
1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS3: Concurrency
3.2. Windows Trap Dispatching, Interrupts, 

Synchronization

3

Roadmap for Section 3.2.

Trap and Interrupt dispatching

IRQL levels & Interrupt Precedence

Spinlocks and Kernel Synchronization

Executive Synchronization



2

4

Processes and Threads
What is a process?

Represents an instance of a running program
you create a process to run a program
starting an application creates a process

Process defined by:

Address space
Resources (e.g. open handles)
Security profile (token)

What is a thread?
An execution context within a process
Unit of scheduling (threads run, processes don’t run)
All threads in a process share the same per-process address space

Services provided so that threads can synchronize access to shared resources 
(critical sections, mutexes, events, semaphores)

All threads in the system are scheduled as peers to all others, without regard 
to their “parent” process

System calls
Primary argument to CreateProcess is image file name (or command line)
Primary argument to CreateThread is a function entry point address

Per-process
address space

Systemwide Address 
Space

Thread

Thread

Thread

5

Kernel Mode Versus User Mode
A processor state

Controls access to memory
Each memory page is tagged 
to show the required mode for 
reading and for writing

Protects the system from 
the users
Protects the user (process) from 
themselves
System is not protected 
from system

Code regions are tagged 
“no write in any mode”
Controls ability to execute 
privileged instructions
A Windows abstraction

Intel:  Ring 0, Ring 3 

Control flow (i.e.; a thread) ca 
change from user to kernel mode 
and back

Does not affect scheduling
Thread context includes info 
about execution mode (along 
with registers, etc)

PerfMon counters:
“Privileged Time” and 
“User Time”
4 levels of granularity: thread, 
process, 
processor, system



3

6

Getting Into Kernel Mode
Code is run in kernel mode for one of three reasons:
1. Requests from user mode

Via the system service dispatch mechanism
Kernel-mode code runs in the context of the requesting thread

2. Interrupts from external devices
Windows interrupt dispatcher invokes the interrupt service routine
ISR runs in the context of the interrupted thread 
(so-called “arbitrary thread context”)
ISR often requests the execution of a “DPC routine,”
which also runs in kernel mode
Time not charged to interrupted thread

3. Dedicated kernel-mode system threads
Some threads in the system stay in kernel mode at all times 
(mostly in the “System” process)
Scheduled, preempted, etc., like any other threads

7

Trap dispatching

Trap: processor‘s mechanism to capture executing thread
Switch from user to kernel mode
Interrupts – asynchronous
Exceptions - synchronous

Interrupt
dispatcher

System
service

dispatcher

Interrupt
service
routines

Interrupt
service
routines

Interrupt
service
routines

System 
services

System 
services

System 
services

Exception
dispatcher

Exception
handlers

Exception
handlers

Exception
handlers

Virtual memory
manager‘s pager

Interrupt

System service call

HW exceptions
SW exceptions

Virtual address
exceptions



4

8

Interrupt Dispatching

Interrupt dispatch routine

Disable interrupts

Record machine state (trap 
frame) to allow resume

Mask equal- and lower-IRQL 
interrupts

Find and call appropriate 
ISR

Dismiss interrupt

Restore machine state 
(including mode and 
enabled interrupts)

Tell the device to stop 
interrupting
Interrogate device state, 
start next operation on 
device, etc. 
Request a DPC
Return to caller

Interrupt service routine

interrupt !

user or 
kernel mode

code
kernel mode

Note, no thread or 
process context 
switch!

9

Interrupt Precedence via IRQLs (x86)
IRQL = Interrupt Request Level

the “precedence” of the interrupt with 
respect to other interrupts

Different interrupt sources have 
different IRQLs

not the same as IRQ

Passive/Low
APC

Dispatch/DPC
Device 1

.

.

.
Profile & Synch (Srv 2003)

Clock
Interprocessor Interrupt

Power fail
High

normal thread execution

Hardware interrupts

Deferrable software interrupts

0
1
2

30
29
28

31

IRQL is also a state of the processor

Servicing an interrupt raises processor 
IRQL to that interrupt’s IRQL

this masks subsequent interrupts at equal 
and lower IRQLs

User mode is limited to IRQL 0

No waits or page faults at IRQL >= 
DISPATCH_LEVEL



5

10

Interrupt processing

Interrupt dispatch table (IDT)
Links to interrupt service routines

x86:
Interrupt controller interrupts processor (single line)
Processor queries for interrupt vector; uses vector as index to IDT 

After ISR execution, IRQL is lowered to initial level

11

Interrupt object

Allows device drivers to register ISRs for their devices
Contains dispatch code (initial handler)
Dispatch code calls ISR with interrupt object as parameter
(HW cannot pass parameters to ISR)

Connecting/disconnecting interrupt objects:
Dynamic association between ISR and IDT entry
Loadable device drivers (kernel modules)
Turn on/off ISR

Interrupt objects can synchronize access to ISR data
Multiple instances of ISR may be active simultaneously (MP machine)
Multiple ISR may be connected with IRQL



6

12

Predefined IRQLs

High
used when halting the system (via KeBugCheck())

Power fail
originated in the NT design document, but has never been used

Inter-processor interrupt
used to request action from other processor (dispatching a thread, 
updating a processors TLB, system shutdown, system crash)

Clock
Used to update system‘s clock, allocation of CPU time to threads

Profile
Used for kernel profiling (see Kernel profiler – Kernprof.exe, Res Kit)

13

Predefined IRQLs (contd.)

Device
Used to prioritize device interrupts

DPC/dispatch and APC
Software interrupts that kernel and device drivers 
generate

Passive
No interrupt level at all, normal thread execution



7

14

IRQLs on 64-bit Systems

Passive/Low
APC

Dispatch/DPC
Device 1

.

.
Device n

Synch (Srv 2003)
Clock

Interprocessor Interrupt/Power
High/Profile

0
1
2

14
13

15

3
4

Passive/Low
APC

Dispatch/DPC & Synch (UP only)
Correctable Machine Check

Device 1
.

Device n
Synch (MP only)

Clock
Interprocessor Interrupt

High/Profile/Power

x64 IA64

12

15

Interrupt Prioritization & Delivery

IRQLs are determined as follows:
x86 UP systems: IRQL = 27 - IRQ
x86 MP systems: bucketized (random)
x64 & IA64 systems: IRQL = IDT vector number / 16

On MP systems, which processor is chosen to deliver an interrupt?
By default, any processor can receive an interrupt from any device

Can be configured with IntFilter utility in Resource Kit

On x86 and x64 systems, the IOAPIC (I/O advanced programmable 
interrupt controller) is programmed to interrupt the processor running at 
the lowest IRQL
On IA64 systems, the SAPIC (streamlined advanced programmable 
interrupt controller) is configured to interrupt one processor for each 
interrupt source

Processors are assigned round robin for each interrupt vector



8

16

Software interrupts

Initiating thread dispatching
DPC allow for scheduling actions when kernel is 
deep within many layers of code

Delayed scheduling decision, one DPC queue per 
processor

Handling timer expiration

Asynchronous execution of a procedure in 
context of a particular thread

Support for asynchronous I/O operations

17

Flow of Interrupts

Peripheral Device 
Controller

CPU Interrupt 
Controller

CPU Interrupt
Service Table

0
2
3

n

ISR Address

Spin Lock

Dispatch 
Code

Interrupt 
Object

Read from device

Acknowledge-
Interrupt

Request DPC

Driver ISR

Raise IRQL

Lower IRQL

KiInterruptDispatch

Grab Spinlock

Drop Spinlock



9

18

031

Synchronization on SMP Systems

Synchronization on MP systems use spinlocks to coordinate among the 
processors
Spinlock acquisition and release routines implement a one-owner-at-a-time 
algorithm

A spinlock is either free, or is considered to be owned by a CPU
Analogous to using Windows API mutexes from user mode

A spinlock is just a data cell in memory
Accessed with a test-and-modify operation that is atomic across all processors

KSPIN_LOCK is an opaque data type, typedef’d as a ULONG
To implement synchronization, a single bit is sufficient

19

Kernel Synchronization

Processor BProcessor A

do
acquire_spinlock(DPC)

until (SUCCESS)

begin
remove DPC from queue

end

release_spinlock(DPC)

do
acquire_spinlock(DPC)

until (SUCCESS)

begin
remove DPC from queue

end

release_spinlock(DPC)

.

.

.

.

.

.

Critical section

spinlock

DPC DPC

A spinlock is a locking primitive associated
with a global data structure, such as the DPC queue



10

20

Try to acquire spinlock:
Test, set, was set, loop
Test, set, was set, loop
Test, set, was set, loop
Test, set, was set, loop
Test, set, WAS CLEAR
(got the spinlock!)
Begin updating data

Try to acquire spinlock:
Test, set, WAS CLEAR
(got the spinlock!)
Begin updating data
that’s protected by the
spinlock

(done with update)
Release the spinlock:
Clear the spinlock bit

Spinlocks in Action

CPU 1 CPU 2

21

Queued Spinlocks

Problem: Checking status of spinlock via test-and-set 
operation creates bus contention

Queued spinlocks maintain queue of waiting processors

First processor acquires lock; other processors wait on 
processor-local flag

Thus, busy-wait loop requires no access to the memory bus

When releasing lock, the first processor’s flag is modified
Exactly one processor is being signaled

Pre-determined wait order



11

22

SMP Scalability Improvements
Windows 2000: queued spinlocks 

!qlocks in Kernel Debugger

XP/2003:
Minimized lock contention for hot locks (PFN or Page Frame Database) lock 
Some locks completely eliminated

Charging nonpaged/paged pool quotas, allocating and mapping system page table entries, 
charging commitment of pages, allocating/mapping physical memory through 
AWE functions 

New, more efficient locking mechanism (pushlocks)
Doesn’t use spinlocks when no contention
Used for object manager and address windowing extensions (AWE) related locks

Server 2003:
More spinlocks eliminated (context swap, system space, commit)
Further reduction of use of spinlocks & length they are held
Scheduling database now per-CPU

Allows thread state transitions in parallel

23

Waiting
Flexible wait calls

Wait for one or multiple objects in one call
Wait for multiple can wait for “any” one or “all” at once

“All”: all objects must be in the signalled state concurrently to resolve the wait

All wait calls include optional timeout argument
Waiting threads consume no CPU time

Waitable objects include:
Events (may be auto-reset or manual reset; may be set or “pulsed”)
Mutexes (“mutual exclusion”, one-at-a-time)
Semaphores (n-at-a-time)
Timers
Processes and Threads (signalled upon exit or terminate)
Directories (change notification)

No guaranteed ordering of wait resolution
If multiple threads are waiting for an object, and only one thread is released (e.g. it’s a 
mutex or auto-reset event), which thread gets released is unpredictable
Typical order of wait resolution is FIFO; however APC delivery may change this order



12

24

Executive Synchronization

Waiting on Dispatcher Objects – outside the kernel

Thread waits
on an object

handle

Create and initialize thread object

Initialized

Ready

Transition

Waiting

Running

Terminated

Standby

Wait is complete;
Set object to

signaled state

Interaction with thread scheduling

25

Interactions between 
Synchronization and Thread
Dispatching

1. User mode thread waits on an event object‘s handle

2. Kernel changes thread‘s scheduling state from ready to waiting and 
adds thread to wait-list

3. Another thread sets the event

4. Kernel wakes up waiting threads; variable priority threads get priority 
boost

5. Dispatcher re-schedules new thread – it may preempt running thread 
it it has lower priority and issues software interrupt to initiate context 
switch

6. If no processor can be preempted, the dispatcher places the ready 
thread in the dispatcher ready queue to be scheduled later



13

26

What signals an object?

Dispatcher 
object

System events 
and resulting
state change

Effect of signaled state
on waiting threads

nonsignaled signaled

Owning thread releases mutex

Resumed thread acquires mutex

Kernel resumes one 
waiting thread

Mutex (kernel mode)

nonsignaled signaled

Owning thread or other
thread releases mutex

Resumed thread acquires mutex

Kernel resumes one 
waiting thread

Mutex 
(exported to user mode)

nonsignaled signaled

One thread releases the
semaphore, freeing a resource

A thread acquires the semaphore.
More resources are not available

Kernel resumes one 
or more waiting threads

Semaphore

27

What signals an object? (contd.)

Dispatcher object System events and resulting
state change

Effect of signaled state
on waiting threads

nonsignaled signaled

A thread sets the event

Kernel resumes one 
or more threads

Kernel resumes one 
or more waiting threads

Event

nonsignaled signaled

Dedicated thread sets one
event in the event pair

Kernel resumes the
other dedicated thread

Kernel resumes waiting
dedicated thread

Event pair

nonsignaled signaled

Timer expires

A thread (re) initializes the timer

Kernel resumes all 
waiting threads

Timer



14

28

A thread reinitializes
the thread object

What signals an object? (contd.)

Dispatcher object System events and resulting
state change

Effect of signaled state
on waiting threads

nonsignaled signaled

IO operation completes

Thread initiates wait
on an IO port

Kernel resumes waiting
dedicated thread

File

nonsignaled signaled

Process terminates

A process reinitializes
the process object

Kernel resumes all 
waiting threads

Process

nonsignaled signaled

Thread terminates
Kernel resumes all 

waiting threads
Thread

29

Further Reading

Mark E. Russinovich and David A. Solomon, 
Microsoft Windows Internals, 4th Edition, 
Microsoft Press, 2004. 

Chapter 3 - System Mechanisms
Trap Dispatching (from pp. 85)

Synchronization (from pp. 149)

Kernel Event Tracing (from pp. 175)



15

30

Source Code References

Windows Research Kernel sources
\base\ntos\ke\i386 (similar files for amd64)

Trap.asm, Trapc.c – Trap dispatcher
Spinlock.asm – Spinlocks
Clockint.asm – Clock Interrupt Handler
Int.asm, Intobj.c, Intsup.asm – Interrupt Processing

\base\ntos\ke
eventobj.c - Event object
mutntobj.c – Mutex object
semphobj.c – Semaphore object
timerobj.c, timersup.c – Timers
wait.c, waitsup.c – Wait support

\base\ntos\inc\ke.h – structure/type definitions


