adm n->f or _suppliers()->
obt ai n_push_consuner ()

ProxyPushConsumer object, which they use to supply events
— Registration via connect _push_supplier ()

& <

StockExchange Event Service, Using EventChannels

% Procedure

— Subscriber2 object receive (magically yet) an object reference of an
EventChannelAdmin object

— Instantiate via

Event Channel Adm n->f or _consuner s()
- >0bt ai n_push_supplier()

a ProxyPushSupplier object, from which they will receive events
— Register there usingconnect push_consuner(...)

Results so far

4 Usage of standardized interfaces for middleman objects of the StockExchange
service

— Simple administration and usage

— Decoupled communication between supplier and consumer
& Open Issues:

— How to obtain object reference for an EventChannel?

— Answer:

CORBA::Object_var obj = orb->resolve initial_references("EventService");
CosEventChannelAdmin::EventChannel:;_narrow(obj);

— Problem: this only allows for a single channel shared by all producers and
consumers

Further Concepts

4 EventChannel factories

— Objects able to create EventChannel object
 For EventChannels NOT standardized

 Proprietary solutions (e.g. ORBacus)
I nterface Event Channel Factory {

CosEvent Channel Adm n: : Event Channel
create_channel (in Channelld id);

CosEvent Channel Adm n: : Event Channel

get _channel by id(in Channelld id);
Channel | dSeq get channel s();
voi d shut down();

i

Further Concepts

4 Event filters
— Usable in stock exchange service
 Subscriber may only be be interested in specific stocks
 Stop-loss: subscriber may be interested only if the rate is below a certain value
« Stop-bye: subscriber is interested only in rates above a certain value

4 Can be implemented as middleman between channels with additional
Interfaces to install filters

Further Concepts
Interface
for filter expressions
push push ‘ push push
_onsumer, Event Channel Filter Event Channel Supplier

NN

pull pull pull pull

Further Concepts

& Quality of service for event transmission
— Event validity/timeout
— Delay of events
— Guarantee of delivery

& Canonical extension of the Event Service with these concepts is the
Notification Service

— OMG standard
— Compatible with Event Service through inheritance

