Unit OS3: Concurrency

3.3. Advanced Windows Synchronization

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Roadmap for Section 3.3.

® Deferred and Asynchronous Procedure Calls
® |IRQLs and CPU Time Accounting
©® Wait Queues & Dispatcher Objects

Deferred Procedure Calls (DPCs)

©® Used to defer processing from higher (device) interrupt level to a lower
(dispatch) level

® Also used for quantum end and timer expiration
® Driver (usually ISR) queues request

® One queue per CPU. DPCs are normally queued to the current
processor, but can be targeted to other CPUs

©® Executes specified procedure at dispatch IRQL (or “dispatch level”, also
“DPC level”) when all higher-IRQL work (interrupts) completed

® Maximum times recommended: ISR: 10 usec, DPC: 25 usec

® See http://www.microsoft.com/whdc/driver/perform/mmdrv.mspx

queue head DPC object DPC object DPC object

Bl
nn-ﬁr
EN
nn-‘gr
o
o

Delivering a DPC

1. Timer expires, kernel

DPC routines can‘t ppc | Qqueues DPC that will Interrupt
release all waiting threads dispatch table
assume what Kernel requests SW int.
process address high
space is currently Power failure
mapped
2. DPC interrupt occurs 3. After DPC interrupt,
when IRQL drops below control transfers to
dispatch/DPC level thread dispatcher
llll L Dispatch/DPC —> | dispatcher
DPC queue APC
Low
DPC routines can call kernel functions 4. Dispatcher executes each DPC
but can't call system services, generate routine in DPC queue

page faults, or create or wait on objects

Asynchronous Procedure Calls
(APCs)

©® Execute code in context of a particular user thread

©® APC routines can acquire resources (objects), incur page faults,
call system services

APC queue is thread-specific
User mode & kernel mode APCs
©® Permission required for user mode APCs

2 0

©® Executive uses APCs to complete work in thread space
©® Wait for asynchronous 1/O operation
® Emulate delivery of POSIX signals
® Make threads suspend/terminate itself (env. subsystems)
@ APCs are delivered when thread is in alertable wait state
©® WaitForMultipleObjectsEx(), SleepEx()

Asynchronous Procedure Calls
(APCs)

©® Special kernel APCs
© Runin kernel mode, at IRQL 1
@ Always deliverable unless thread is already at IRQL 1 or above
@ Used for I/O completion reporting from “arbitrary thread context”
@ Kernel-mode interface is linkable, but not documented

©® “Ordinary” kernel APCs

8 Always deliverable if at IRQL 0, unless explicitly disabled
(disable with KeEnterCriticalRegion)

©® User mode APCs

& Used for I/O completion callback routines (see ReadFileEx, WriteFileEx); also,
QueueUserApc

@ Only deliverable when thread is in “alertable wait”

L]
Thread I I I APC objects
Object U

IRQLs and CPU Time Accounting

® |Interval clock timer ISR keeps track of time
©® Clock ISR time accounting:
©® |If IRQL<2, charge to thread’s user or kernel time
©® |f IRQL=2 and processing a DPC, charge to DPC time
©® |f IRQL=2 and not processing a DPC, charge to thread kernel time
@ If IRQL>2, charge to interrupt time

® Since time servicing interrupts are NOT charged to interrupted
thread, if system is busy but no process appears to be running, must
be due to interrupt-related activity

©® Note: time at IRQL 2 or more is charged to the current thread’s
gquantum (to be described)

Interrupt Time Accounting

©® Task Manager includes interrupt and DPC time with the Idle
process time

©® Since interrupt activity is not charged to any thread or process,
Process Explorer shows these as separate processes (not really
processes)

©® Context switches for these are really number of interrupts and DPCs

&% Process Fxplorer - Sysinternals: www.sysinternals.com

File ©Options Yiew Process Find Help

H 3 B g s e

Process FID CPU CSwitch Delta Description Company Name

=1] System Idle Procsss 0 9548 415
_ | Interupts nfa 1,209 Hardware Intermupts
TIDPCs néa 90 Deferred Procedurs Calls |
=T Gpstem T 2

coo evn BT C I b e

CPU Usage: 1.52% Commit Charge: 25.82% Processes: 45

Time Accounting Quirks

® Looking at total CPU time for each process may not reveal where
system has spent its time

® CPU time accounting is driven by programmable interrupt timer
©® Normally 10 msec (15 msec on some MP Pentiums)

® Thread execution and context switches between clock intervals NOT
accounted

©® E.g., one or more threads run and enter a wait state before clock fires
©® Thus threads may run but never get charged

® View context switch activity with Process Explorer
© Add Context Switch Delta column

10

Looking at Waiting Threads

® For waiting threads, user-mode utilities only display the wait reason
©® Example: pstat

#f Command Prompt 13l x|
-
I S\ WINDOWS\SYSTEMI 23 pstat :’
Pstat yer‘s‘ian 0.3: memory: 130480 kb uptime: 0O 21:24:36.734
pid: 0O pri: O Hnd: o Pf: 1 Wis: 16K Idle Process
tid pri Ctx Swtch Strtaddr User Time Kernel Time State
") ") 2845450 0 0:00:00.000 20:55:56.375 Running
o o 3056193 0 0:00:00.000 21:09:33.234 Eunning
pid: 2 pri: 8 Hnd: 221 Pf: 1875 Ws: 200K System
tid pri Ctx Swtch Strtaddr User Time EKernel Time State
1 s} 21214 801c3iféc 0:00:00.000 0:00:39.687 Wait:FreePage
3 1 51 8010bafa 0:00:00.000 Q:00:00.000 Wait:EventPairlow
4 16 45518 8010bafa 0:00:00.000 0:00:00.906 Wait:EventPairLow

pid: 92 pri: & Hnd: 78 Pf: 8F11 Ws: 1140K Explorer.exe
tid pri Ctx Swtch Strtaddr User Time FKernel Time State

48 14 122844 77f052ec 0:00:04.703 0:00:26.312 Wait:UserRequest
& g 826 77f052eDd 0:00:00.015 0:00:00.140 Wait:UserRequest
as 14 23048 77f052e0 0:00:04.140 0:00:11.562 Wait:UserRequest
a6 14 4976 77f052e0 0:00:00.203 0:00:00.921 Wait:UserRequest
a7 14 1378 77f052e0 0:00:00.000 0:00:00.000 Wait:LpcReceiwe

® To find out what a thread is waiting on, must use kernel debugger

11

Wait Internals 1.:
Dispatcher Objects

©® Any kernel object you can wait for is a “dispatcher object”
@ some exclusively for synchronization
® e.g. events, mutexes (“mutants”), semaphores, queues, timers
@ others can be waited for as a side effect of their prime function
©® e.g. processes, threads, file objects

B non-waitable kernel objects are called “control objects”
® All dispatcher objects have a common header

® All dispatcher objects are in one of two states Dispatcher
wai e : " Object
@ “signaled” vs. “nonsignaled S 7
1ze e
@ when signalled, a wait on the object is satisfied State L
e dlff_erent object types differ in terms of what changes Vait listhead—
their state
@ wait and unwait implementation is Object-type-
common to all types of dispatcher objects specific data

(see \ntddk\inc\ddk\ntddk.h)

12

Thread Objects

__Wait Internals 2:

-—
WaitBlockList & WaitBlockListor © Represent a thread’s reference to
something it's waiting for (one per handle
passed to WaitFor...)
Dispatcher @ All wait blocks from a given wait call are
Objects chained to the waiting thread
- | @ Type indicates wait for “any” or “all”
Size I Type Wait blocks @ Key denotes argument list position for
State WaitForMultipleObjects
>
—Wait listhead— — Listentry —
Object-type- —[2__Thread
specific data ©__ Object
Key | Type
Next link ©
Size | Type
State
—Wait listhead— — Listentry — — Listentry —
Object-type- Thread Thread
specific data ©__ Object © _ Object
Key | Type Key | Type
Next link Next link

13

Further Reading

® Mark E. Russinovich and David A. Solomon,
Microsoft Windows Internals, 4th Edition,
Microsoft Press, 2004.

® Chapter 3 - System Mechanisms
@ Kernel Event Tracing (from pp. 175)
@ DPC Interrupts (from pp. 104)

14

Source Code References

® Windows Research Kernel sources

@ \base\ntos\ke
® Dpcobj.c, dpcsup.c — Deferred Procedure Calls
©® Apcobj.c, apcsup.c — Asynchronous Procedure Calls
® interobj.c - Interrupt Object
® wait.c, waitsup.c — Wait support
9 \base\ntos\ke\i386 (similar files for amd64)

® Clockint.asm — Clock Interrupt Handler

0 \base\ntos\inc\ke.h — structure/type definitions

15

