Unit 7: The Input/Output System

7.2. The Windows 2000 I/O System

1 AP9/01

The Windows 2000 I/O System

Component of Windows 2000 executive;
resides in NTOSKRNL.EXE
» Accepts I/O requests from user-mode/kernelmode

* Delivers them to I/O devices

* Filters between user-mode I/O and hardware:
— File system drivers
— Filter drivers
— Low-level device drivers

AFIIUL

Design Goals

» Fast I/O processing on single / multiprocessor systems

* Protection for shareable resources

— Using Windows 2000 security mechanisms
* Meet requirements dictated by different subsystems

» Provide common services for device drivers
— Ease device driver development
— Allow drivers to be written in high-level language

» Dynamic addition/removal of device drivers
» Support multiple file systems (FAT, CDFS, UDF, NTFS)
* Provide mapped file I/O capabilities

AP9/01 |

I/O System Components
. win32
Applications coninne
A A
" User modev
WMI . S S Setup N
QDI’\Ii{"D m::‘]naF(;Pr I > r‘nmpr\nnnfc -
sermToTe t
_____ o N . DN A
kernel mode : = v = v :
/O Svsterm || WOMWMI PnP Power o R
Y :_ —toutines | Ly manager— Lmanager— L—manager— _'.'
Y K
! v 1
' i
Drivers L L P
v

AFIIUL

The Flow of a typical /0 Request

I/O manager controls
processing of I/O requests

Kernel-mode device drivers |
translate 1/O requests .

. Driver support
into control requests to |routines (bo,

| 1/O subsystem API (Ntxxx) |

/O manager (loxxx) |

i Ex, Ke, Mm, | Kernel-mode
hardware devices Hol Fert, T | device drivers

Driver support routines land so on)

are called by device drivers | HAL 10 access routines
« HAL routines insulate drivers
from variations in HW platform VO ports and registers
|5 AP9/01
I/O Manager

Framework for delivery of 1/0 request packets (IRPS)

IRPs control processing of all I/O operations
(exception: fast I1/0 does not use IRPS)

I/O manager:

— creates an IRP for each 1/0 operation;

— passes IRP to correct drivers;

— deletes IRP when I/O operation is complete

Driver:
— Receives IRP
— Performs operations specified by IRP

— Passes IRP back to /0 manager or to another driver (via I/O
manager) for further processing

AFIIUL

/O Manager (contd.)

» Supplies common code for different drivers:
— Drivers become simpler, more compact

* /O manager:
— Allows driver to call other drivers
— Manages buffers for I/O requests
— Provides time-out support for drivers
— Records which installable file systems are loaded
— Provides flexible I/O services to environment subsystems
(Win32/POSIX asynchronous I/O)
» Layered processing of I/O requests possible:
— Drivers can call each other (via I/O manager)

|7 AP9/01

/O Functions

Advanced features beyond open, close, read, write:

Asynchronous I/O:

— May improve throughput/performance:
continue program execution while I/O is in progress

— Must specify FILE_FLAG_OVERLAPPED on Win32 CreateFile()
— Programmer is responsible for synchronization of /O requests
Internally, all I/O is performed asynchronously
— 1/O system returns to caller only if file was opened for asynch. 1/0
— For synchronous I/O, wait is done in kernel mode depending on
overlapped flag in file object
Status of pending 1/O can be tested:
— via Win32 function: HasOverlappedloCompleted()

- . N |

[¢] AFIIUL

Control flow for an I/O operation

L Application

Call ReadFile()
]

ReadFile)
Call NtReadFile()
Return to caller i, KERNEL32.DLL
NtReadFile ’
Int 2E NTDLL.DLL
Return to caller
J AV User mode
. . Kernel mode
KiSystemService Call Nt ReadFile() }
Dismiss interrupt NTOSKRNL.EXE
NtReadFile 3
Call Invoke driver()
Whether to wait depends Wait or return NTOSKRNL.EXE
on overlapped flag to caller y
v
Initiate 1/O operation)
Return to caller DRIVER.SYS
9 AP9/01

Advanced I/O Functions

 Fast /O

— Bypass generation of IRPs
— Godirectly to file system driver or cache manager to complete I/O
» Mapped File I/0 and File Caching
— Available through Win32 CreateFileMapping() / MapViewOfFile() func.

— Used by OS for file caching and image activation
— Used by file systems via cache manager to improve performance

» Scatter/Gather 1/O

— Win32 functions ReadFileScatter()/WriteFileScatter()
— Read/write multiple buffers with a single system call

— File must be opened for non-cached, asynchronous I/O;
buffers must be page-aligned

10U

AFIIUL

Device Drivers

| MS-DOS or Winl16 App |

VDM Win32 application GDi calls
|Virtua| device driver |
| Win32 API DLL l‘
Windojs 2000 executive services
Win32 |GDI (graphics engine
ReadFile, subsystem Printer
WriteFile, (WIN32K.SYS) Display i
Devicelo- driver |_Spooler
Control,
etc, calls - J J
Kernel-mode device
driver (possibly Kernel-mode device Video Parallel
application-specific) driver (KDD) miniport KDD | [port KDD
11 AP9/01 |

Types of Device Drivers
(kernel-mode)

File system drivers

— Satisfy I/0 requests to files by issuing requests to mass storage or

network device drivers

Windows 2000 drivers

— Drivers for mass storage devices, protocol stacks, network adaptors
— Integrate with Windows 2000 power manager and PnP manager

Legacy drivers

— Written for Windows NT, run unchanged on Windows 2000
— PnP/power management not supported

Win32 subsystem display drivers

— Translate device-independent GDI requests into device-specific req.
— Interaction with video miniport driver

AFIIUL

Types of Device Drivers
(kernel-mode) (contd.)

Windows Driver Model (WDM) drivers
Implemented on Windows 2000/98/ME, PnP & power management

» Bus drivers
— Manage a logical or physical bus (PCMCIA, PCI, USB, ISA, FireWire)
— Responsible for device detection and powering the bus

* Function drivers

— Manage a particular type of device (bus drivers use PnP manager to
announce presence of devices to function drivers)

— Export device's operational interface to OS

* Filter drivers
— Augment or change behavior of a device or another driver

| 13 AP9/01

Types of Device Drivers
(user-mode)

 Virtual device drivers (VDDs):

— Used to emulate 16-bit MS-DOS applications

— Translate MS-DOS references to I/O ports into native Win32 I/O func.
* Win32 subsystem printer drivers

— Translate device-independent GDI requests into device-specific req.
— Forward commands to kernel-mode drivers

Documentation: Device Driver Kit (DDK)

— Kernel mode drivers are the only type of driver that can directly control
and access hardware devices

PR AFIIUL

Types of Kernel-mode Drivers
(another categorization)

Support for a device might be split among low-level

hardware device drivers

* Class drivers

— Implement I/O processing for a particular class of devices
(disk, tape, CD-ROM)

e Portdrivers

— Implement I/O processing specific to the type of I/O port (SCSI,...)

* Miniport drivers
— Map generic I/0O request to a port type into an adapter type

(a specific SCSI adapter,...)

|15

AP9/01

Driver Structure

v v v
CD-ROM NTES FAT file
fite-system . system
f |
v v v
CD-ROM Tape class FTDisk
\,Iuoal griver drlivcr driver
(striping, v
mitropite) Disk class
; H eFver
Relationships |]
among various] |
types of kernel- port =
mode device M 1| Miniport

drivers

Arivar,
Grvers

10

AFIIUL

Layering a File System Driver
and a Disk Driver

Environment

subsst_tLem/

User mode
NtWriteFile(file_handle, char_buffer) Kernel mode
NS Systemservices _________
Write data at specified N ||Adding a
S] .
File system |, byte offset within a file -7 layered driver
driver -) BE==-==o
Translate file-relative byte offset o Multi-
into disk-relative byte offset, and manager! volume
call next driver (via I/O manager) 2 disk
P i m— .
. . I« == driver
Disk driver | Call driver to write data at
disk-relative byte offset Call next driver
\r\ to write data to
Translate disk-relative byte offset into Disk 3 at disk-
physical location, and transfer data relative byte offset
isk 2 isk 1 Disk 3
I AP9/01

Structure of a Driver

eSS
1

A de-devicertottie Interrupt service

rautian (10D
oot roTy

Initialization |

3 2g
ror o A
Fouthie

« |1/O manager executes initialization routine when loading a driver
* PnP manager calls add-device routine on device detection

« Dispatch routines: open(), close(), read(), write()

« Start I/O routine initiates transfer from/to a device

¢ ISR runs in response to interrupt; schedules DPC

« DPC routine performs actual work of handling interrupt;
starts next queued I/O operation on device

10 AFIIUL

Other components of device drivers

Completion routines

— Alayered driver may have completion routines that will notify it when a
lower-evel driver finishes processing an IRP
(/O Request Packet)

Cancel I/O routine

Unload routine
— Releases system resources

System shutdown notification routine

Error-logging routines
— Notify I/O manager to write record to error log file (e.g., bad disk block)

Win2000: Windows Driver Model (WDM)

— Plug & Play support
— Source compatible between Win98/ME and Win2000

| 19 AP9/01

Plug and Play (PnP)

* PnP manager recognizes hardware, allocates
resources, loads driver, notifies about config. changes

Query-remove
command
Start-device > Pending Remove

command

K perove"
Remove
command

> amaye

Surprise-remove
Stop command

Device Plug and Play state transitions

!

Start-device
Fomman

Query-stop
mand

{v) AFIIUL

Power Manager

based on the Advanced Configuration and Power Interface (ACPI)

State Power Consumption Software Resumption HW Latency

SO (fully on) |Maximum Not applicable None

S1 (sleeping) |Less than SO, System resumes where it left [Less than 2
more than S2 off (returns to S0O) sec.

S2 (sleeping) |Less than S1, System resumes where it left |2 or more
more than S3 off (returns to S0O) sec.

S3 (sleeping) [Less than S2, System resumes where it left [Same as S2
processor is off off (returns to S0O)

S4 (sleeping) | Trickle current to power |System restarts from Long and
button and wake hibernate file and resumes undefined
circuitry where it left off (returns to S0)

S5 (fully off) | Trickle current to System boot Long and
power button undefined

| Bystem Power-State Definitions AP9/01

Power Man

ager Operation

Power-state transitions are

gered by:
System activity level
System battery level

Shutdown, hibernate, or sleep
requests from application

trig

User actions, such as pressing
the power button

Control Panel power settings
[}

Power-state
transitions,

|Powersuite Scheme B

Save As Delate

Settings for PowerSvite Scheme power scheme
alh fizp e =] o 4] Running on
e U Papesn [Tncs
= gLkt plies 25 coie: j ‘After 25 ming j
Power Options Properties

=] [MNewer E

P ¥ Enabls hibemate support.

Power Dptions Properties

Pawer Schemes WAIarms] Power Meter | Advanced | Hibemate |

e |

Power schemes

2]

Sellect the power scheme with the most appropriste settings for
this computer, Note that changing the settings below will modity
the selected scheme.

PowerSchemes] A\alms} PowerMeter} Advanced Hi

wihen pour computer hibemates, it stores whab +| [Mever -

memory on your hard disk and then shuts dowr

computer comes out of hibernation, it retums to™; ’m
:l Cancel Apply

v

Hibemate

Disk space for hibemation

Free disk space: 2.664 MB
128 MB

Disk space required to hibemate: AP910t

Synchronization

Drivers must synchronize accesses to global driver data:

» Execution of a driver can be preempted by higher-prio
threads; quantum may expire; interrupts

* Windows 2000 can run driver code simultaneously on
multiprocessor systems

W2K kernel provides special synchronization routines:
» Raise IRQL on single processor machines
» Use spinlocks on multiprocessors

|23 AP9/01

Data structures — File objects

* Memory-based representation of physical resource

Attribiita, Rurnose.
™

. . . " " it vk .
eRame COooIECTTETeTrS10

Sl o

SITAdAIT TITOUT

-Operrmotde—

Pointer to device Type of device on which the file resides

lo: 4+
Onject

Pointer to volume Volume/partition, that the file resides on

+ lal !
PpAT AT UTULR

Pointer to section Indicates a root structure that describes a mapped file

hicet HY
OOIECTPOIMErs

Pointer to private Identifies which parts of the file are cached by the cache manager

[cadae_map—andAubaze_Lhe.y_ze.stde_m_Lhacal;he—‘

7t APS70t

Driver objects and device objects

* When a thread opens a handle to a file object, the I/O
manager must determine which driver(s) it should call

Driver object:
— Represents individual driver in the system
— Records for I/O manager the address of each of the drivers dispatch
routines (entry points)
Device object:
— Represents physical/logical/virtual device on the system

— Describes characteristics such as buffer alignment, location of device
gueue for incoming 1/O request packets (IRPs)

|25 AP9/01

The driver object

Function code 1

» Read

Function code 2 » Write

> Device control

» Start I/O
] > Unload
Function code n 1 > Ci !
___— J | Device || Device || Device
(Bisk— (Disk o {Disky

partition) partition)

o) AFIIUL

I/O Request Packet

Environment
subsystem or
DLL

1)An application writes
a file to the printer,
passing a handle to

the file obiect User mode
€ file objec Kernel mode
Services
2)The I/0O manager I/O manager
creates an IRP and IRP stack
initializes first stack location
location IRP header
WRITE ---5| Fie - | Device | | Driver
parameters object object object
3)The /O manageruses — [__________________ T _____-=-
the driver object to locate >
the WRITE dispatch Dispatch S DPC
f tart /O ISR .
routine and calls it, routine(s) routine
passing the IRP Device Driver
27 AP9/01

IRP data

IRP consists of two parts:

» Fixed portion (header):
— Type and size of the request
— Whether request is synchronous or asynchronous
— Pointer to buffer for buffered I/O
— State information (changes with progress of the request)

» One or more stack locations:
— Function code
— Function-specific parameters
— Pointer to caller's file object
* While active, IRPs are stored in a thread-specific queue
— 1/O system may free any outstanding IRPs if thread terminates

o] AFIIUL

I/O Processing —
synch. 1/0 to a single-layered driver

1. The I/O request passes through a subsystem DLL

2. The subsystem DLL calls the I1/O manager's
NtWriteFile () service

3. 1/0 manager sends the request in form of an IRP to the
driver (a device driver)

4. The driver starts the 1/O operation

5. When the device completes the operation and
interrupts the CPU, the device driver services the int.

6. The I/O manager completes the 1/0 request

|29 AP9/01

Completing an I/O request

Servicing an interrupt:
— ISR schedules Deferred Procedure Call (DPC); dismisses int.
— DPC routine starts next I/O request and completes interrupt servicing
— May call completion routine of higher-level driver

I/0O completion:
— Record the outcome of the operation in an I/O status block
— Return data to the calling thread — by queuing a kernel-mode
Asynchronous Procedure Call (APC)

— APC executes in context of calling thread; copies data; frees IRP;
sets calling thread to signaled state

— 1/Ois now considered complete; waiting threads are released

SU AFIIUL

Layered Drivers

Environment]
1)Call I/O service subsystem or)Return I/O pending status
DLL User mode

v ! Kernel mode
2)The 1/0O manager creates an IRP, Services
initializes first stack location and
calls file system driver /O manager _
IRP J A 6)Return 1/O pending status
——J)
3)File system driver fills in a 2nd File system
IRP stack location and calls ——— driver
the disk driver IRP J bl 5)Return /O pending status
— Disk
driver
4)Send IRP data to device
(or queue IRP), and return Optimization: associated IRPs
N— may work in parallel on a single
I/O request

|31 AP9/01

