
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS5: Memory Management
5.4. Physical Memory Management

3

Roadmap for Section 5.4.

From working sets to paging dynamics

Birth of a process working set

Working set trimming, heuristics

Paging, paging dynamics

Hard vs. soft page faults

Page files

2

4

Working Set
Working set: All the physical pages “owned” by a process

Essentially, all the pages the process can reference without incurring
a page fault

Working set limit: The maximum pages the process can own
When limit is reached, a page must be released for every page that’s
brought in (“working set replacement”)
Default upper limit on size for each process
System-wide maximum calculated & stored in
MmMaximumWorkingSetSize

approximately RAM minus 512 pages (2 MB on x86) minus min size of
system working set (1.5 MB on x86)
Interesting to view (gives you an idea how much memory you’ve “lost” to
the OS)

True upper limit: 2 GB minus 64 MB for 32-bit Windows

5

Working Set List

A process always starts with an empty working set
It then incurs page faults when referencing a page that isn’t in its
working set
Many page faults may be resolved from memory (to be described
later)

PerfMon
Process “WorkingSet”

newer pages older pages

3

6

Birth of a Working Set
Pages are brought into memory as a result of page faults

Prior to XP, no pre-fetching at image startup
But readahead is performed after a fault

See MmCodeClusterSize, MmDataClusterSize, MmReadClusterSize

If the page is not in memory, the appropriate block in the associated
file is read in

Physical page is allocated
Block is read into the physical page
Page table entry is filled in
Exception is dismissed
Processor re-executes the instruction that caused the page fault (and
this time, it succeeds)

The page has now been “faulted into” the process “working set”

7

Prefetch Mechanism

First 10 seconds of file activity is traced and used to prefetch data the
next time

Also done at boot time (described in Startup/Shutdown section)

Prefetch “trace file” stored in \Windows\Prefetch
Name of .EXE-<hash of full path>.pf

When application run again, system automatically
Reads in directories referenced

Reads in code and file data
Reads are asynchronous

But waits for all prefetch to complete

4

8

Prefetch Mechanism

In addition, every 3 days, system automatically
defrags files involved in each application
startup
Bottom line: Reduces disk head seeks

This was seen to be the major factor in slow
application/system startup

9

Working Set Replacement

When working set max reached (or working set trim occurs), must give up pages to
make room for new pages
Local page replacement policy (most Unix systems implement global replacement)

Means that a single process cannot take over all of physical memory unless other
processes aren’t using it

Page replacement algorithm is least recently accessed
(pages are aged)

On UP systems only in Windows 2000 – done on all systems in Windows
XP/Server 2003

New VirtualAlloc flag in XP/Server 2003: MEM_WRITE_WATCH

PerfMon
Process “WorkingSet”

to standby
or modified

page list

5

10

Soft vs. Hard Page Faults
Types of “soft” page faults:

Pages can be faulted back into a process from the standby and modified page
lists
A shared page that’s valid for one process can be faulted into other processes

Some hard page faults unavoidable
Process startup (loading of EXE and DLLs)
Normal file I/O done via paging

Cached files are faulted into system working set
To determine paging vs. normal file I/Os:

Monitor Memory->Page Reads/sec
Not Memory->Page Faults/sec, as that includes soft page faults

Subtract System->File Read Operations/sec from Page Reads/sec
Or, use Filemon to determine what file(s) are having paging I/O (asterisk next
to I/O function)
Should not stay high for sustained period

11

Working Set System Services
Min/Max set on a per-process basis

Can view with !process in Kernel Debugger
System call below can adjust min/max, but has minimal effect prior to Server
2003

Limits are “soft” (many processes larger than max)
Memory Manager decides when to grow/shink working sets

New system call in Server 2003 (SetProcessWorkingSetSizeEx) allows setting
hard min/max
Can also self-initiate working set trimming

Pass -1, -1 as min/max working set size (minimizing a window does this
for you)

Windows API:
SetProcessWorkingSetSize(

HANDLE hProcess,
DWORD dwMinimumWorkingSetSize,
DWORD dwMaximumWorkingSetSize)

6

12

Locking Pages
Pages may be locked into the process working set

Pages are guaranteed in physical memory (“resident”) when any
thread in process is executing

Windows API:
status = VirtualLock(baseAddress, size);
status = VirtualUnlock(baseAddress, size);

Number of lockable pages is a fraction of the maximum working set size
Changed by SetProcessWorkingSetSize

Pages can be locked into physical memory (by kernel mode code only)
Pages are then immune from “outswapping” as well as paging

MmProbeAndLockPages

13

Balance Set Manager
Nearest thing Windows has to a “swapper”

Balance set = sum of all inswapped working sets

Balance Set Manager is a system thread
Wakes up every second. If paging activity high or memory needed:

trims working sets of processes
if thread in a long user-mode wait, marks kernel stack pages as pageable
if process has no nonpageable kernel stacks, “outswaps” process
triggers a separate thread to do the “outswap” by gradually reducing target
process’s working set limit to zero

Evidence: Look for threads in “Transition” state in PerfMon
Means that kernel stack has been paged out, and thread is waiting for memory to be
allocated so it can be paged back in

This thread also performs a scheduling-related function
CPU starvation avoidance - already covered

7

14

System Working Set
Just as processes have working sets, Windows’ pageable system-space
code and data lives in the “system working set”
Made up of 4 components:

Paged pool
Pageable code and data in the exec
Pageable code and data in kernel-mode drivers, Win32K.Sys, graphics
drivers, etc.
Global file system data cache

To get physical (resident) size of these with PerfMon, look at:
Memory | Pool Paged Resident Bytes
Memory | System Code Resident Bytes
Memory | System Driver Resident Bytes
Memory | System Cache Resident Bytes
Memory | Cache bytes counter is total of these four “resident” (physical)
counters (not just the cache; in NT4, same as “File Cache” on Task
Manager / Performance tab)

5

15

80000000
System code (NTOSKRNL, HAL, boot
drivers); initial nonpaged pool

A0000000 Win32k.sys *8MB)

A0800000 Session Working Set Lists

x86

Mapped Views for Session

Paged Pool for Session

A0C00000

A2000000

Session Working Set
New memory management object to support Terminal Services in Windows
2000/XP/Server 2003

Session = an interactive user

Session working set = the memory used by a session

Instance of WinLogon and Win32
subsystem process

WIN32K.SYS remapped for each
unique session

Win32 subsystem objects

Win32 subsystem paged pool

Process working sets page within
session working set

Revised system space layout

8

16

Managing Physical Memory

System keeps unassigned physical pages on one of several lists
Free page list

Modified page list

Standby page list

Zero page list

Bad page list - pages that failed memory test at system startup

Lists are implemented by entries in the “PFN database”
Maintained as FIFO lists or queues

17

Paging Dynamics

New pages are allocated to working sets from the top of the free or
zero page list

Pages released from the working set due to working set
replacement go to the bottom of:

The modified page list (if they were modified while in the working set)

The standby page list (if not modified)
Decision made based on “D” (dirty = modified) bit in page table entry

Association between the process and the physical page is still
maintained while the page is on either of these lists

9

18

Standby and Modified Page Lists
Modified pages go to modified (dirty) list

Avoids writing pages back to disk too soon

Unmodified pages go to standby (clean) list
They form a system-wide cache of “pages likely to be
needed again”

Pages can be faulted back into a process from the standby and
modified page list
These are counted as page faults, but not page reads

19

Modified Page Writer

When modified list reaches certain size, modified page writer
system thread is awoken to write pages out

See MmModifiedPageMaximum

Also triggered when memory is overcomitted (too few free pages)

Does not flush entire modified page list

Two system threads
One for mapped files, one for the paging file

Pages move from the modified list to the standby list
E.g. they can still be soft faulted into a working set

10

20

Free and Zero Page Lists

Free Page List
Used for page reads
Private modified pages go here on process exit
Pages contain junk in them (e.g. not zeroed)
On most busy systems, this is empty

Zero Page List
Used to satisfy demand zero page faults

References to private pages that have not been created yet
When free page list has 8 or more pages, a priority zero thread is
awoken to zero them
On most busy systems, this is empty too

21

Paging Dynamics

Standby
Page
List

Zero
Page
List

Free
Page
List

Process
Working

Sets

page read from
disk or kernel
allocations

demand zero
page faults

working set
replacement

Modified
Page
List

modified
page
writer

zero
page

thread

“soft”
page
faults

Bad
Page
List

Private pages
at process exit

11

22

Process 3
Process 2

Process 1

Working Sets in
Memory

00000000

7FFFFFFF

80000000

FFFFFFFF

Pages in Physical Memory

F

F

FF

M

M

M

M

M

S S
S

S

As processes incur page faults,
pages are removed from the free,
modified, or standby lists and made
part of the process working set
A shared page may be resident in
several processes’ working sets at
one time (this case not illustrated
here)

F
F

F
F

F

FF

F

3

3

3

1

2

1
2

2

1

23

Page Frame Number-Database

One entry (24 bytes) for each physical page
Describes state of each page in physical memory

Entries for active/valid and transition pages contain:
Original PTE value (to restore when paged out)
Original PTE virtual address and container PFN
Working set index hint (for the first process...)

Entries for other pages are linked in:
Free, standby, modified, zeroed, bad lists (parity error will kill kernel)

Share count (active/valid pages):
Number of PTEs which refer to that page; 1->0: candidate for free list

Reference count:
Locking for I/O: INC when share count 1->0; DEC when unlocked
Share count = 0 & reference count = 1 is possible
Reference count 1->0: page is inserted in free, standby or modified lists

12

24

Page Frame Database –
states of pages in physical memory

Page has generated parity or other hardware errorsBad

Page is free and has been initialized by zero page threadZeroed

Page is free but has dirty data in it – cannot be given to user
process – C2 security requirement

Free

Modified page, will not be touched by modified page write, used
by NTFS for pages containing log entries (explicit flushing)

Modified
no write

Removed from working set, modified, not yet written to diskModified

Page belonged to a working set but was removed; not modifiedStandby

Page not owned by a working set, not on any paging list
I/O is in progress on this page

Transition

Page is part of working set (sys/proc), valid PTE points to itActive/valid

DescriptionStatus

25

Page tables and page frame
database

valid

Invalid:
disk address

Invalid:
transition

valid

Invalid:
disk address

Valid
valid

Invalid:
transition

Invalid:
disk address

Prototype PTE

Process 1
page table

Process 2
page table

Process 3
page table

Active

Standby

Active

Active

Modified

Zeroed

Free

Standby

Modified

Bad

Modified
no write

13

26

Notepad Word Explorer System Available

Avail. RAM Optimizer

SystemExplorerWordNotepad

Available

Before:

During:

After:

Why “Memory Optimizers” are
Fraudware

See Mark’s article on this topic at
http://www.winnetmag.com/Windows/Article/ArticleID/41095/41095.html

27

Page Files

What gets sent to the paging file?
Not code – only modified data (code can be re-read from image file anytime)

When do pages get paged out?
Only when necessary

Page file space is only reserved at the time pages are written out

Once a page is written to the paging file, the space is occupied until the memory is deleted (e.g. at
process exit), even if the page is read back from disk

Windows XP (& Embedded NT4) can run with no paging file
NT4/Win2K: zero pagefile size actually creates a 20MB temporary page file (\temppf.sys)

WinPE never has a pagefile

Page file maximums:
16 page files per system

32-bit x86: 4095MB

32-bit PAE mode, 64-bit systems: 16 TB

14

28

Why Page File Usage on Systems
with Ample Free Memory?

Because memory manager doesn’t let process working sets grow arbitrarily
Processes are not allowed to expand to fill available memory (previously
described)

Bias is to keep free pages for new or expanding processes

This will cause page file usage early in the system life even with ample
memory free

We talked about the standby list, but there is another list of modified pages
recently removed from working sets

Modified private pages are held in memory in case the process asks for it
back

When the list of modified pages reaches a certain threshold, the memory
manager writes them to the paging file (or mapped file)

Pages are moved to the standby list, since they are still “valid” and could be
requested again

29

Sizing the Page File

Given understanding of page file usage, how big should the total paging file
space be?

(Windows supports multiple paging files)

Size should depend on total private virtual memory used by
applications and drivers

Therefore, not related to RAM size (except for taking a full memory dump)

Worst case: system has to page all private data out to make room for code
pages

To handle, minimum size should be the maximum of VM usage
(“Commit Charge Peak”)

Hard disk space is cheap, so why not double this
Normally, make maximum size same as minimum
But, max size could be much larger if there will be infrequent demands for large
amounts of page file space

Performance problem: page file extension will likely be very fragmented
Extension is deleted on reboot, thus returning to a contiguous page file

15

30

Contiguous Page Files

A few fragments won’t hurt, but hundreds of
fragments will

Will be contiguous when created if contiguous
space available at that time

Can defrag with Pagedefrag tool (freeware -
www.sysinternals.com)

Or buy a paid defrag product…

31

When Page Files are Full

When page file space runs low

1. “System running low on virtual memory”

First time: Before pagefile expansion

Second time: When committed bytes reaching commit limit

2. “System out of virtual memory”

Page files are full

Look for who is consuming pagefile space:

Process memory leak: Check Task Manager, Processes tab, VM Size column

or Perfmon “private bytes”, same counter

Paged pool leak: Check paged pool size

Run poolmon to see what object(s) are filling pool

Could be a result of processes not closing handles - check process “handle
count” in Task Manager

16

32

Nonpageable components:
Nonpageable parts of NtosKrnl.Exe,
drivers

Nonpaged pool (see PerfMon, Memory
object: Pool nonpaged bytes)

non-paged code

non-paged data

pageable code+data (virtual size)

output of “drivers.exe” is similar

Win32K.Sys is paged, even though it
shows up as nonpaged

Other drivers might do this too, so total
nonpaged size is not really visible

System Nonpaged Memory

8

A
9

8 A9

33

Optimizing Applications
Minimizing Page Faults

Some page faults are unavoidable
code is brought into physical memory (from .EXEs and .DLLs) via page faults
the file system cache reads data from cached files in response to page faults

First concern is to minimize number of “hard” page faults
i.e. page faults to disk
see Performance Monitor, “Memory” object, “page faults” vs. “page reads”
(this is system-wide, not per process)
for an individual app, see Page Fault Monitor:

note that these results are highly dependent on system load (physical memory
usage by other apps)

c:\> pfmon /?
c:\> pfmon program-to-be-monitored

17

34

Accounting for Physical
Memory Usage

Process working sets
Perfmon: Process / Working set
Note, shared resident pages are counted in
the process working set of every process
that’s faulted them in
Hence, the total of all of these may be
greater than physical memory

Resident system code (NTOSKRNL + drivers,
including win32k.sys & graphics drivers)

see total displayed by !drivers 1 command
in kernel debugger

Nonpageable pool
Perfmon: Memory / Pool nonpaged bytes

Free, zero, and standby page lists
Perfmon: Memory / Available bytes

Pageable, but currently-resident, system-
space memory

Perfmon: Memory / Pool paged
resident bytes

Perfmon: Memory / System cache
resident bytes

Memory | Cache bytes counter is really
total of these four “resident”
(physical) counters

Modified, Bad page lists

can only see size of these with
!memusage command in Kernel
Debugger

35

Further Reading

Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition,
Microsoft Press, 2004.

Chapter 7 - Memory Management
Page Fault Handling (from pp. 439)

Working Sets (from pp. 457)

Memory Pools (from pp. 399)

Page Frame Number Database (from pp. 469)

18

36

Source Code References

Windows Research Kernel sources
\base\ntos\mm – Memory manager

Wslist.c, Wsmanage.c – working set management

Pfnlist.c – physical memory list management

Modwrite.c – modified page writer

\base\ntos\inc\mm.h – additional structure
definitions

\base\ntos\cache – Cache manager

