
Lab Manual - OS3 Concurrency

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS3: Concurrency
3.5. Lab Slides & Lab Manual

3

Roadmap for Section 3.5.

Lab experiments investigating:

Viewing the interrupt dispatch table
Viewing configuration of programmable interrupt
controller (PIC/APIC)
Viewing the interrupt request level (IRQL) on Windows
Monitoring Interrupt and DPC activity
Viewing System Service Activity
Viewing Global Queued Spinlocks
Looking at Wait Queues

Lab Manual - OS3 Concurrency

4

x86 Interrupt Controllers -
Hardware Interrupt Processing

Most x86 systems rely on
i8259A Programmable Interrupt Controller (PIC) or

a variant of the i82489 Advanced Programmable
Interrupt Controller (APIC) - most new computers

PICs work only with uniprocessor systems
APICs work with multiprocessor systems

Lab: Observe PIC / APIC configuration
Use !pic and !apic kernel debugger commands

5

Viewing the IRQL on Windows

On Windows Server 2003, kernel debugger displays
IRQL:

!irql debugger command:
kd> !irql
Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)

Processor control region (PCR) and processor control
block (PRCB) store:

current IRQL,

pointer to the hardware IDT,

currently running thread,

next thread selected to run.

Lab Manual - OS3 Concurrency

6

Lab: Viewing IRQL/IRQ Assignments

1. Display the interrupt vector
XP/2003: !idt
Win2000: !kdex2x86.idt

2. Dump the KINTERRUPT block for the PS/2 mouse ISR to
get the IRQL

(Dt nt!_KINTERRUPT xxxxxx)

3. With Device Manager, go to the mouse device properties and
click on the resources tab to see the IRQ

If you are on a uniprocessor system, the IRQ should be the 27-IRQL

Note: IRQL is raised when breaking in with debugger or on a
crash

!pcr displays this changed IRQL
!irql displays previous IRQL (Server 2003 & later)

7

Lab: Kernel Profiling
Since time spent at DPC level and above is not accounted by driver
type, one way to determine where time has been spent in kernel mode
is by using a profiling/sampling tool
Kernrate is a such a tool

Free download from
http://www.microsoft.com/whdc/system/sysperf/krview.mspx
Can be used both for kernel time and user mode processes
Can show where time is being spent down to the function level
May miss short lived events or events close to the sampling interval

Lab:
Download and install Kernrate
cd c:\program files\krview\kernrates
Kernrate_i386_XP.exe -z ntoskrnl.exe –j srv*c:\symbols

Perform some system activity (run Windows Media Player, drag windows
around, etc)
Press ^C to stop execution

Lab Manual - OS3 Concurrency

8

Flow of Interrupts

CPU Interrupt
Controller

CPU Interrupt
Service Table

ISR Address

Spin Lock

Dispatch
Code

Peripheral Device
Controller

0
2
3

n

Raise IRQL

Lower IRQL

Read from device

Acknowledge-
Interrupt

Request DPC

Interrupt
Object

KiInterruptDispatch Driver ISR

Grab Spinlock

Drop Spinlock

9

Lab: ISR/DPC Tracing
XP SP2 and Server 2003 SP1 and later support tracing ISRs and
DPCs

1. Start capturing events (tracelog.exe is in Support Tools):
tracelog -start -f kernel.etl -b 64 -UsePerfCounter -eflag 8 0x307
0x4084 0 0 0 0 0 0

2. Stop capturing events:

tracelog -stop

3. Generate reports (tracerpt.exe is part of Windows):

tracerpt kernel.etl -df –report -o

4. Review workload.txt to determine where ISR/DPC time spent

5. Open "dumpfile.csv" & search for lines with "DPC" or "ISR" in the
second value. In kernel debugger, do an “ln” on 8th argument (start
address)

Lab Manual - OS3 Concurrency

10

Try to acquire spinlock:
Test, set, was set, loop
Test, set, was set, loop
Test, set, was set, loop
Test, set, was set, loop
Test, set, WAS CLEAR
(got the spinlock!)
Begin updating data

Try to acquire spinlock:
Test, set, WAS CLEAR
(got the spinlock!)
Begin updating data
that’s protected by the
spinlock

(done with update)
Release the spinlock:
Clear the spinlock bit

Spinlocks in Action

CPU 1 CPU 2

11

Looking at Waiting Threads
For waiting threads, user-mode utilities only display the wait reason
Example: pstat

To find out what a thread is waiting on, must use kernel debugger

Lab Manual - OS3 Concurrency

12

Looking at Wait Queues
!thread command to kernel debugger

Lists addresses of objects being waited on (if a mutex, shows owner)

!irpfind can search IRPs for an event object address

