Unit OS4: Scheduling and Dispatch

4.4. Windows Thread Scheduling

Windows OS Internals - Copyright © 2005 David A. Solomon, Mark E. Russinovich, and Andreas Polze

Roadmap for Section 4.4.

® Windows Scheduling Principles

® Windows API vs. NT Kernel Priorities

® Scheduling Data Structures

® Scheduling Scenarios

® Priority Boosts and Priority Adjustments

Scheduling Criteria

@ CPU utilization — keep the CPU as busy as possible

@ Throughput — # of processes/threads that complete
their execution per time unit

@ Turnaround time — amount of time to execute a
particular process/thread

@ Waiting time — amount of time a process/thread has
been waiting in the ready queue

@ Response time — amount of time it takes from when a
request was submitted until the first response is
produced, not output (i.e.; the hourglass)

How does the Windows scheduler
relate to the issues discussed:

@ Priority-driven, preemptive scheduling system
@ Highest-priority runnable thread always runs
® Thread runs for time amount of quantum

@ No single scheduler — event-based scheduling code
spread across the kernel
© Dispatcher routines triggered by the following events:
©® Thread becomes ready for execution
® Thread leaves running state (quantum expires, wait state)
©® Thread's priority changes (system call/NT activity)
® Processor affinity of a running thread changes

Windows Scheduling Principles

© 32 priority levels

® Threads within same priority are scheduled
following the Round-Robin policy

® Non-Realtime Priorities are adjusted dynamically

® Priority elevation as response to certain I/O and
dispatch events

@ Quantum stretching to optimize responsiveness

® Realtime priorities (i.e.; > 15) are assigned
statically to threads

2 @ O

Scheduling

Multiple threads may be ready to run
“Who gets to use the CPU?”
From Windows API point of view:

©® Processes are given a priority class upon creation
© |dle, Normal, High, Realtime
8 Windows 2000 added “Above normal” and “Below normal”
©® Threads have a relative priority within the class
@ |dle, Lowest, Below_Normal, Normal, Above_Normal, Highest, and

Time_Critical e
e v S n e Wi
From the kernel’s view:
©® Threads have priorities

indows Scheduling-related APIs:
Get/SetPriorityClass

0 through 31 Get/SetThread Prio.rit.y

® Threads are scheduled, Get/SetProce§§Aff|mtyMask
not processes SetThread AffinityMask

® Process priority class is not used SetThreadldealProcessor

to make scheduling decisions _ Suspend/ResumeThread

Kernel. Thread Priority Levels

31

16 “real-time” levels

16
.|
15
15 variable levels
1 Used by zero page thread

W/

O used by idle thread(s)
i

il

Windows vs. NT Kernel Priorities

® Table shows base priorities (“current” or “dynamic” thread priority
may be higher if base is < 15)

® Many utilities (such as Process Viewer) show the “dynamic priority” of
threads rather than the base (Performance Monitor can show both)

® Drivers can set to any value with KeSetPriorityThread

Special Thread Priorities

©® |dle threads -- one per CPU

© When no threads want to run, Idle thread “runs”

©® Not a real priority level - appears to have priority zero, but actually runs “below”
priority O

©® Provides CPU idle time accounting (unused clock ticks are charged to the idle
thread)

9 Loop:
® Calls HAL to allow for power management
® Processes DPC list
© Dispatches to a thread if selected

@ Server 2003: in certain cases, scans per-CPU ready queues for next thread
©® Zero page thread -- one per NT system

@ Zeroes pages of memory in anticipation of “demand zero” page faults

© Runs at priority zero (lower than any reachable from Windows)

B Part of the “System” process (not a complete process)

Thread Scheduling Priorities vs.

Interrupt Request Levels (IRQLS)

(IRQLS (x86))

31 High

30 Power fail

29| Interprocessor Interrupt
28 Clock

Device n Hardware

interrupts

Device 1

Dispatch/DPC Software

APC .
Passive Level mterrupts
J

Thread
priorities
0-31

10

Single Processor Thread Scheduling

® Priority driven, preemptive
©® 32 queues (FIFO lists) of “ready” threads
©® UP: highest priority thread always runs

® MP: One of the highest priority runnable thread will be running
somewhere

©® No attempt to share processor(s) “fairly” among processes, only
among threads

©® Time-sliced, round-robin within a priority level

@ Event-driven; no guaranteed execution period before
preemption

® When a thread becomes Ready, it either runs immediately or is
inserted at the tail of the Ready queue for its current (dynamic)
priority

11

Thread Scheduling

©® No central scheduler!
® j.e. there is no always-instantiated routine called “the scheduler”
® The “code that does scheduling” is not a thread

©® Scheduling routines are simply called whenever events occur that
change the Ready state of a thread

® Things that cause scheduling events include:

@ interval timer interrupts (for quantum end)

@ interval timer interrupts (for timed wait completion)
@ other hardware interrupts (for I/O wait completion)
a

one thread changes the state of a waitable object upon which other
thread(s) are waiting

@ a thread waits on one or more dispatcher objects
@ athread priority is changed

©® Based on doubly-linked lists (queues) of Ready threads
©® Nothing that takes “order-n time” for n threads

12

Scheduling Data Structures

Default base prio
Default proc affinity @
Default quantum

@ thread || thread

thread || thread

31 Base prior_ity_
Current priority
Processor affinity
Quantum

0 Bitmask for non-empty
ready queues
’31 fﬁ,‘?%%y summary o‘ ’31 (JS'L?S)S Hrmmary 0‘ Bitmask for idle CPUs

13

Scheduling Scenarios

® Preemption
© Athread becomes Ready at a higher priority than the running thread
8 [ower-priority Running thread is preempted
® Preempted thread goes back to head of its Ready queue
©® action: pick lowest priority thread to preempt
© Voluntary switch
@ Waiting on a dispatcher object
@ Termination
© Explicit lowering of priority
® action: scan for next Ready thread (starting at your priority & down)
©® Running thread experiences quantum end
@ Priority is decremented unless already at thread base priority
@ Thread goes to tail of ready queue for its new priority

© May continue running if no equal or higher-priority threads are Ready
© action: pick next thread at same priority level

14

Scheduling Scenarios
Preemption

8 Preemption is strictly event-driven
® does not wait for the next clock tick
® no guaranteed execution period before preemption
® threads in kernel mode may be preempted (unless they raise IRQL to >= 2)

Running | Ready
| ___——— from Wait state

18

17

e O {EO-O0-0-0-00
15 L

14 O+

13

@ A preempted thread goes back to the head of its ready queue

15

Scheduling Scenarios
Ready after Wait Resolution

® |f newly-ready thread is not of higher priority than the running thread...
©® ..itis put at the tail of the ready queue for its current priority
® If priority >=14 quantum is reset (t.b.d.)

©® |f priority <14 and you're about to be boosted and didn’t already have a
boost, quantum is set to process quantum - 1

Running | Ready

is = ,— from Wait state
16 OO0 OO0 ¢

15 %

14 OHHH

13

16

Scheduling Scenarios
Voluntary Switch

® When the running thread gives up the CPU...
® | ..Schedule the thread at the head of the next non-empty “ready” queue

Running | Ready
18 O
L [
16 O CH -
15 RN
14 O
13

to Waiting state

17

Scheduling Scenarios
Quantum End (“time-slicing”)

® When the running thread exhausts its CPU quantum, it goes to the end
of its ready queue

S Ap[()jlies to both real-time and dynamic priority threads, user and kernel
mode

© Quantums can be disabled for a thread by a kernel function
© Default quantum on Professional is 2 clock ticks, 12 on Server
© standard clock tick is 10 msec; might be 15 msec on some MP Pentium systems

9 if no other ready threads at that priority, same thread continues running
(just gets new quantum)

@ if running at boosted priority, priority decays by one at quantum end
(described later)

18 Running | Ready

17 \

18

Basic Thread Scheduling States

preemption,
quantum end

voluntary
switch

19

Priority Adjustments

©® Dynamic priority adjustments (boost and decay) are applied to threads in
“dynamic” classes

@ Threads with base priorities 1-15 (technically, 1 through 14)

L]

Disable if desired with SetThreadPriorityBoost or SetProcessPriorityBoost

® Five types:

=]
a
=]
e
a

I/O completion

Wait completion on events or semaphores

When threads in the foreground process complete a wait
When GUI threads wake up for windows input

For CPU starvation avoidance

©® No automatic adjustments in “real-time” class (16 or above)

e

a

“Real time” here really means “system won't change the relative priorities of
your real-time threads”

Hence, scheduling is predictable with respect to other “real-time” threads (but
not for absolute latency)

20

10

Priority Boosting

To favor 1/0O intense threads:
© After an I/O: specified by device driver
8 |oCompleteRequest(Irp, PriorityBoost)

Common boost values (see NTDDK.H)
1: disk, CD-ROM, parallel, Video

2: serial, network, named

pipe, mailslot

6: keyboard or mouse

8: sound

Other cases discussed in the Windows Scheduling Internals Section

© After a wait on executive event or
semaphore

©® After any wait on a dispatcher object by a thread in the foreground process

©® GUI threads that wake up to process windowing input (e.g. windows

messages) get a boost of 2

21

Thread Priority Boost and Decay

® Behavior of these boosts:

® Applied to thread’s base priority
@ will not take you above priority 15
© After a boost, you get one quantum

© Then decays 1 level, quantum

runs another quantum —>

-~

Priority decay
at quantum end

Priority T Boost I —_I‘f/ Round-robin at
upon base priority
wait

complete
Base
Priority

Preempt
(before
COEN o |

end)

Time
—_—

22

11

Further Reading

® Mark E. Russinovich and David A. Solomon, Microsoft Windows
Internals, 4th Edition, Microsoft Press, 2004.

©® Chapter 6 - Processes, Thread, and Jobs
(from pp. 289)

©® Thread Scheduling (from pp. 325)
©® Thread States (from pp. 334)
©® Scheduling Scenarios (from pp. 345)

23

Source Code References

® Windows Research Kernel sources
® \base\ntos\ke\i386, \base\ntos\ke\amd64:

©® Ctxswap.asm — Context Swap
© Clockint.asm — Clock Interrupt Handler
© \base\ntos\ke
© procobj.c - Process object
® thredobij.c, thredsup.c — Thread object
® |dsched.c — Idle scheduler
® Wait.c — quantum management, wait resolution
©® Waitsup.c — dispatcher exit (deferred ready queue)

©® \base\ntos\inc\ke.h — structure/type definitions

24

