
1

AP 9/011

Unit 8: File System

8.3. Encrypting File System Security in Windows 2000

AP 9/012

Encrypting File System Security

• EFS relies on Windows 2000 cryptography support
– Transparent encryption through Windows Explorer or cipher-utility

2

AP 9/013

EFS operation

• When a file is encrypted...
– EFS generates random File Encryption Key (FEK) to encrypt file content
– Stronger variant of Data Encryption Standard (U.S.: 128/intl.: 56 bit)

(symmetric DESX-algorithm) to encrypt file content (fast, shared secret)
– File‘s FEK is stored with file and encrypted using the file creator‘s

RSA public key (slow)

• File can be decrypted...
– only with the user‘s private RSA key
– What about lost keys?

• FEK can be stored in multiple encryptions...
– Users can share an encrypted file
– Can store a recovery key to allow recovery agents access to files

• Secure public/private key pairs are essential
– Stored on computer harddisk... (but soon on smartcards)

AP 9/014

Basic Terminology

• Plaintext
– The stuff you want to secure, typically readable by humans (email) or

computers (software, order)

• Ciphertext
– Unreadable, secure data that must be decrypted before it can be used

• Key
– You must have it to encrypt or decrypt (or do both)

• Cryptoanalysis
– Hacking it by using science

• Complexity Theory
– How hard is it and how long will it take to run a program

3

AP 9/015

Symmetric Key Cryptography

Encryption

“The quick
brown fox
jumps over
the lazy
dog”

“AxCv;5bmEseTfid3)
fGsmWe #4^,sdgfMwi
r3:dkJeTsY8R\s@!q3
%”

“The quick
brown fox
jumps over
the lazy
dog”

Decryption

Plain-text input Plain-text outputCipher-text

Same key
(shared secret)

AP 9/016

Symmetric Pros and Cons

• Weakness:
– Agree the key beforehand
– Securely pass the key to the other party

• Strength:
– Simple and really very fast (order of 1000 to 10000 faster than

asymmetric mechanisms)
• Super-fast if done in hardware (DES)
• Hardware is more secure than software, so DES makes it really hard to be

done in software, as a prevention

4

AP 9/017

Public Key Cryptography

• Knowledge of the encryption key doesn’t give you
knowledge of the decryption key

• Receiver of information generates a pair of keys
– Publish the public key in directory

• Then anyone can send him messages
that only she can read

AP 9/018

Public Key Encryption

Encryption

“The quick
brown fox
jumps over
the lazy
dog”

“Py75c%bn&*)9|fDe ^
bDFaq#xzjFr@g5=&n
mdFg$5knvMd’rkveg
Ms”

“The quick
brown fox
jumps over
the lazy
dog”

Decryption

Clear-text Input Clear-text OutputCipher-text

Different keys
Recipient’s
public key

Recipient’s
private key

privatepublic

5

AP 9/019

Problem of Key Recovery

• What if you lose the private key? ☺
• Data recovery by authorized agents

– Integrated key management

• Windows 2000:
– Flexible recovery policy

• Enterprise, domain, or per machine
– Encrypted backup and restore

• Integrated with Windows NT backup

• Potential weakness but you can opt not to use it!

AP 9/0110

Data Encryption Process

Data Recovery
Field generation

(e.g., RSA)
DRF

Recovery agent’s
public key (in certificate)
in recovery policy

Launch key
for nuclear

missile
“RedHeat”

is...

Data Decryption
Field generation

(e.g., RSA)

DDF

User’s
public key
(in certificate)

RNG

Randomly-
generated
file encryption key
(FEK)

File encryption
(e.g., DES)

*#$fjda^j
u539!3t

t389E *&\@
5e%32\^kd

6

AP 9/0111

*#$fjda^j
u539!3t

t389E *&\@
5e%32\^kd

Launch key
for nuclear

missile
“RedHeat”

is...

File decryption
(e.g., DES)

DDF

DDF extraction
(e.g., RSA)

File encryption
key (FEK)

DDF is decrypted
using the private key
to get to the file
encryption key (FEK)

DDF contains file
encryption key (FEK)
encrypted under
user’s public key

User’s private
key

Data Decryption Process

AP 9/0112

*#$fjda^j
u539!3t

t389E *&\@
5e%32\^kd

Launch key
for nuclear

missile
“RedHeat”

is...

File decryption
(e.g., DES)

DRF

DRF extraction
(e.g., RSA)

DRF contains file
encryption key (FEK)
encrypted under
recovery agent’s
public key

File encryption
key (FEK)

DRF is decrypted
using the private key
of recovery agent to
get to the file
encryption key (FEK)

Recovery agent’s
private key

Data Recovery Process

7

AP 9/0113

Windows 2000 EFS Architecture

LSASS

LSAsrv

EFS functions

Microsoft Base
Cryptographic

Service Provider 1.0

Cryptographic service
providers

...

Application

NTFS

EFSKSecDD

Encrypted
file access

EFS calloutsLPC

User mode
Kernel mode

Uses impersonation to
de/encrypt files in the
appropriate user account

AP 9/0114

EFS Components

• Local Security Authority Subsystem
– LSASS (\Winnt\System32\Lsass.exe) manages logon sessions
– EFS obtains FEKs from LSASS

• KSecDD device driver implements comm. with LSASS
• LSAsrv listens for LPC comm.

– Passes requests to EFS functions
– Uses functions in MS CryptoAPI (CAPI) to decrypt FEK for EFS

• Crypto API ...
– is implemented by Cryptographic Service Provider (CSP) DLLs
– Details of encryption/key protection are abstracted away

• NTFS does not require EFS driver (Efs.sys)
– But encrypted file will not be accessible without presence of Efs driver

8

AP 9/0115

Format of EFS information
and key entries for a file

Version
Checksum

Number of DDF key entries

DDF key entry 1

DDF key entry 2

Number of DRF key entries

DRF key entry 1

Header

Data
decryption

field

Data
recovery

field

EFS information

User SID
(S-1-5-21-...)

Container name
(ee341-2144-55ba...)

Provider Name
(MS Base Cryptographic Provider 1.0)

EFS certificate hash
(cb3e4e...)

Encrypted FEK
(03fe4f3c...)

Key entry

Describes the storage
position of the user‘s key

Key ring
(users sharing a file)

AP 9/0116

Encrypted Data Recovery Agents
group policy

• Use Group Policy MMC snap-in to configure recovery
agents (...list may be empty)

9

AP 9/0117

Flow of EFS

Application

NTFS file
system driver

EFS driver Cache manager

Volume

Application writes data
to an encrypted file

1

NTFS places data in
file system cache

2

Cache manager lazy
writes data to diskvia NTFS

3
NTFS asks EFS driver
to encrypt file contents

headed to disk

4

NTFS writes encrypted
file contents to disk

5

AP 9/0118

Encryption Process Details

1. User profile is loaded if necessary

2. A log file Efsx.log is created
• In system volume info dir; x is unique number

3. Base Cryptographic Provider 1.0 generates random 128-bit FEK
4. User EFS private/public key pair is generated or obtained

• HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion
\EFS\CurrentKeys\CertificateHash identifies the user‘s key pairs

5. A DDF key ring is created for the file with an entry for the user
• Entry contains copy of FEK encrypted with user‘s public key

6. A DRF key ring is created for the file
• Has an entry for each recovery agent on the system
• Entries contain copies of FEK encrypted with agents‘ public keys

10

AP 9/0119

Encryption Process Details (contd.)

7. A backup file is created (Efs0.tmp)
• Same directory as original file

8. DDF and DRF rings are added to a header
• EFS attributes - $LOGGED_UTILITY_STREAM

9. Backup file is marked encrypted, original file is copied to backup
10. Original file‘s contents are destroyed

• Backup is copied to original
• This results in encrypting the file contents

11. The backup file is deleted
12. The log file is deleted
13. The user profile is unloaded (if it was loaded in step 1)

In case of system crash, either original file or backup contain valid
copy of the file content.

AP 9/0120

Backing Up Encrypted Files

• Data is never available in unencrypted form
– Except to applications that access file via encryption facility

• EFS provides a facility for backup programs:
– New EFS API: OpenEncryptedFileRaw(), ReadEncryptedFileRaw(),

WriteEncryptedFileRaw(), CloseEncryptedFileRaw()
– Implemented in Advapi32.dll, use LPC to invoke function in LSAsrv
– LSAsrv calls EfsReadFileRaw() to obtain file‘s EFS attribute and the

encrypted contents from NTFS driver
– Similarly, EfsWriteFileRaw() is invoked to restore file‘s contents

