
Architecture of the CORBA Component Model

CORBA Security

Network Security

Security (Sicherheit): Guarantee of protection (Schutz) and integrity
(Unverletzlichkeit) of data

– technical security: devices and algorithms
– privacy (Datenschutz) also includes definition of organizational procedures (e.g.

roles and rights)
– assumption of thread by deliberate manipulation

cf. Safety (Zuverlässigkeit):
– protection against failure of components in the system (by means of quality

control, fault tolerance, etc)

open systems are insecure by nature

Threats

Breakage of control mechanisms:
– an authenticated user obtains information not that were not mean for her
– a user masquerades as somebody else

Eavesdropping
– recording of communication between sender and receiver

Falsification (tampering)
– Unauthorized alteration of data

Missing accountability
– The user performing an action cannot be identified

Goals of CORBA Security

Confidentiality of data (Vertraulichkeit)
Integrity of data (Unversehrtheit)
Accountability of access (Nachvollziehbarkeit)

– Non-repudation (Nicht-Abstreitbarkeit)

Availability (Verfügbarkeit): Not a goal of CORBA Security, covered by other
specs (e.g. fault tolerance)

Key Features

Identification and Authentication
Authorization and Access Control
Security Auditing
Security of Communication

– over insecure lower-layer channels

Non-repudation
Administration

Architectural Goals

Simplicity
Consistency (with existing infrastructures)
Scalability
Usability for end users
Usability for administrators
Usability for implementors
Flexibility of security policy
Independence of security technology
Application portability
Interoperability
Performance
Object Orientation

Service Conformance Levels (Basic Package)

Level 1: Applications are unaware of CORBA Security
– user authentication
– identity of authenticated users accessible
– Application of policies for ORB domain
– Auditing
– optionally: non-repudation (optional package)

Level 2: Applications are aware of roles and privileges
– API to enforce policies within the application

Security Replacability Packages

ORB services replacability
– through portable interceptors

Security service replacability
– through implementer interfaces

Common Secure Interoperability (CSI) Packages

CSI Level 0: Identity based policies without delegation
CSI Level 1: Identity based policies with unrestricted delegation
CSI Level 3: Identity & privilege based policies with restricted delegation

SECIOP Interoperability Package

Interoperability based on enhanced GIOP/IIOP, provided the same underlying
security mechanism is supported

Security Mechanisms Package

SPKM (Simple Public Key Mechanism):
– supports CSI level 0
– uses SECIOP extensions

GSS Kerberos:
– supports CSI level 1
– uses SECIOP extensions

CSI-ECMA protocol:
– CSI level 2
– based on SECIOP
– administrator can restrict use of delegation
– can use either public or private key technology

SSL:
– CSI level 0
– not based on SECIOP

SECIOP + DCE CIOP

IDL Module Names

SecurityLevel1
SecurityLevel2
NRservice (non-repudation)
SecurityReplaceable
Intercepter
SECIOP
SSL
DCE_CIOPSecurity

Secure Method Call

Principal: global user identity
– requires authentication
– is associated with privileges

Credentials: describe identity and privilege attributes
Security Association: binding between caller and callee

– accessible through "SecurityCurrent"
– requires trusted channel

Target object uses Current object to obtain identity and privileges of the caller
– authorization through policies or access control lists
– potentially auditing (communication through audit channel)

If target object invokes further operations:
– Call with identity and privileges of target object
– Call with identity and privileges of caller (delegation)
– privileges of caller and callee are combined

Non-repudation:
– generation of receipts for request/response
– integration of a delivery authority

Message Protection

Integrity:
– prevents undetected, unauthorized modification of messages
– may detect message addition, deletion, or change of order

Confidentiality:
– ensures that message is not read unauthorized

Access Control Model

Object Invocation Access Policy
– applied independent of application logic
– client side restrictions, and target side restrictions
– based on client privileges, operation (name), and object security attributes

Application Access Policy
– implemented in the application logic

Privilege attributes:
– principal‘s identity, roles, groups, capabilities

Control attributes:
– Access control lists, object classifications

Access Control (2)

Access Decision Functions

Security Policy Domains

Scope for which a certain set of security policies applies
domain hierarchies
domain federations
management:

– creation, deletion
– membership of objects
– policies associated with a domain

Authentication and Credentials

through external security logon
through PrincipalAuthenticator

– operations authenticate, continue_authentication
– produces Credentials

Operations on Credentials: is_valid, refresh
Current object:

– either SecurityLevel1::Current or SecurityLevel2::Current
– access to credentials via get_credentials/set_credentials

Target object computes Access_Decision object
– access_allowed operation determines whether operation invocation should be

rejected

Authentication

Multiple Credentials

PolicyCurrent maintains InvocationCredentialsPolicy
Multiple credentials can be copied, then modified

Security at the Target

Target object uses SecurityCurrent to find security attributes

Access Decision Objects

access_allowed() compare effectives and required rights

SecurityCurrent

module SecurityLevel1 {
pragma version SecurityLevel1 1.8
local interface Current : CORBA::Current {

pragma version Current 1.8
// thread specific operations
Security::AttributeList get_attributes (

in Security::AttributeTypeList attributes
);

};
};

SecurityCurrent, Level 2

module SecurityLevel2 {
local interface Current : SecurityLevel1::Current {

pragma version Current 1.8
readonly attribute ReceivedCredentials

received_credentials;
};

SecurityManager

resolve_initial_references("SecurityManager")
local interface SecurityManager {

readonly attribute Security::MechandOptionsList supported_mechanisms;
readonly attribute CredentialsList own_credentials;
readonly attribute RequiredRights required_rights_object;
readonly attribute PrincipalAuthenticator principal_authenticator;
readonly attribute AccessDecision access_decision;
readonly attribute AuditDecision audit_decision;
TargetCredentials get_target_credentials (in Object obj_ref);
void remove_own_credentials(in Credentials creds);
CORBA::Policy get_security_policy (in CORBA::PolicyType policy_type);

};

AccessDecision

local interface AccessDecision {
boolean access_allowed (

in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
};

Policy Management

module SecurityAdmin {
interface DomainAccessPolicy : AccessPolicy {

void grant_rights(in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights);

void revoke_rights(in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights);

void replace_rights (in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights);

Security::RightsList get_rights (in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family);

//...

Rights

module Security {
struct ExtensibleFamily {

unsigned short family_definer;
unsigned short family;

};
struct Right {

ExtensibleFamily rights_family;
string rights_list;

};
typedef sequence <Right> RightsList;

};

Rights Families

Family definer: 0 (OMG)
Family 1: (CORBA)
Rights:

– „get“: read object state
– „set“: write object state
– „manage“: modification of security attributes of the object
– „use“: access to general service interface of the object

Client Example

securitymanager = orb->resolve_initial_references ("SecurityManager");
Security::AuthenticationMethod our_method =

(Security::AuthenticationMethod)SecurityLevel2::KeyCertCAPass;
Security::SSLKeyCertCAPass *method_struct;

method_struct = new Security::SSLKeyCertCAPass;

Client Example(2)

// Install client certificate for authenticator
CORBA::Any* any_struct = secman -> get_method_data(our_method);

*any_struct >>= *method_struct;
method_struct -> key = "ClientKey.pem";
method_struct -> cert = "ClientCert.pem";
method_struct -> CAfile = "";
method_struct -> CAdir = "";
method_struct -> pass = "";

//obtain authenticator
SecurityLevel2::PrincipalAuthenticator_ptr pa = secman -> principal_authenticator();

Client Example (3)

const char* security_name = "ssl";
Security::AttributeList privileges;
SecurityLevel2::Credentials_ptr creds;
CORBA::Any* continuation_data;
CORBA::Any* auth_specific_data;

// authenticate
pa -> authenticate(our_method, "", security_name, *out_any_struct,privileges,

creds,continuation_data,auth_specific_data);

// invoke operations
...

Server Example

Authenticate to primary authenticator: likewise
In the method implementation: perform access check

CORBA::Object_var securitycurrent;
SecurityLevel2::Current_var seccur;
securitycurrent = orb->resolve_initial_references ("SecurityCurrent");
seccur = SecurityLevel2::Current::_narrow(securitycurrent);
SecurityLevel2::ReceivedCredentials_var rc = seccur->received_credentials();

Server Example(2)

Security::ExtensibleFamily fam;
fam.family_definer = 0;
fam.family = 1;
Security::AttributeType at;
at.attribute_family = fam;
at.attribute_type = Security::AccessId;
Security::AttributeTypeList atl;
atl.length(1);
atl[0]=at;

Security::AttributeList_var al = rc->get_attributes(atl);

